• This record comes from PubMed

Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species

. 2017 Mar ; 126 (2) : 325-335. [epub] 20160919

Language English Country Austria Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 27645892
DOI 10.1007/s00412-016-0616-3
PII: 10.1007/s00412-016-0616-3
Knihovny.cz E-resources

Satellite DNA repeats (or satDNA) are fast-evolving sequences usually associated with condensed heterochromatin. To test whether the chromosomal organisation of centromeric and non-centromeric satDNA differs in species with holocentric chromosomes, we identified and characterised the major satDNA families in the holocentric Cyperaceae species Rhynchospora ciliata (2n = 10), R. globosa (2n = 50) and R. tenuis (2n = 2x = 4 and 2n = 4x = 8). While conserved centromeric repeats (present in R. ciliata and R. tenuis) revealed linear signals at both chromatids, non-centromeric, species-specific satDNAs formed distinct clusters along the chromosomes. Colocalisation of both repeat types resulted in a ladder-like hybridisation pattern at mitotic chromosomes. In interphase, the centromeric satDNA was dispersed while non-centromeric satDNA clustered and partly colocalised to chromocentres. Despite the banding-like hybridisation patterns of the clustered satDNA, the identification of chromosome pairs was impaired due to the irregular hybridisation patterns of the homologues in R. tenuis and R. ciliata. These differences are probably caused by restricted or impaired meiotic recombination as reported for R. tenuis, or alternatively by complex chromosome rearrangements or unequal condensation of homologous metaphase chromosomes. Thus, holocentricity influences the chromosomal organisation leading to differences in the distribution patterns and condensation dynamics of centromeric and non-centromeric satDNA.

See more in PubMed

PLoS Genet. 2012;8(6):e1002777 PubMed

Nat Rev Mol Cell Biol. 2007 Sep;8(9):692-702 PubMed

Front Plant Sci. 2016 Mar 01;7:234 PubMed

PLoS One. 2008 May 14;3(5):e2167 PubMed

Micron. 2011 Aug;42(6):625-31 PubMed

Nat Protoc. 2007;2(9):2233-44 PubMed

BMC Bioinformatics. 2010 Jul 15;11:378 PubMed

Genome. 2004 Feb;47(1):134-40 PubMed

Genetics. 2005 Jul;170(3):1231-8 PubMed

PLoS One. 2013;8(1):e54808 PubMed

Bioinformatics. 2013 Mar 15;29(6):792-3 PubMed

Chromosome Res. 2015 Sep;23(3):561-70 PubMed

Nucleic Acids Res. 1979 Dec 11;7(7):1869-85 PubMed

J Cell Biol. 2004 Aug 16;166(4):493-505 PubMed

Cytogenet Genome Res. 2012;137(1):42-9 PubMed

Proc Natl Acad Sci U S A. 2015 Nov 3;112(44):13633-8 PubMed

Ann Bot. 2012 Mar;109(4):773-82 PubMed

Chromosome Res. 2012 Dec;20(8):911-24 PubMed

Chromosome Res. 2010 Jun;18(4):487-502 PubMed

Cytogenet Genome Res. 2005;109(1-3):134-43 PubMed

Genome Biol. 2013 Jan 30;14(1):R10 PubMed

Chromosome Res. 2003;11(1):51-6 PubMed

Front Plant Sci. 2016 Feb 15;7:28 PubMed

Ann Bot. 2007 Oct;100(4):875-88 PubMed

Plant J. 2013 Feb;73(4):555-65 PubMed

Nat Commun. 2014 Oct 08;5:4979 PubMed

Chromosome Res. 2010 Jun;18(4):503-14 PubMed

Chromosome Res. 2002;10(3):177-200 PubMed

Gene. 1995 Dec 29;167(1-2):GC1-10 PubMed

Chromosome Res. 2012 Jul;20(5):579-93 PubMed

Cytogenet Genome Res. 2015;146(2):153-70 PubMed

Theor Appl Genet. 2006 Mar;112(5):924-33 PubMed

Chromosoma. 2015 Dec;124(4):503-17 PubMed

Chromosome Res. 2015 Dec;23(4):709-18 PubMed

Bioinformatics. 2002 Jan;18(1):28-35 PubMed

Biotech Histochem. 1993 May;68(3):142-5 PubMed

Bioinformatics. 2010 Sep 1;26(17):2101-8 PubMed

Genetica. 2009 May;136(1):171-7 PubMed

Nat Commun. 2014 Oct 08;5:5070 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...