transformation techniques
Dotaz
Zobrazit nápovědu
Current research needs to be more focused on agronomical plants to effectively utilize the knowledge obtained from model plant species. Efforts to improve legumes have long employed common breeding tools. Recently, biotechnological approaches facilitated the development of improved legumes with new traits, allowing them to withstand climatic changes and biotic stress. Owing to its multiple uses and profits, alfalfa (Medicago sativa L.) has become a prominent forage crop worldwide. This review provides a comprehensive research summary of tissue culture-based genetic transformation methods, which could be exploited for the development of transgenic alfalfa with agronomically desirable traits. Moreover, advanced bio-imaging approaches, including cutting-edge microscopy and phenotyping, are outlined here. Finally, characterization and the employment of beneficial microbes should help to produce biotechnologically improved and sustainable alfalfa cultivars.
- Klíčová slova
- Advanced microscopy, bio-imaging, phenotyping, symbiotic interaction, tissue culture, transformation techniques, transgenic alfalfa,
- MeSH
- biotechnologie metody MeSH
- elektroporace MeSH
- fixace dusíku MeSH
- geneticky modifikované rostliny genetika MeSH
- Medicago sativa genetika MeSH
- mikrobiota MeSH
- mikroskopie metody MeSH
- symbolismus MeSH
- techniky tkáňových kultur metody MeSH
- transformace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Toyocamycin exhibits effective biological activities for use against plant pathogenic fungi thanks to its structural similarity to nucleoside. It has been recognized as a promising agricultural antibiotic utilized in controlling the occurrence of plant diseases. In our previous study, a strain that was isolated was identified and designated as Streptomyces diastatochromogenes whose major secondary metabolite was toyocamycin, but the production was largely limited. Protoplast transformation is a useful technique in the improvement of streptomycete. In this study, we optimized some key factors necessary for protoplast formation, regeneration, and transformation of S. diastatochromogenes. When mycelium was cultivated in CP medium with 1 % glycine, harvested at 48 h old, and then treated with 3 mg lysozyme/mL in P buffer for 1 h, the greatest regeneration frequency (42.5 %) of protoplasts was obtained. By using 1 × 10(9)/mL protoplasts with polyethylene glycol 1000 at a concentration of 30 % (w/v), the best performance of protoplast transformation efficiency was 4.8 × 10(3)/μg DNA transformants.
Agrobacterium tumefaciens is widely used as a versatile tool for development of stably transformed model plants and crops. However, the development of Agrobacterium based transient plant transformation methods attracted substantial attention in recent years. Transient transformation methods offer several applications advancing stable transformations such as rapid and scalable recombinant protein production and in planta functional genomics studies. Herein, we highlight Agrobacterium and plant genetics factors affecting transfer of T-DNA from Agrobacterium into the plant cell nucleus and subsequent transient transgene expression. We also review recent methods concerning Agrobacterium mediated transient transformation of model plants and crops and outline key physical, physiological and genetic factors leading to their successful establishment. Of interest are especially Agrobacterium based reverse genetics studies in economically important crops relying on use of RNA interference (RNAi) or virus-induced gene silencing (VIGS) technology. The applications of Agrobacterium based transient plant transformation technology in biotech industry are presented in thorough detail. These involve production of recombinant proteins (plantibodies, vaccines and therapeutics) and effectoromics-assisted breeding of late blight resistance in potato. In addition, we also discuss biotechnological potential of recombinant GFP technology and present own examples of successful Agrobacterium mediated transient plant transformations.
- Klíčová slova
- Agrobacterium tumefaciens, Functional genomics, RNA interference, Recombinant GFP technology, Recombinant protein production, Transient transformation, Virulence, Virus induced gene silencing,
- MeSH
- Agrobacterium tumefaciens metabolismus patogenita MeSH
- biotechnologie MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny genetika MeSH
- technika přenosu genů * MeSH
- transformace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- rostlinné proteiny MeSH
Silene latifolia serves as a model species to study dioecy, the evolution of sex chromosomes, dosage compensation and sex-determination systems in plants. Currently, no protocol for genetic transformation is available for this species, mainly because S. latifolia is considered recalcitrant to in vitro regeneration and infection with Agrobacterium tumefaciens. Using cytokinins and their synthetic derivatives, we markedly improved the efficiency of regeneration. Several agrobacterial strains were tested for their ability to deliver DNA into S. latifolia tissues leading to transient and stable expression of the GUS reporter. The use of Agrobacterium rhizogenes strains resulted in the highest transformation efficiency (up to 4.7% of stable transformants) in hairy root cultures. Phenotypic and genotypic analyses of the T1 generation suggested that the majority of transformation events contain a small number of independent T-DNA insertions and the transgenes are transmitted to the progeny in a Mendelian pattern of inheritance. In short, we report an efficient and reproducible protocol for leaf disc transformation and subsequent plant regeneration in S. latifolia, based on the unique combination of infection with A. rhizogenes and plant regeneration from hairy root cultures using synthetic cytokinins. A protocol for the transient transformation of S.latifolia protoplasts was also developed and applied to demonstrate the possibility of targeted mutagenesis of the sex linked gene SlAP3 by TALENs and CRISPR/Cas9.
- Klíčová slova
- CRISPR/Cas9, Genetic transformation, In vitro regeneration, Protoplast assay, Silene latifolia,
- MeSH
- Agrobacterium genetika MeSH
- chromozomy rostlin genetika MeSH
- CRISPR-Cas systémy MeSH
- DNA bakterií genetika MeSH
- exprese genu MeSH
- genetické techniky MeSH
- geneticky modifikované rostliny MeSH
- modely genetické MeSH
- molekulární evoluce MeSH
- regenerace genetika MeSH
- reportérové geny MeSH
- Silene genetika mikrobiologie fyziologie MeSH
- TALENs MeSH
- transformace genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA bakterií MeSH
- T-DNA MeSH Prohlížeč
- TALENs MeSH
In this study, the Agrobacterium tumefaciens-mediated transformation method for Ganderma weberianum has been established. Driven by the cauliflower mosaic virus (CaMV) 35S promoter, the hygromycin phosphotransferase (hpt), β-glucuronidase (uidA), and enhanced green fluorescent protein (egfp) genes have been efficiently expressed in transgenic mycelia and spores. The transformation system was composed of the growing mycelia, A. tumefaciens strain GV3101, and the expression vector pBI-H1, harboring the CaMV 35S promoter and selective hpt marker. The genetic transformation of G. weberianum was achieved through co-cultivation of Agrobacterium lawn and fungal mycelia at 28 °C on yeast extract agar (YEA) medium. Stable genetic transformants were obtained through successive hygromycin B selections and single spore isolation. Over 80 % of transformants showed genetic stability even after ten rounds of subculturing. The simple and efficient genetic transformation method is a useful tool for molecular genetics analyses and gene manipulation of G. weberianum.
- MeSH
- Agrobacterium tumefaciens genetika metabolismus MeSH
- Ganoderma genetika MeSH
- genetické techniky * MeSH
- genetické vektory genetika metabolismus MeSH
- transformace genetická * MeSH
- zelené fluorescenční proteiny MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enhanced green fluorescent protein MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
- MeSH
- aktivace lymfocytů MeSH
- buněčné dělení MeSH
- film jako téma MeSH
- kultivační techniky MeSH
- lidé MeSH
- lymfocyty imunologie MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The somatic type tumors are occasionally found in nonseminomatous germ cell tumors in men. These malignancies are presumed to arise from malignant transformation (MT) of teratoma or by differentiation of totipotential germ cell. OBSERVATION: A case of MT of germ cell tumor in 17-year-old male into embryonal rhabdomyosarcoma is described. The histopathologic diagnosis was that of embryonal rhabdomyosarcoma in which no germ cell elements were found. The germ cell origin of transformed histology is supported by cytogenetic analysis (isochromosome 12p), and elevated alpha(1)-fetoprotein. Despite intensive therapy the patient died. CONCLUSIONS: MT of teratoma is rare entity with poor prognosis.
- MeSH
- chromozomální aberace MeSH
- cytogenetické vyšetření MeSH
- embryonální rhabdomyosarkom diagnóza genetika terapie MeSH
- fatální výsledek MeSH
- imunohistochemie MeSH
- lidé MeSH
- lidské chromozomy, pár 12 genetika MeSH
- lymfatické metastázy MeSH
- mladiství MeSH
- nádorová transformace buněk genetika MeSH
- nádory mediastina diagnóza genetika terapie MeSH
- nádory plic diagnóza sekundární MeSH
- reziduální nádor MeSH
- sekundární malignity diagnóza genetika terapie MeSH
- teratom diagnóza genetika terapie MeSH
- Check Tag
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
- práce podpořená grantem MeSH
A technique is described in which ethanol is used to improve the genetic transformation of intact yeast (Saccharomyces cerevisiae) cells pretreated with LiAc and PEG. Transformation efficiency was increased with increasing concentrations of ethanol with a peak at 10% concentration. The effect varies with different yeast strains and plasmids and up to a maximum of a 15-fold increase was observed.
- MeSH
- DNA genetika MeSH
- Escherichia coli genetika MeSH
- ethanol farmakologie MeSH
- plazmidy MeSH
- Saccharomyces cerevisiae genetika růst a vývoj MeSH
- transformace genetická účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- ethanol MeSH
- MeSH
- embryo savčí účinky léků MeSH
- epitel účinky léků MeSH
- epitelové buňky MeSH
- ethyl-karbamát farmakologie MeSH
- histocytochemie MeSH
- kultivační techniky MeSH
- lidé MeSH
- nádorová transformace buněk MeSH
- nekróza MeSH
- orgánové kultury - kultivační techniky * MeSH
- Orthomyxoviridae * MeSH
- plíce embryologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ethyl-karbamát MeSH
- MeSH
- aktivace lymfocytů MeSH
- alely MeSH
- kultivační techniky MeSH
- lymfocyty imunologie MeSH
- myši MeSH
- transformace genetická * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH