Quadruplex-forming sequences occupy discrete regions inside plant LTR retrotransposons
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24106085
PubMed Central
PMC3902901
DOI
10.1093/nar/gkt893
PII: gkt893
Knihovny.cz E-resources
- MeSH
- DNA, Plant chemistry MeSH
- G-Quadruplexes * MeSH
- Genome, Plant MeSH
- Terminal Repeat Sequences * MeSH
- Retroelements * MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Plant MeSH
- Retroelements * MeSH
Retrotransposons with long terminal repeats (LTR) form a significant proportion of eukaryotic genomes, especially in plants. They have gag and pol genes and several regulatory regions necessary for transcription and reverse transcription. We searched for potential quadruplex-forming sequences (PQSs) and potential triplex-forming sequences (PTSs) in 18 377 full-length LTR retrotransposons collected from 21 plant species. We found that PQSs were often located in LTRs, both upstream and downstream of promoters from which the whole retrotransposon is transcribed. Upstream-located guanine PQSs were dominant in the minus DNA strand, whereas downstream-located guanine PQSs prevailed in the plus strand, indicating their role both at transcriptional and post-transcriptional levels. Our circular dichroism spectroscopy measurements confirmed that these PQSs readily adopted guanine quadruplex structures-some of them were paralell-stranded, while others were anti-parallel-stranded. The PQS often formed doublets at a mutual distance of up to 400 bp. PTSs were most abundant in 3'UTR (but were also present in 5'UTR). We discuss the potential role of quadruplexes and triplexes as the regulators of various processes participating in LTR retrotransposon life cycle and as potential recombination sites during post-insertional retrotransposon-based genome rearrangements.
See more in PubMed
Kejnovsky E, Hawkins JS, Feschotte C. Plant transposable elements: biology and evolution. In: Wendel JF, Leitch I, Dolezel J, Greilhuber J, editors. Diversity of Genomes in Plants. Vol. 1. Vienna: Springer; 2012. pp. 17–34.
Sabot F, Schulman AH. Parasitism and the retrotransposon life cycle in plants: a hitchhiker’s guide to the genome. Heredity. 2006;97:381–388. PubMed
Lever A, Gottlinger H, Haseltine W, Sodroski J. Identification of a sequence required for efficient packaging of human immunodeficiency virus type 1 RNA into virions. J. Virol. 1989;63:4085–4087. PubMed PMC
Lawrence DC, Stover CC, Noznitsky J, Wu Z, Summers MF. Structure of the intact stem and bulge of HIV-1 Psi-RNA stem loop SL1. J. Mol. Biol. 2003;326:529–542. PubMed
Skripkin E, Paillart JC, Marquet R, Ehresmann B, Ehresmann C. Identification of the primary site of the human immunodeficiency virus type 1 RNA dimerization in vitro. Proc. Natl Acad. Sci. USA. 1994;91:4945–4949. PubMed PMC
Balakrishnan M, Fay PJ, Bambara RA. The kissing hairpin sequence promotes recombination within the HIV-I 5′ leader region. J. Biol. Chem. 2001;276:36482–36492. PubMed
Choi J, Majima T. Conformational changes of non-B DNA. Chem. Soc. Rev. 2011;40:5893–5909. PubMed
Wu Y, Brosh RM. G-quadruplex nucleic acids and human diseases. FEBS J. 2010;277:3470–3488. PubMed PMC
Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ. Telomere end-binding protein control the formation of G-quadruplex DNA structures in vivo. Nat. Struct. Mol. Biol. 2005;12:847–854. PubMed
Burge S, Parkinson GN, Hazel P, Todd AK, Neidle S. Quadruplex DNA: sequence, topology and structure. Nucleic Acids Res. 2006;34:5402–5415. PubMed PMC
Qin Y, Hurley LH. Structure, folding patterns, and functions of intramolecular DNA G-quadruplexes found in eukaryotic promoter regions. Biochimie. 2008;90:1149–1171. PubMed PMC
Boán G, Gómez-Marquez J. In vitro recombination mediated by G-quadruplexes. Chembiochem. 2010;11:331–334. PubMed
Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 2012;13:770–780. PubMed PMC
Kypr J, Kejnovska I, Renciuk D, Vorlickova M. Circular dichroism and conformational polymorphism of DNA. Nucleic Acids Res. 2009;37:1713–1725. PubMed PMC
Vorlickova M, Kejnovska I, Sagi J, Renciuk D, Bednarova K, Motlova J, Kypr J. Circular dichroism and guanine quadruplexes. Methods. 2012;57:64–75. PubMed
Sundquist WI, Heaphy S. Evidence for interstrand quadruplex formation in the dimerization of human immunodeficiency virus 1 genomic RNA. Proc. Natl Acad. Sci. USA. 1993;90:3393–3397. PubMed PMC
Kankia BI, Barany G, Musier-Forsyth K. Unfolding of DNA quadruplexes induced by HIV-1 nucleocapsid protein. Nucleic Acids Res. 2005;33:4395–4403. PubMed PMC
Usdin K, Furano AV. The structure of the guanine-rich polypurine:polypyrimidine sequence at the right end of the rat L1 (LINE) element. J. Biol. Chem. 1989;264:15681–15687. PubMed
Howell R, Usdin K. The ability to form intrastrand tetraplexes is an evolutionary conserved feature of the 3′ end of L1 retrotransposons. Mol. Biol. Evol. 1997;14:144–155. PubMed
Steinbauerova V, Neumann P, Novak P, Macas J. A widespread occurrence of extra open reading frames in plant ty3/gypsy retrotransposons. Genetica. 2011;139:1543–1555. PubMed
Xu Z, Wang H. LTR finder: an efficient tool for the prediction of fulllength ltr retrotransposons. Nucleic Acids Res. 2007;35:W265–W268. PubMed PMC
Schiex T, Gouzy J, Moisan A, de Oliviera Y. Framed: a flexible program for quality check and gene prediction in prokaryotic genomes and noisy matured eukaryotic sequence. Nucleic Acids Res. 2003;31:3738–3741. PubMed PMC
Lexa M, Martinek T, Burgetova I, Kopecek D, Brazdova M. A dynamic programming algorithm for identification of triplex-forming sequences. Bioinformatics. 2011;27:2510–2517. PubMed
Hon J, Martinek T, Rajdl K, Lexa M. Triplex: an R/Bioconductor package for identification and visualization of potential intramolecular triplex patterns in DNA sequences. Bioinformatics. 2013;29:1900–1901. PubMed
Knudsen S. Promoter2.0: for the recognition of polii promoter sequences. Bioinformatics. 1999;15:356–361. PubMed
Huppert JL, Balasubramanian S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005;33:2908–2916. PubMed PMC
Mullen MA, Olson KJ, Dallaire P, Major F, Assmann SM, Bevilacqua PC. RNA G-Quadruplexes in the model plant species Arabidopsis thaliana: prevalence and possible functional roles. Nucleic Acids Res. 2010;38:8149–8163. PubMed PMC
Gray DM, Hung SH, Johnson KH. Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol. 1995;246:19–34. PubMed
Kwok CK, Sherlock ME, Bevilacqua PC. Effect of loop sequence and loop length on the intrinsic fluorescence of G-quadruplexes. Biochemistry. 2012;52:3019–3021. PubMed
McManus SA, Li Y. Assessing the amount of quadruplex structures present within G2-tract synthetic random-sequence DNA libraries. PLoS One. 2013;8:e64131. PubMed PMC
Paramasivan S, Rujan I, Bolton PH. Circular dichroism of quadruplex DNAs: applications to structure, cation effects and ligand binding. Methods. 2007;43:324–331. PubMed
Smirnov I, Shafer RH. Effect of loop sequence and size on DNA aptamer stability. Biochemistry. 2000;39:1462–1468. PubMed
Guedin A, De Cian A, Gros J, Lacroix L, Mergny JL. Sequence effects in single-base loops for quadruplexes. Biochimie. 2008;90:686–696. PubMed
Rachwal PA, Findlow IS, Werner JM, Brown T, Fox KR. Intramolecular DNA quadruplexes with different arrangements of short and long loops. Nucleic Acids Res. 2007;35:4214–4222. PubMed PMC
Vorlickova M, Bednarova K, Kejnovska I, Kypr J. Intramolecular and intermolecular guanine quadruplexes of DNA in aqueous salt and ethanol solutions. Biopolymers. 2007;86:1–10. PubMed
Hazel P, Huppert J, Balasubramanian S, Neidle S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc. 2004;126:16405–16415. PubMed
Risitano A, Fox KR. Influence of loop size on the stability of intramolecular G-quadruplexes. Nucleic Acids Res. 2004;32:2598–2606. PubMed PMC
Millevoi S, Moine H, Vagner S. G-quadruplexes in RNA biology. Wiley Interdiscip. Rev. RNA. 2012;3:495–507. PubMed
Voronin YA, Pathak VK. Frequent dual initiation in human immunodeficiency virus-based vectors containing two primer-binding sites: a quantitative in vivo assay for function of initiation complexes. J. Virol. 2004;78:5402–5413. PubMed PMC
Maksakova IA, Mager DL. G-quadruplexes in RNA biology. J. Virol. 2005;79:13865–13874. PubMed PMC
Huppert JL, Balasubramanian S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007;35:406–413. PubMed PMC
Devos KM, Brown JKM, Bennetzen JL. Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res. 2002;12:1075–1079. PubMed PMC
Clark J, Smith SS. Secondary structure at a hot spot for DNA methylation in DNA from human breast cancers. Cancer Genomics Proteomics. 2002;5:241–251. PubMed PMC
Tsumagari K, Qi L, Jackson K, Shao C, Lacey M, Sowden J, Tawil R, Vedanarayanan V, Ehrlich M. Epigenetics of a tandem DNA repeat: chromatinDNaseI sensitivity and opposite methylationchanges in cancers. Nucleic Acids Res. 2008;36:2196–2207. PubMed PMC
Maizels N, Gray LT. The G4 genome. PLoS Genet. 2013;9:e1003468. PubMed PMC
Sen D, Gilbert W. A sodium-potassium switch in the formation of four-stranded G4-DNA. Nature. 1990;344:410–414. PubMed
Beck A, Vijayanathan V, Thomas T, Thomas TJ. Ionic microenvironmental effect on triplex DNA stabilization: cationic counterion effect on poly(dT).poly(dA).poly(dT) Biochimie. 2013;95:1310–1318. PubMed
Grandbastien M-A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 1998;3:181–187.
Kejnovsky E, Leitch I, Leitch A. Contrasting evolutionary dynamics between angiosperm and mammalian genomes. Trends Ecol. Evol. 2009;24:572–582. PubMed
Telomeric retrotransposons show propensity to form G-quadruplexes in various eukaryotic species
Impact of Repetitive Elements on the Y Chromosome Formation in Plants
Transposable elements and G-quadruplexes
Guanine quadruplexes are formed by specific regions of human transposable elements
Quadruplex-forming DNA sequences spread by retrotransposons may serve as genome regulators