Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Using Deep Learning for Automatic Icd-10 Classification from Free-Text Data

Ssu-Ming Wang, Yu-Hsuan Chang, Lu-Cheng Kuo, Feipei Lai, Yun-Nung Chen, Fei-Yun Yu, Chih-Wei Chen, Zong-Wei Li, Yufang Chung

. 2020 ; 16 (1) : 1-10.

Jazyk angličtina Země Česko

Typ dokumentu práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20009456

Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc20009456
003      
CZ-PrNML
005      
20221107213644.0
007      
ta
008      
140801s2020 xr ad f 000 0eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2020.16.1.2 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Wang, Ssu-Ming $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
245    10
$a Using Deep Learning for Automatic Icd-10 Classification from Free-Text Data / $c Ssu-Ming Wang, Yu-Hsuan Chang, Lu-Cheng Kuo, Feipei Lai, Yun-Nung Chen, Fei-Yun Yu, Chih-Wei Chen, Zong-Wei Li, Yufang Chung
504    __
$a Literatura
520    9_
$a Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.
650    17
$a mezinárodní klasifikace nemocí $7 D038801 $2 czmesh
650    17
$a deep learning $7 D000077321 $2 czmesh
650    _7
$a zpracování přirozeného jazyka $7 D009323 $2 czmesh
650    _7
$a neuronové sítě $7 D016571 $2 czmesh
650    _7
$a automatizované zpracování dat $x metody $7 D001330 $2 czmesh
650    _7
$a ukládání a vyhledávání informací $x metody $x statistika a číselné údaje $7 D016247 $2 czmesh
650    _7
$a elektronické zdravotní záznamy $7 D057286 $2 czmesh
650    _7
$a vizualizace dat $7 D000078326 $2 czmesh
650    _7
$a strojové učení $7 D000069550 $2 czmesh
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
700    1_
$a Chang, Yu-Hsuan $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
700    1_
$a Kuo, Lu-Cheng $u 2Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
700    1_
$a Lai, Feipei $u Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan; 3Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
700    1_
$a Chen, Yun-Nung $u 3Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan
700    1_
$a Yu, Fei-Yun $u 4Medical Information Management Offices, NTUH, Taipei, Taiwan
700    1_
$a Chen, Chih-Wei $u 4Medical Information Management Offices, NTUH, Taipei, Taiwan
700    1_
$a Li, Zong-Wei $u 5Information Technology Office, NTUH, Taipei, Taiwan
700    1_
$a Chung, Yufang $u 6Department of Electrical Engineering, Tunghai University, Taichung, Taiwan
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 16, č. 1 (2020), s. 1-10 $w MED00173462
856    41
$u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y p $z 0
990    __
$a 20140801191602 $b ABA008
991    __
$a 20221107213641 $b ABA008
999    __
$a ok $b bmc $g 1537549 $s 1099540
BAS    __
$a 3 $a 4
BMC    __
$a 2020 $b 16 $c 1 $d 1-10 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$c NLK189 $d 20221107 $a NLK 2020-20/dk

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...