Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity
Language English Country United States Media print-electronic
Document type Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
25694522
PubMed Central
PMC4400744
DOI
10.1128/jcm.03094-14
PII: JCM.03094-14
Knihovny.cz E-resources
- MeSH
- Electronic Data Processing MeSH
- Bacterial Proteins analysis MeSH
- beta-Lactamases analysis MeSH
- Bicarbonates * MeSH
- Hydrolysis MeSH
- Automation, Laboratory MeSH
- Humans MeSH
- Meropenem MeSH
- Buffers MeSH
- Sensitivity and Specificity MeSH
- Software MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods MeSH
- Thienamycins metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ammonium bicarbonate MeSH Browser
- Bacterial Proteins MeSH
- beta-Lactamases MeSH
- carbapenemase MeSH Browser
- Bicarbonates * MeSH
- Meropenem MeSH
- Buffers MeSH
- Thienamycins MeSH
A comparison of a matrix-assisted laser desorption ionization-time of flight mass spectrometric (MALDI-TOF MS) meropenem hydrolysis assay with the Carba NP test showed that both methods exhibited low sensitivity (approximately 76%), mainly due to the false-negative results obtained with OXA-48-type producers. The addition of NH4HCO3 to the reaction buffer for the MALDI-TOF MS assay dramatically improved its sensitivity (98%). Automatic interpretation of the MALDI-TOF MS assay, using the MBT STAR-BL software, generally agreed with the results obtained after manual analysis. For the Carba NP test, spectrophotometric analysis found six additional carbapenemase producers.
Department of Microbiology Medical School University of Thessaly Biopolis Larissa Greece
National Medicines Institute Warsaw Poland
Robert Koch Institute Nosocomial Pathogens and Antibiotic Resistance Wernigerode Germany
See more in PubMed
Hrabák J, Chudáčková E, Papagiannitsis CC. 2014. Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microbiol Infect 20:839–853. doi:10.1111/1469-0691.12678. PubMed DOI
Schwaber MJ, Carmeli Y. 2014. An ongoing national intervention to contain the spread of carbapenem-resistant Enterobacteriaceae. Clin Infect Dis 58:697–703. doi:10.1093/cid/cit795. PubMed DOI
Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T. 2011. Carbapenemase activity detection by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 49:3222–3227. doi:10.1128/JCM.00984-11. PubMed DOI PMC
Burckhardt I, Zimmermann S. 2011. Using matrix-assisted laser desorption ionization–time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol 49:3321–3324. doi:10.1128/JCM.00287-11. PubMed DOI PMC
Nordmann P, Poirel L, Dortet L. 2012. Rapid detection of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507. doi:10.3201/eid1809.120355. PubMed DOI PMC
Dortet L, Poirel L, Nordmann P. 2012. Rapid detection of carbapenemase-producing Pseudomonas spp. J Clin Microbiol 50:3773–3776. doi:10.1128/JCM.01597-12. PubMed DOI PMC
Dortet L, Poirel L, Errera C, Nordmann P. 2014. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 52:2359–2364. doi:10.1128/JCM.00594-14. PubMed DOI PMC
Studentova V, Papagiannitsis CC, Izdebski R, Pfeifer Y, Chudackova E, Bergerova T, Gniadkowski M, Hrabak J. 2014. Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers. Folia Microbiol (Praha) 60:119–129. doi:10.1007/s12223-014-0349-8. PubMed DOI PMC
Drieux L, Brossier F, Sougakoff W, Jarlier V. 2008. Phenotypic detection of extended-spectrum β-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14(Suppl 1):S90–S103. PubMed
Lee K, Lim YS, Yong D, Yum JH, Chong Y. 2003. Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 41:4623–4629. doi:10.1128/JCM.41.10.4623-4629.2003. PubMed DOI PMC
Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL. 2008. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type β-lactamase by use of a boronic acid compound. J Clin Microbiol 46:4083–4086. doi:10.1128/JCM.01408-08. PubMed DOI PMC
Glupczynski Y, Huang TD, Bouchahrouf W, Rezende de Castro R, Bauraing C, Gerard M, Verbruggen AM, Delpano A, Denis O, Bogaerts P. 2012. Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int J Antimicrob Agents 39:168–172. doi:10.1016/j.ijantimicag.2011.10.005. PubMed DOI
Gniadkowski M, Schneider I, Jungwirth R, Hryniewicz W, Bauernfeind A. 1998. Ceftazidime-resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5-type extended-spectrum β-lactamases. Antimicrob Agents Chemother 42:514–520. PubMed PMC
Woodford N, Fagan EJ, Ellington MJ. 2006. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother 57:154–155. doi:10.1093/jac/dki412. PubMed DOI
D'Andrea MM, Literacka E, Zioga A, Giani T, Baraniak A, Fiett J, Sadowy E, Tassios PT, Rossolini GM, Gniadkowski M, Miriagou V. 2011. Evolution and spread of a multidrug-resistant Proteus mirabilis with chromosomal AmpC-type cephalosporinase in Europe. Antimicrob Agents Chemother 55:2735–2742. doi:10.1128/AAC.01736-10. PubMed DOI PMC
Baraniak A, Grabowska A, Izdebski R, Fiett J, Herda M, Bojarska K, Zabicka D, Kania-Pudlo M, Mlynarczyk G, Zak-Pulawska Z, Hryniewicz W, Gniadkowski M, KPC-PL Study Group. 2011. Molecular characteristics of KPC-producing Enterobacteriaceae at the early stage of their dissemination in Poland, 2008–2009. Antimicrob Agents Chemother 55:5493–5499. doi:10.1128/AAC.05118-11. PubMed DOI PMC
Ellington MJ, Kistler J, Livermore DM, Woodford N. 2007. Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J Antimicrob Chemother 59:321–322. doi:10.1093/jac/dkl481. PubMed DOI
Fiett J, Baraniak A, Mrowka A, Fleischer M, Drulis-Kawa Z, Naumiuk L, Samet A, Hryniewicz W, Gniadkowski M. 2006. Molecular epidemiology of acquired-metallo-β-lactamase-producing bacteria in Poland. Antimicrob Agents Chemother 50:880–886. doi:10.1128/AAC.50.3.880-886.2006. PubMed DOI PMC
Yong D, Toleman MA, Giske CG, Cho HS, Sundman K, Lee K, Walsh TR. 2009. Characterization of a new metallo-β-lactamase gene, blaNDM-1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob Agents Chemother 53:5046–5054. doi:10.1128/AAC.00774-09. PubMed DOI PMC
Poirel L, Heritier C, Tolun V, Nordmann P. 2004. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother 48:15–22. doi:10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC
Papagiannitsis CC, Študentová V, Jakubů V, Španĕlová P, Urbášková P, Žemličková H, Hrabák J. 2014. High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb Drug Resist 21:74–84. doi:10.1089/mdr.2014.0070. PubMed DOI
European Committee on Antimicrobial Susceptibility Testing. 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. doi:10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Hrabák J, Papagiannitsis CC, Študentová V, Jakubu V, Fridrichová M, Žemličková H, Czech Participants of European Antimicrobial Resistance Surveillance Network. 2013. Carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Euro Surveill 18:pii=20626 http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=20626. PubMed
Papagiannitsis CC, Študentová V, Hrabák J, Kubele J, Jindrák V, Žemličková H. 2013. Isolation from a nonclinical sample of Leclercia adecarboxylata producing a VIM-1 metallo-β-lactamase. Antimicrob Agents Chemother 57:2896–2897. doi:10.1128/AAC.00052-13. PubMed DOI PMC
Papagiannitsis CC, Študentová V, Ruzicka F, Tejkalova R, Hrabák J. 2013. Molecular characterization of metallo-β-lactamase-producing Pseudomonas aeruginosa in a Czech hospital (2009–2011). J Med Microbiol 62:945–947. doi:10.1099/jmm.0.056119-0. PubMed DOI
Liakopoulos A, Mavroidi A, Katsifas EA, Theodosiou A, Karagouni AD, Miriagou V, Petinaki E. 2013. Carbapenemase-producing Pseudomonas aeruginosa from central Greece: molecular epidemiology and genetic analysis of class I integrons. BMC Infect Dis 13:505. doi:10.1186/1471-2334-13-505. PubMed DOI PMC
Perry JD, Naqvi SH, Mizra IA, Alizai SA, Hussain A, Ghirardi S, Orenga S, Wilkinson K, Woodford N, Zhang J, Livermore DM, Abbasi SA, Raza MW. 2011. Prevalence of faecal carriage of Enterobacteriaceae with NDM-1 carbapenemase at military hospitals in Pakistan, and evaluation of two chromogenic media. J Antimicrob Chemother 66:2288–2294. doi:10.1093/jac/dkr299. PubMed DOI
Papagiannitsis CC, Studentova V, Chudackova E, Bergerova T, Hrabak J, Radej J, Novak I. 2013. Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol (Praha) 58:547–549. doi:10.1007/s12223-013-0247-5. PubMed DOI
Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, Holfelder M, Witte W, Nordmann P, Poirel L. 2012. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agents Chemother 56:2125–2128. doi:10.1128/AAC.05315-11. PubMed DOI PMC
Chudáčková E, Bergerová T, Fajfrlik K, Cervená D, Urbásková P, Empel J, Gniadkowski M, Hrabák J. 2010. Carbapenem-nonsusceptible strains of Klebsiella pneumoniae producing SHV-5 and/or DHA-1 β-lactamases in a Czech hospital. FEMS Microbiol Lett 309:62–70. doi:10.1111/j.1574-6968.2010.02016.x. PubMed DOI
Hrabák J, Študentová V, Walková R, Žemličková H, Jakubu V, Chudácková E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerová T. 2012. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization–time of flight mass spectrometry. J Clin Microbiol 50:2441–2443. doi:10.1128/JCM.01002-12. PubMed DOI PMC
Dortet L, Bréchard L, Poirel L, Nordmann P. 2014. Impact of the isolation medium for detection of carbapenemase-producing Enterobacteriaceae using an updated version of the Carba NP test. J Med Microbiol 63:772–776. doi:10.1099/jmm.0.071340-0. PubMed DOI
Tijet N, Boyd D, Patel SN, Mulvey MR, Melano RG. 2013. Evaluation of the Carba NP test for rapid detection of carbapenemase-producing Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 57:4578–4580. doi:10.1128/AAC.00878-13. PubMed DOI PMC
Knox J, Jadhav S, Sevior D, Agyekum A, Whipp M, Waring L, Iredell J, Palombo E. 2014. Phenotypic detection of carbapenemase-producing Enterobacteriaceae using MALDI-TOF MS and the Carba NP test. J Clin Microbiol 52:4075–4077. doi:10.1128/JCM.02121-14. PubMed DOI PMC
Characterization of KPC-Encoding Plasmids from Enterobacteriaceae Isolated in a Czech Hospital