single-particle tracking Dotaz Zobrazit nápovědu
Chromosome architecture needs to be investigated in relation with the chemical function of DNA. The kinetics of gene expression, DNA replication, and repair are driven by the mechanisms by which a functional nuclear protein finds its substrate in the nucleus. Single-particle tracking (SPT) is a method to quantify fluorescent molecules dynamics from the tracks of the single molecules recorded by high-resolution microscopes. SPT offers direct observation of the movement and single-molecule resolution. Usually SPT is performed on membranes because of higher contrast. Here, we introduce a novel method to record the trajectories of weakly fluorescent molecules in the nucleus of living cells. I-SPT uses some specific detection and analysis tools to enable the computation of reliable statistics on nuclear particle movement.
- Klíčová slova
- Chromatin functional architecture, Molecule diffusion, Photoactivatable proteins, Single-particle tracking,
- MeSH
- buněčné jádro metabolismus MeSH
- buněčné linie MeSH
- lidé MeSH
- lidské chromozomy genetika ultrastruktura MeSH
- počítačové zpracování obrazu MeSH
- replikace DNA MeSH
- zobrazení jednotlivé molekuly metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Single-particle tracking (SPT) is an experimental technique that allows one to follow the dynamics of individual molecules in biological membranes with unprecedented precision. Given the importance of lipid and membrane protein diffusion in the formation of nanoscale functional complexes, it is critical to understand what exactly is measured in SPT experiments. To clarify this issue, we employed nanoscale computer simulations designed to match SPT experiments that exploit streptavidin-functionalized Au nanoparticles (AuNPs). The results show that lipid labeling interferes critically with the diffusion process; thus, the diffusion measured in SPT is a far more complex process than what has been assumed. It turns out that the influence of AuNP-based labels on the dynamics of probe lipids includes not only the AuNP-induced viscous drag that is the more significant the larger the NP but, more importantly, also the effects related to the interactions of the streptavidin linker with membrane lipids. Due to these effects, the probe lipid moves in a concerted manner as a complex with the linker protein and numerous unlabeled lipids, which can slow down the motion of the probe by almost an order of magnitude. Furthermore, our simulations show that nonlinker streptavidin tetramers on the AuNP surface are able to interact with the membrane lipids, which could potentially lead to multivalent labeling of the NPs by the probe lipids. Our results further demonstrate that in the submicrosecond time domain the motion of the probe lipid is uncorrelated with the motion of the AuNP, showing that there is a 1 μs limit for the temporal resolution of the SPT technique. However, this limit for the temporal resolution depends on the nanoparticle size and increases rapidly with growing AuNPs. Overall, the results provide a molecular-scale framework to accurately interpret SPT data and to design protocols that minimize label-induced artifacts.
- MeSH
- difuze * MeSH
- kovové nanočástice chemie MeSH
- membránové lipidy chemie MeSH
- simulace molekulární dynamiky MeSH
- zlato chemie MeSH
- zobrazení jednotlivé molekuly * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- membránové lipidy MeSH
- zlato MeSH
Diamond magnetometry can provide new insights on the production of free radicals inside live cells due to its high sensitivity and spatial resolution. However, the measurements often lack intracellular context for the recorded signal. In this paper, the possible use of single-particle tracking and trajectory analysis of fluorescent nanodiamonds (FNDs) to bridge that gap is explored. It starts with simulating a set of different possible scenarios of a particle's movement, reflecting different modes of motion, degrees of confinement, as well as shapes and sizes of that confinement. Then, the insights from the analysis of the simulated trajectories are applied to describe the movement of FNDs in glycerol solutions. It is shown that the measurements are in good agreement with the previously reported findings and that trajectory analysis yields meaningful results, when FNDs are tracked in a simple environment. Then the much more complex situation of FNDs moving inside a live cell is focused. The behavior of the particles after different incubation times is analyzed, and the possible intracellular localization of FNDs is deducted from their trajectories. Finally, this approach is combined with long-term magnetometry methods to obtain maps of the spin relaxation dynamics (or T1) in live cells, as FNDs move through the cytosol.
- Klíčová slova
- fluorescent nanodiamonds, free radicals, magnetometry, single-particle tracking,
- MeSH
- diamant MeSH
- fluorescenční barviva MeSH
- glycerol MeSH
- nanodiamanty * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- diamant MeSH
- fluorescenční barviva MeSH
- glycerol MeSH
- nanodiamanty * MeSH
Single particle analysis (SPA) in cryo-electron microscopy (cryo-EM) is highly used to obtain the near-atomic structure of biological macromolecules. The current methods allow users to produce high-resolution maps from many samples. However, there are still challenging cases that require extra processing to obtain high resolution. This is the case when the macromolecule of the sample is composed of different components and we want to focus just on one of them. For example, if the macromolecule is composed of several flexible subunits and we are interested in a specific one, if it is embedded in a viral capsid environment, or if it has additional components to stabilize it, such as nanodiscs. The signal from these components, which in principle we are not interested in, can be removed from the particles using a projection subtraction method. Currently, there are two projection subtraction methods used in practice and both have some limitations. In fact, after evaluating their results, we consider that the problem is still open to new solutions, as they do not fully remove the signal of the components that are not of interest. Our aim is to develop a new and more precise projection subtraction method, improving the performance of state-of-the-art methods. We tested our algorithm with data from public databases and an in-house data set. In this work, we show that the performance of our algorithm improves the results obtained by others, including the localization of small ligands, such as drugs, whose binding location is unknown a priori.
- Klíčová slova
- Cryo-EM, Ligand, Nanodisc, Projection subtraction, SPA,
- MeSH
- algoritmy * MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky chemie MeSH
- zobrazení jednotlivé molekuly * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- makromolekulární látky MeSH
One of the main purposes of CryoEM Single Particle Analysis is to reconstruct the three-dimensional structure of a macromolecule thanks to the acquisition of many particle images representing different poses of the sample. By estimating the orientation of each projected particle, it is possible to recover the underlying 3D volume by multiple 3D reconstruction methods, usually working either in Fourier or in real space. However, the reconstruction from the projected images works under the assumption that all particles in the dataset correspond to the same conformation of the macromolecule. Although this requisite holds for some macromolecules, it is not true for flexible specimens, leading to motion-induced artefacts in the reconstructed CryoEM maps. In this work, we introduce a new Algebraic Reconstruction Technique called ZART, which is able to include continuous flexibility information during the reconstruction process to improve local resolution and reduce motion blurring. The conformational changes are modelled through Zernike3D polynomials. Our implementation allows for a multiresolution description of the macromolecule adapting itself to the local resolution of the reconstructed map. In addition, ZART has also proven to be a useful algorithm in cases where flexibility is not so dominant, as it improves the overall aspect of the reconstructed maps by improving their local and global resolution.
- Klíčová slova
- Cryo-Electron Microscopy (CryoEM), Zernike polynomials, Zernike3D-based Algebraic Reconstruction Technique (ZART), map reconstruction, spherical harmonics,
- MeSH
- algoritmy MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky chemie MeSH
- počítačové zpracování obrazu * metody MeSH
- pohyb těles MeSH
- zobrazení jednotlivé molekuly * MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- makromolekulární látky MeSH
Time-lapse imaging is a rich data source offering potential kinetic information of cellular activity and behavior. Tracking and extracting measurements of objects from time-lapse datasets are challenges that result from the complexity and dynamics of each object's motion and intensity or the appearance of new objects in the field of view. A wide range of strategies for proper data sampling, object detection, image analysis, and post-analysis interpretation are available. Theory and methods for single-particle tracking, spot detection, and object linking are discussed in this unit, as well as examples with step-by-step procedures for utilizing semi-automated software and visualization tools for achieving tracking results and interpreting this output.
- Klíčová slova
- digital imaging, image analysis, image segmentation methods, object linking, object tracking, sampling frequency, single-particle tracking,
- MeSH
- časosběrné zobrazování MeSH
- Chlamydomonas cytologie MeSH
- dánio pruhované MeSH
- fluorescence MeSH
- krevní buňky cytologie MeSH
- malá interferující RNA metabolismus MeSH
- regionální krevní průtok MeSH
- rozpoznávání automatizované metody MeSH
- zobrazování trojrozměrné * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- malá interferující RNA MeSH
Cryo-electron microscopy has established as a mature structural biology technique to elucidate the three-dimensional structure of biological macromolecules. The Coulomb potential of the sample is imaged by an electron beam, and fast semi-conductor detectors produce movies of the sample under study. These movies have to be further processed by a whole pipeline of image-processing algorithms that produce the final structure of the macromolecule. In this chapter, we illustrate this whole processing pipeline putting in value the strength of "meta algorithms," which are the combination of several algorithms, each one with different mathematical rationale, in order to distinguish correctly from incorrectly estimated parameters. We show how this strategy leads to superior performance of the whole pipeline as well as more confident assessments about the reconstructed structures. The "meta algorithms" strategy is common to many fields and, in particular, it has provided excellent results in bioinformatics. We illustrate this combination using the workflow engine, Scipion.
- Klíčová slova
- Cryo-electron microscopy, Image processing, Scipion, Single particle,
- MeSH
- algoritmy * MeSH
- elektronová kryomikroskopie metody MeSH
- makromolekulární látky ultrastruktura MeSH
- molekulární biologie metody MeSH
- počítačové zpracování obrazu metody MeSH
- průběh práce MeSH
- výpočetní biologie MeSH
- zobrazení jednotlivé molekuly metody MeSH
- zobrazování trojrozměrné metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- makromolekulární látky MeSH
Particle tracking is of key importance for quantitative analysis of intracellular dynamic processes from time-lapse microscopy image data. Because manually detecting and following large numbers of individual particles is not feasible, automated computational methods have been developed for these tasks by many groups. Aiming to perform an objective comparison of methods, we gathered the community and organized an open competition in which participating teams applied their own methods independently to a commonly defined data set including diverse scenarios. Performance was assessed using commonly defined measures. Although no single method performed best across all scenarios, the results revealed clear differences between the various approaches, leading to notable practical conclusions for users and developers.
Correlative light and electron microscopy (CLEM) is an important tool for the localisation of target molecule(s) and their spatial correlation with the ultrastructural map of subcellular features at the nanometre scale. Adoption of these advanced imaging methods has been limited in plant biology, due to challenges with plant tissue permeability, fluorescence labelling efficiency, indexing of features of interest throughout the complex 3D volume and their re-localization on micrographs of ultrathin cross-sections. Here, we demonstrate an imaging approach based on tissue processing and embedding into methacrylate resin followed by imaging of sections by both, single-molecule localization microscopy and transmission electron microscopy using consecutive CLEM and same-section CLEM correlative workflow. Importantly, we demonstrate that the use of a particular type of embedding resin is not only compatible with single-molecule localization microscopy but shows improvements in the fluorophore blinking behavior relative to the whole-mount approaches. Here, we use a commercially available Click-iT ethynyl-deoxyuridine cell proliferation kit to visualize the DNA replication sites of wild-type Arabidopsis thaliana seedlings, as well as fasciata1 and nucleolin1 plants and apply our in-section CLEM imaging workflow for the analysis of S-phase progression and nucleolar organization in mutant plants with aberrant nucleolar phenotypes.
Telomerase RNA (TR) conformation determines its function as a template for telomere synthesis and as a scaffold for the assembly of the telomerase nucleoprotein complex. Experimental analyses of TR secondary structure using DMS-Map Seq and SHAPE-Map Seq techniques show its CLOSED conformation as the consensus structure where the template region cannot perform its function. Our data show that the apparent discrepancy between experimental results and predicted TR functional conformation, mostly ignored in published studies, can be explained using data analysis based on single-molecule structure prediction from individual sequencing reads by the recently established DaVinci method. This method results in several clusters of secondary structures reflecting the structural dynamics of TR, possibly related to its multiple functional states. Interestingly, the presumed active (OPEN) conformation of TR corresponds to a minor fraction of TR under in vivo conditions. Therefore, structural polymorphism and dynamic TR transitions between CLOSED and OPEN conformations may be involved in telomerase activity regulation as a switch that functions independently of total TR transcript levels.
- Klíčová slova
- DMS-Map Seq, RNA secondary structure, SHAPE-Map Seq, single molecule analysis, telomerase RNA,
- MeSH
- konformace nukleové kyseliny MeSH
- mechy * MeSH
- RNA * chemie genetika MeSH
- telomerasa * chemie genetika MeSH
- zobrazení jednotlivé molekuly MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA * MeSH
- telomerasa * MeSH
- telomerase RNA MeSH Prohlížeč