Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula)
Language English Country Germany Media print-electronic
Document type Journal Article
PubMed
27888351
DOI
10.1007/s00792-016-0894-y
PII: 10.1007/s00792-016-0894-y
Knihovny.cz E-resources
- Keywords
- Antarctica *, Ecology *, Fatty acids *, Ice-covered lakes *, Light *, Monoraphidium *, Phylogeny *, Temperature *,
- MeSH
- Biodiversity * MeSH
- Chlorophyta classification genetics metabolism MeSH
- Phytoplankton classification genetics isolation & purification metabolism MeSH
- Adaptation, Physiological MeSH
- Lakes MeSH
- Ice Cover * MeSH
- Fatty Acids, Unsaturated metabolism MeSH
- RNA, Ribosomal, 18S genetics MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Antarctic Regions MeSH
- Names of Substances
- Fatty Acids, Unsaturated MeSH
- RNA, Ribosomal, 18S MeSH
The aim of this study was to assess the phylogenetic relationships, ecology and ecophysiological characteristics of the dominant planktic algae in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula). Phylogenetic analyses of 18S rDNA together with analysis of ITS2 rDNA secondary structure and cell morphology revealed that the two strains belong to one species of the genus Monoraphidium (Chlorophyta, Sphaeropleales, Selenastraceae) that should be described as new in future. Immotile green algae are thus apparently capable to become the dominant primary producer in the extreme environment of Antarctic lakes with extensive ice-cover. The strains grew in a wide temperature range, but the growth was inhibited at temperatures above 20 °C, indicating their adaptation to low temperature. Preferences for low irradiances reflected the light conditions in their original habitat. Together with relatively high growth rates (0.4-0.5 day-1) and unprecedently high content of polyunsaturated fatty acids (PUFA, more than 70% of total fatty acids), it makes these isolates interesting candidates for biotechnological applications.
Centre for Phycology Institute of Botany CAS Dukelská 135 379 82 Třeboň Czech Republic
Institute of Microbiology CAS Vídeňská 1083 142 20 Prague Czech Republic
See more in PubMed
BMC Evol Biol. 2011 Sep 20;11:262 PubMed
Bacteriol Rev. 1975 Jun;39(2):144-67 PubMed
BMC Plant Biol. 2011 Sep 06;11:124 PubMed
J Agric Food Chem. 2009 Aug 12;57(15):6888-98 PubMed
Extremophiles. 2013 Sep;17(5):711-22 PubMed
Biochim Biophys Acta. 2002 Apr 12;1561(2):251-65 PubMed
Mol Biol Evol. 2008 Jul;25(7):1253-6 PubMed
Trends Genet. 2003 Jul;19(7):370-5 PubMed
World J Microbiol Biotechnol. 2016 Apr;32(4):64 PubMed
PLoS One. 2013 Jun 24;8(6):e66726 PubMed
Microbiol Res. 2008;163(4):373-9 PubMed
Environ Toxicol. 2010 Dec;25(6):554-63 PubMed
Extremophiles. 2008 Sep;12(5):701-11 PubMed
J Phycol. 2011 Aug;47(4):880-93 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
FEMS Microbiol Ecol. 2016 Aug;92 (8):null PubMed
Philos Trans R Soc Lond B Biol Sci. 2007 Dec 29;362(1488):2273-89 PubMed
Bioinformatics. 2009 Aug 1;25(15):1974-5 PubMed
J Phycol. 1968 Mar;4(1):1-4 PubMed
Protist. 2013 Jul;164(4):482-96 PubMed
Lipids. 1993 Apr;28(4):321-4 PubMed
Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed
Protist. 2000 May;151(1):1-9 PubMed
Microbiol Mol Biol Rev. 2006 Mar;70(1):222-52 PubMed
Nucleic Acids Res. 2003 Jul 1;31(13):3406-15 PubMed
BMC Res Notes. 2014 Sep 02;7:592 PubMed
Mol Ecol. 2011 Sep;20(18):3936-48 PubMed
Two New Kremastochrysopsis species, K. austriaca sp. nov. and K. americana sp. nov. (Chrysophyceae)1