-
Je něco špatně v tomto záznamu ?
Using Deep Learning for Automatic Icd-10 Classification from Free-Text Data
Ssu-Ming Wang, Yu-Hsuan Chang, Lu-Cheng Kuo, Feipei Lai, Yun-Nung Chen, Fei-Yun Yu, Chih-Wei Chen, Zong-Wei Li, Yufang Chung
Jazyk angličtina Země Česko
Typ dokumentu práce podpořená grantem
- MeSH
- automatizované zpracování dat metody MeSH
- deep learning * MeSH
- elektronické zdravotní záznamy MeSH
- mezinárodní klasifikace nemocí * MeSH
- neuronové sítě MeSH
- strojové učení MeSH
- ukládání a vyhledávání informací metody statistika a číselné údaje MeSH
- vizualizace dat MeSH
- zpracování přirozeného jazyka MeSH
- Publikační typ
- práce podpořená grantem MeSH
Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.
Department of Computer Science and Information Engineering National Taiwan University Taipei Taiwan
Department of Electrical Engineering Tunghai University Taichung Taiwan
Health Management Center National Taiwan University Hospital Taipei Taiwan
Citace poskytuje Crossref.org
Literatura
- 000
- 00000naa a2200000 a 4500
- 001
- bmc20009456
- 003
- CZ-PrNML
- 005
- 20221107213644.0
- 007
- ta
- 008
- 140801s2020 xr ad f 000 0eng||
- 009
- eAR
- 024 7_
- $a 10.24105/ejbi.2020.16.1.2 $2 doi
- 040 __
- $a ABA008 $d ABA008 $e AACR2 $b cze
- 041 0_
- $a eng
- 044 __
- $a xr
- 100 1_
- $a Wang, Ssu-Ming $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- 245 10
- $a Using Deep Learning for Automatic Icd-10 Classification from Free-Text Data / $c Ssu-Ming Wang, Yu-Hsuan Chang, Lu-Cheng Kuo, Feipei Lai, Yun-Nung Chen, Fei-Yun Yu, Chih-Wei Chen, Zong-Wei Li, Yufang Chung
- 504 __
- $a Literatura
- 520 9_
- $a Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.
- 650 17
- $a mezinárodní klasifikace nemocí $7 D038801 $2 czmesh
- 650 17
- $a deep learning $7 D000077321 $2 czmesh
- 650 _7
- $a zpracování přirozeného jazyka $7 D009323 $2 czmesh
- 650 _7
- $a neuronové sítě $7 D016571 $2 czmesh
- 650 _7
- $a automatizované zpracování dat $x metody $7 D001330 $2 czmesh
- 650 _7
- $a ukládání a vyhledávání informací $x metody $x statistika a číselné údaje $7 D016247 $2 czmesh
- 650 _7
- $a elektronické zdravotní záznamy $7 D057286 $2 czmesh
- 650 _7
- $a vizualizace dat $7 D000078326 $2 czmesh
- 650 _7
- $a strojové učení $7 D000069550 $2 czmesh
- 655 _7
- $a práce podpořená grantem $7 D013485 $2 czmesh
- 700 1_
- $a Chang, Yu-Hsuan $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
- 700 1_
- $a Kuo, Lu-Cheng $u 2Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
- 700 1_
- $a Lai, Feipei $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; 3Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- 700 1_
- $a Chen, Yun-Nung $u 3Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
- 700 1_
- $a Yu, Fei-Yun $u 4Medical Information Management Offices, NTUH, Taipei, Taiwan
- 700 1_
- $a Chen, Chih-Wei $u 4Medical Information Management Offices, NTUH, Taipei, Taiwan
- 700 1_
- $a Li, Zong-Wei $u 5Information Technology Office, NTUH, Taipei, Taiwan
- 700 1_
- $a Chung, Yufang $u 6Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
- 773 0_
- $t European journal for biomedical informatics $x 1801-5603 $g Roč. 16, č. 1 (2020), s. 1-10 $w MED00173462
- 856 41
- $u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
- 910 __
- $a ABA008 $b online $y p $z 0
- 990 __
- $a 20140801191602 $b ABA008
- 991 __
- $a 20221107213641 $b ABA008
- 999 __
- $a ok $b bmc $g 1537549 $s 1099540
- BAS __
- $a 3 $a 4
- BMC __
- $a 2020 $b 16 $c 1 $d 1-10 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
- LZP __
- $c NLK189 $d 20221107 $a NLK 2020-20/dk