Probiotic potential of enterococci isolated from canine feed
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Bacterial Proteins metabolism MeSH
- Enterococcus chemistry drug effects isolation & purification metabolism MeSH
- Animal Feed microbiology MeSH
- Lactic Acid metabolism MeSH
- Humans MeSH
- Probiotics chemistry isolation & purification MeSH
- Dogs MeSH
- Intestines microbiology MeSH
- Urease metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Dogs MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Anti-Bacterial Agents MeSH
- Bacterial Proteins MeSH
- Lactic Acid MeSH
- Urease MeSH
Enterococci isolated from 28 different commercially available feeds (10-1000 CFU/mL) were identified and their probiotic potential was determined. Species identification of 22 selected strains was performed by intergenic length-polymorphism analysis (tRNA-PCR); PCR products were analyzed using capillary electrophoresis. Six strains were allotted to the species Enterococcus faecium, four to E. faecalis, one to E. hirae; the remaining strains were not classed. The strains were sensitive to vancomycin, ampicillin, tetracycline and rifampicin. They were able to adhere to human as well as canine intestinal mucus. They produced lactic acid (0.99-1.04 mmol/L) and most of them were urease-positive with sufficient survival in 5 % Oxgall-bile. They did not show any inhibitory activity due to antimicrobial substances. Plasmid DNA was detected in 8 strains, the bands responding to small molecular size (10 kbp). Considering all probiotically important properties, E. faecium strain EE3 was suggested as potential feed additive.
See more in PubMed
Berl Munch Tierarztl Wochenschr. 1996 Nov-Dec;109(11-12):428-30 PubMed
Folia Microbiol (Praha). 2002;47(4):391-400 PubMed
J Appl Microbiol. 2001 Jul;91(1):54-66 PubMed
Arch Tierernahr. 2003 Jun;57(3):229-33 PubMed
Vet Med (Praha). 1997 Jan;42(1):19-27 PubMed
Int J Syst Evol Microbiol. 2001 Jul;51(Pt 4):1567-1574 PubMed
Folia Microbiol (Praha). 2006;51(5):507-10 PubMed
Vet Res Commun. 2003 May;27(4):275-80 PubMed
Microbios. 1995;84(338):7-11 PubMed
J Appl Bacteriol. 1992 Nov;73(5):421-5 PubMed
Folia Microbiol (Praha). 2007;52(2):115-9 PubMed
Folia Microbiol (Praha). 2006;51(4):281-2 PubMed
J Gen Microbiol. 1976 Jan;92(1):32-48 PubMed
Folia Microbiol (Praha). 2004;49(3):301-5 PubMed
Clin Diagn Lab Immunol. 2002 Jan;9(1):184-6 PubMed
Anaerobe. 2006 Apr;12(2):75-9 PubMed
Folia Microbiol (Praha). 2004;49(2):203-7 PubMed
Folia Microbiol (Praha). 2005;50(6):524-8 PubMed
J Nutr. 1998 Dec;128(12 Suppl):2730S-2732S PubMed
Appl Environ Microbiol. 1993 Jul;59(7):2190-6 PubMed
Folia Microbiol (Praha). 2006;51(3):239-42 PubMed
J Food Prot. 2000 Oct;63(10):1333-7 PubMed
Vet Microbiol. 2004 May 20;100(1-2):107-14 PubMed
J Dairy Sci. 1990 Apr;73(4):905-11 PubMed
Folia Microbiol (Praha). 2006;51(5):478-84 PubMed
FEMS Microbiol Lett. 1998 Oct 15;167(2):185-9 PubMed
Nucleic Acids Res. 1991 Feb 25;19(4):861-6 PubMed
Vet Res Commun. 2004 Nov;28(8):647-55 PubMed
Appl Environ Microbiol. 1997 Nov;63(11):4321-30 PubMed
J Clin Microbiol. 2000 Nov;38(11):4201-7 PubMed
Analyst. 1969 Dec;94(125):1151-2 PubMed
Microbios. 1997;89(359):73-80 PubMed
Folia Microbiol (Praha). 2007;52(3):273-9 PubMed
Lett Appl Microbiol. 2006 Jun;42(6):553-9 PubMed
Antimicrob Agents Chemother. 1991 Jan;35(1):1-4 PubMed
J Appl Microbiol. 2003;94(3):523-30 PubMed
Microbiol Rev. 1995 Jun;59(2):171-200 PubMed
Vet Microbiol. 2003 Dec 2;97(1-2):55-61 PubMed
Folia Microbiol (Praha). 2006;51(2):141-5 PubMed
Folia Microbiol (Praha). 2005;50(5):443-7 PubMed
Antibiotic resistance in commensal intestinal microflora