TBK1 Mutation Spectrum in an Extended European Patient Cohort with Frontotemporal Dementia and Amyotrophic Lateral Sclerosis
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
28008748
PubMed Central
PMC5324646
DOI
10.1002/humu.23161
Knihovny.cz E-resources
- Keywords
- ALS, FTD, NFκB luciferase reporter assay, TANK-Binding Kinase 1, TBK1, amyotrophic lateral sclerosis, frontotemporal dementia, mutations,
- MeSH
- Enzyme Activation MeSH
- Alleles MeSH
- Amyotrophic Lateral Sclerosis diagnosis epidemiology genetics MeSH
- White People genetics MeSH
- Phenotype MeSH
- Frontotemporal Dementia diagnosis epidemiology genetics MeSH
- Genetic Association Studies MeSH
- Heterozygote MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation MeSH
- NF-kappa B metabolism MeSH
- Protein Serine-Threonine Kinases genetics metabolism MeSH
- Sequence Deletion MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Amino Acid Substitution MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- NF-kappa B MeSH
- Protein Serine-Threonine Kinases MeSH
- TBK1 protein, human MeSH Browser
We investigated the mutation spectrum of the TANK-Binding Kinase 1 (TBK1) gene and its associated phenotypic spectrum by exonic resequencing of TBK1 in a cohort of 2,538 patients with frontotemporal dementia (FTD), amyotrophic lateral sclerosis (ALS), or FTD plus ALS, ascertained within the European Early-Onset Dementia Consortium. We assessed pathogenicity of predicted protein-truncating mutations by measuring loss of RNA expression. Functional effect of in-frame amino acid deletions and missense mutations was further explored in vivo on protein level and in vitro by an NFκB-induced luciferase reporter assay and measuring phosphorylated TBK1. The protein-truncating mutations led to the loss of transcript through nonsense-mediated mRNA decay. For the in-frame amino acid deletions, we demonstrated loss of TBK1 or phosphorylated TBK1 protein. An important fraction of the missense mutations compromised NFκB activation indicating that at least some functions of TBK1 are lost. Although missense mutations were also present in controls, over three times more mutations affecting TBK1 functioning were found in the mutation fraction observed in patients only, suggesting high-risk alleles (P = 0.03). Total mutation frequency for confirmed TBK1 LoF mutations in the European cohort was 0.7%, with frequencies in the clinical subgroups of 0.4% in FTD, 1.3% in ALS, and 3.6% in FTD-ALS.
Antwerp University Hospital Edegem
Center for Molecular Neurology VIB Antwerp Belgium
Center for Networker Biomedical Research in Neurodegenerative Diseases Madrid Spain
CIBERNED Instituto de Salud Carlos 3 Madrid Spain
Clinical Neuroscience Unit Department of Neurology University of Bonn Bonn Germany
Deparment of Neurology Complejo Asistencial Universitario de Palencia Palencia Spain
Department of Biochemistry Molecular Medicine Center Medical University Sofia Sofia Bulgaria
Department of Cognitive Science and Psychology New Bulgarian University Sofia Bulgaria
Department of Geriatric Medicine Genetics unit Karolinska University Hospital Stockholm Sweden
Department of Neurology Antwerp University Hospital Edegem Belgium
Department of Neurology Fundación Jiménez Díaz Madrid Spain
Department of Neurology Ludwig Maximilians Universität München Munich Germany
Department of Neurology Medical University Sofia Sofia Bulgaria
Department of Neurology University Hospital Ghent and University of Ghent Ghent Belgium
Department of Neurology University Hospitals Leuven Leuven Belgium
Department of Neurosciences Faculty of Medicine KU Leuven Leuven Belgium
Department of Psychiatry and Psychotherapy Technische Universität München München Germany
Department of Psychiatry and Psychotherapy University of Bonn Bonn Germany
Department of Psychiatry and Psychotherapy University of Cologne Cologne Germany
Faculty of Medicine and Institute of Molecular Medicine University of Lisbon Lisbon Portugal
Fundació ACE Institut Català de Neurociències Aplicades Barcelona Spain
General Hospital Glorieux Ronse
General Hospital Sint Jan Brugge Bruges
General Hospital Sint Maria Halle
German Center for Neurodegenerative Diseases Bonn Germany
German Center for Neurodegenerative Diseases Munich Germany
German Research Center for Neurodegenerative Diseases Tübingen Germany
Hertie Institute for Clinical Brain Research Tübingen Germany
Hospital Clínic IDIBAPS Barcelona Spain
Hospital Network Antwerp Antwerp
Hospital Santa Maria Lisbon Portugal
Institute Born Bunge University of Antwerp Antwerp Belgium
Institute of Human Genetics University of Bonn Bonn Germany
IRCCS Don Carlo Gnocchi Scandicci Florence Italy
Medical University of Vienna Vienna Austria
Neurology Unit University of Brescia Brescia Italy
Saint Luc University Hospital Brussels
Thomayer Hospital Prague and Charles University Prague Czech Republic
University Hospital Brussels Brussels
University Hospital Ghent Ghent
University Hospitals Leuven Gasthuisberg Leuven
University of Coimbra Coimbra Portugal
University of Liège and Memory Clinic CHU Liège Liège
See more in PubMed
Arnold SJ, Dugger BN, Beach TG. 2013. TDP‐43 deposition in prospectively followed, cognitively normal elderly individuals: correlation with argyrophilic grains but not other concomitant pathologies. Acta Neuropathol 126:51–57. PubMed PMC
Le Ber I, De Septenville A, Millecamps S, Camuzat A, Caroppo P, Couratier P, Blanc F, Lacomblez L, Sellal F, Fleury M‐C, Meininger V, Cazeneuve C, et al. 2015. TBK1 mutation frequencies in French frontotemporal dementia and amyotrophic lateral sclerosis cohorts. Neurobiol Aging 36:3116.e5–3116.e8. PubMed
Borroni B, Bonvicini C, Alberici A, Buratti E, Agosti C, Archetti S, Papetti A, Stuani C, Di Luca M, Gennarelli M, Padovani A. 2009. Mutation within TARDBP leads to frontotemporal dementia without motor neuron disease. Hum Mutat 30:E974–E983. PubMed
Brooks BR, Miller RG, Swash M, Munsat TL. 2000. El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Other Motor Neuron Disord 1:293–299. PubMed
Chester C, de Carvalho M, Miltenberger G, Pereira S, Dillen L, van der Zee J, Van Broeckhoven C, de Mendonça A. 2013. Rapidly progressive frontotemporal dementia and bulbar amyotrophic lateral sclerosis in Portuguese patients with C9orf72 mutation. Amyotroph Lateral Scler Frontotemporal Degener 14:70–72. PubMed
Cirulli ET, Lasseigne BN, Petrovski S, Sapp PC, Dion A, Leblond CS, Couthouis J, Lu Y, Wang Q, Brian J, Ren Z, Keebler J, et al. 2015. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 347:1436–1441. PubMed PMC
Clément J‐F, Meloche S, Servant MJ. 2008. The IKK‐related kinases: from innate immunity to oncogenesis. Cell Res 18:889–899. PubMed
Cruts M, Theuns J, Van Broeckhoven C. 2012. Locus‐specific mutation databases for neurodegenerative brain diseases. Hum Mutat 33:1340–1344. PubMed PMC
Cruts M, Gijselinck I, Van Langenhove T, van der Zee J, Van Broeckhoven C. 2013. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci 36:450–459. PubMed
DeJesus‐Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, Nicholson AM, Finch NA, Flynn H, Adamson J, Kouri N, Wojtas A, et al. 2011. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p‐linked FTD and ALS. Neuron 72:245–256. PubMed PMC
Freischmidt A, Wieland T, Richter B, Ruf W, Schaeffer V, Müller K, Marroquin N, Nordin F, Hübers A, Weydt P, Pinto S, Press R, et al. 2015. Haploinsufficiency of TBK1 causes familial ALS and fronto‐temporal dementia. Nat Neurosci 18:631–636. PubMed
Fujishiro H, Uchikado H, Arai T, Hasegawa M, Akiyama H, Yokota O, Tsuchiya K, Togo T, Iseki E, Hirayasu Y. 2009. Accumulation of phosphorylated TDP‐43 in brains of patients with argyrophilic grain disease. Acta Neuropathol 117:151–158. PubMed
Gelpi E, van der Zee J, Turon Estrada A, Van Broeckhoven C, Sanchez‐Valle R. 2014. TARDBP mutation p.Ile383Val associated with semantic dementia and complex proteinopathy. Neuropathol Appl Neurobiol 40:225–230. PubMed
Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, Janssens J, Bettens K, Van Cauwenberghe C, Pereson S, Engelborghs S, Sieben A, et al. 2012. A C9orf72 promoter repeat expansion in a Flanders‐Belgian cohort with disorders of the frontotemporal lobar degeneration‐amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol 11:54–65. PubMed
Gijselinck I, Van Mossevelde S, van der Zee J, Sieben A, Philtjens S, Heeman B, Engelborghs S, Vandenbulcke M, De Baets G, Bäumer V, Cuijt I, Van den Broeck M, et al. 2015. Loss of TBK1 is a frequent cause of frontotemporal dementia in a Belgian cohort. Neurology 85:2116–2125. PubMed PMC
Gorno‐Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, et al. 2011. Classification of primary progressive aphasia and its variants. Neurology 76:1–10. PubMed PMC
Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, et al. 2010. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68:857–864. PubMed PMC
Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard J‐P, Lacomblez L, Pochigaeva K, Salachas F, Pradat P‐F, Camu W, et al. 2008. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40:572–574. PubMed
Kwiatkowski TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, et al. 2009. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323:1205–1208. PubMed
Van Langenhove T, van der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijselinck I, Van den Broeck M, Mattheijssens M, Peeters K, De Deyn PP, Cruts M, Van Broeckhoven C. 2010. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology 74:366–371. PubMed
Larabi A, Devos JM, Ng S‐L, Nanao MH, Round A, Maniatis T, Panne D. 2013. Crystal structure and mechanism of activation of TANK‐binding kinase 1. Cell Rep 3:734–746. PubMed
Lomen‐Hoerth C, Anderson T, Miller B. 2002. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology 59:1077–1079. PubMed
Mackenzie IRA, Neumann M, Baborie A, Sampathu DM, Du Plessis D, Jaros E, Perry RH, Trojanowski JQ, Mann DMA, Lee VMY. 2011. A harmonized classification system for FTLD‐TDP pathology. Acta Neuropathol 122:111–113. PubMed PMC
Van Mossevelde S, van der Zee J, Gijselinck I, Engelborghs S, Sieben A, Van Langenhove T, De Bleecker J, Baets J, Vandenbulcke M, Van Laere K, Ceyssens S, Van den Broeck M, et al. 2015. Clinical features of TBK1 carriers compared with C9orf72, GRN and non‐mutation carriers in a Belgian cohort. Brain 139:452–467. PubMed PMC
Neary D, Snowden JS, Gustafson L, Passant U, Stuss D, Black S, Freedman M, Kertesz A, Robert PH, Albert M, Boone K, Miller BL, et al. 1998. Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554. PubMed
Pham CT, de Silva R, Haïk S, Verny M, Sachet A, Forette B, Lees A, Hauw JJ, Duyckaerts C. 2011. Tau‐positive grains are constant in centenarians’ hippocampus. Neurobiol Aging 32:1296–1303. PubMed
Pilli M, Arko‐Mensah J, Ponpuak M, Roberts E, Master S, Mandell MA, Dupont N, Ornatowski W, Jiang S, Bradfute SB, Bruun JA, Hansen TE, et al. 2012. TBK‐1 promotes autophagy‐mediated antimicrobial defense by controlling autophagosome maturation. Immunity 37:223–234. PubMed PMC
Pottier C, Bieniek KF, Finch N, van de Vorst M, Baker M, Perkersen R, Brown P, Ravenscroft T, van Blitterswijk M, Nicholson AM, DeTure M, Knopman DS, et al. 2015. Whole‐genome sequencing reveals important role for TBK1 and OPTN mutations in frontotemporal lobar degeneration without motor neuron disease. Acta Neuropathol 130:77–92. PubMed PMC
Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, van Swieten JC, Seelaar H, Dopper EGP, Onyike CU, Hillis AE, Josephs KA, et al. 2011. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134:2456–2477. PubMed PMC
Renton AE, Majounie E, Waite A, Simón‐Sánchez J, Rollinson S, Gibbs JR, Schymick JC, Laaksovirta H, van Swieten JC, Myllykangas L, Kalimo H, Paetau A, et al. 2011. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21‐linked ALS‐FTD. Neuron 72:257–268. PubMed PMC
Saito Y, Ruberu NN, Sawabe M, Arai T, Tanaka N, Kakuta Y, Yamanouchi H, Murayama S. 2004. Staging of argyrophilic grains: an age‐associated tauopathy. J Neuropathol Exp Neurol 63: 911–918. PubMed
Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC, Williams KL, Buratti E, Baralle F, de Belleroche J, et al. 2008. TDP‐43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319:1668–1672. PubMed PMC
Watts GDJ, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE. 2004. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin‐containing protein. Nat Genet 36:377–381. PubMed
Williams KL, McCann EP, Fifita JA., Zhang K, Duncan EL, Leo PJ, Marshall M, Rowe DB, Nicholson GA., Blair IP. 2015. Novel TBK1 truncating mutation in a familial amyotrophic lateral sclerosis patient of Chinese origin. Neurobiol Aging 36:3334.e1–3334e.5. PubMed
van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S, Philtjens S, Vandenbulcke M, Sleegers K, Sieben A, Bäumer V, Maes G, et al. 2013. A pan‐European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat 34:363–373. PubMed PMC
van der Zee J, Van Langenhove T, Kovacs GG, Dillen L, Deschamps W, Engelborghs S, Matěj R, Vandenbulcke M, Sieben A, Dermaut B, Smets K, Van Damme P, et al. 2014. Rare mutations in SQSTM1 modify susceptibility to frontotemporal lobar degeneration. Acta Neuropathol 128:397–410. PubMed PMC