Dynamics and hydration explain failed functional transformation in dehalogenase design
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
24727901
DOI
10.1038/nchembio.1502
PII: nchembio.1502
Knihovny.cz E-resources
- MeSH
- Hydrocarbons, Brominated chemistry MeSH
- Spectrometry, Fluorescence MeSH
- Hydrolases chemistry genetics MeSH
- Catalytic Domain MeSH
- Catalysis MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray MeSH
- Molecular Sequence Data MeSH
- Mutagenesis, Site-Directed MeSH
- Protein Engineering * MeSH
- Amino Acid Sequence MeSH
- Molecular Dynamics Simulation * MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Stereoisomerism MeSH
- Water chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Hydrocarbons, Brominated MeSH
- haloalkane dehalogenase MeSH Browser
- Hydrolases MeSH
- Water MeSH
We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.
See more in PubMed
Proteins. 2007 May 1;67(2):305-16 PubMed
J Phys Chem B. 2009 Jun 18;113(24):8210-3 PubMed
Science. 2010 Jul 16;329(5989):309-13 PubMed
Nature. 2007 Dec 13;450(7172):964-72 PubMed
Acta Crystallogr D Biol Crystallogr. 1997 May 1;53(Pt 3):240-55 PubMed
Nat Chem Biol. 2013 Aug;9(8):494-8 PubMed
PLoS Comput Biol. 2012;8(10):e1002708 PubMed
Nature. 2005 Nov 3;438(7064):117-21 PubMed
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2914-9 PubMed
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 PubMed
Science. 2011 Apr 8;332(6026):234-8 PubMed
Curr Opin Chem Biol. 2013 Apr;17(2):221-8 PubMed
Biochimie. 2012 Jan;94(1):26-32 PubMed
Acta Crystallogr A. 2008 Jan;64(Pt 1):112-22 PubMed
Nature. 2008 May 8;453(7192):190-5 PubMed
Appl Environ Microbiol. 2005 Aug;71(8):4372-9 PubMed
Protein Sci. 2010 Oct;19(10):1817-9 PubMed
Nature. 2013 Nov 21;503(7476):418-21 PubMed
Angew Chem Int Ed Engl. 2010 Aug 16;49(35):6111-5 PubMed
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13867-72 PubMed
Nat Chem Biol. 2012 Feb 05;8(3):294-300 PubMed
Curr Opin Chem Biol. 2014 Apr;19:8-16 PubMed
J Mol Biol. 1999 Nov 12;293(5):1161-81 PubMed
Microbiology (Reading). 1997 Jan;143 ( Pt 1):109-115 PubMed
Science. 2008 Mar 7;319(5868):1387-91 PubMed
J Am Chem Soc. 2009 Jan 21;131(2):494-501 PubMed
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10358-63 PubMed
Mechanism-Based Strategy for Optimizing HaloTag Protein Labeling
What Does Time-Dependent Fluorescence Shift (TDFS) in Biomembranes (and Proteins) Report on?
MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018 update)
PDB
3SK0