Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones

. 2017 Jun 05 ; 216 (6) : 1579-1596. [epub] 20170517

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28515276

Splicing is catalyzed by the spliceosome, a complex of five major small nuclear ribonucleoprotein particles (snRNPs). The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP, and together with EFTUD2 and SNRNP200, it forms a central module of the spliceosome. Using quantitative proteomics, we identified assembly intermediates containing PRPF8, EFTUD2, and SNRNP200 in association with the HSP90/R2TP complex, its ZNHIT2 cofactor, and additional proteins. HSP90 and R2TP bind unassembled U5 proteins in the cytoplasm, stabilize them, and promote the formation of the U5 snRNP. We further found that PRPF8 mutants causing Retinitis pigmentosa assemble less efficiently with the U5 snRNP and bind more strongly to R2TP, with one mutant retained in the cytoplasm in an R2TP-dependent manner. We propose that the HSP90/R2TP chaperone system promotes the assembly of a key module of U5 snRNP while assuring the quality control of PRPF8. The proteomics data further reveal new interactions between R2TP and the tuberous sclerosis complex (TSC), pointing to a potential link between growth signals and the assembly of key cellular machines.

Zobrazit více v PubMed

Almeida F., Saffrich R., Ansorge W., and Carmo-Fonseca M.. 1998. Microinjection of anti-coilin antibodies affects the structure of coiled bodies. J. Cell Biol. 142:899–912. 10.1083/jcb.142.4.899 PubMed DOI PMC

Bertram K., Agafonov D.E., Liu W.-T., Dybkov O., Will C.L., Hartmuth K., Urlaub H., Kastner B., Stark H., and Lührmann R.. 2017. Cryo-EM structure of a human spliceosome activated for step 2 of splicing. Nature. 542:318–323. 10.1038/nature21079 PubMed DOI

Bizarro J., Charron C., Boulon S., Westman B., Pradet-Balade B., Vandermoere F., Chagot M.E., Hallais M., Ahmad Y., Leonhardt H., et al. . 2014. Proteomic and 3D structure analyses highlight the C/D box snoRNP assembly mechanism and its control. J. Cell Biol. 207:463–480. 10.1083/jcb.201404160 PubMed DOI PMC

Bizarro J., Dodré M., Huttin A., Charpentier B., Schlotter F., Branlant C., Verheggen C., Massenet S., and Bertrand E.. 2015. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res. 43:8973–8989. 10.1093/nar/gkv809 PubMed DOI PMC

Boon K.L., Grainger R.J., Ehsani P., Barrass J.D., Auchynnikava T., Inglehearn C.F., and Beggs J.D.. 2007. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat. Struct. Mol. Biol. 14:1077–1083. 10.1038/nsmb1303 PubMed DOI PMC

Boulon S., Marmier-Gourrier N., Pradet-Balade B., Wurth L., Verheggen C., Jády B.E., Rothé B., Pescia C., Robert M.C., Kiss T., et al. . 2008. The Hsp90 chaperone controls the biogenesis of L7Ae RNPs through conserved machinery. J. Cell Biol. 180:579–595. 10.1083/jcb.200708110 PubMed DOI PMC

Boulon S., Pradet-Balade B., Verheggen C., Molle D., Boireau S., Georgieva M., Azzag K., Robert M.C., Ahmad Y., Neel H., et al. . 2010. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell. 39:912–924. 10.1016/j.molcel.2010.08.023 PubMed DOI PMC

Boulon S., Bertrand E., and Pradet-Balade B.. 2012. HSP90 and the R2TP co-chaperone complex: Building multi-protein machineries essential for cell growth and gene expression. RNA Biol. 9:148–154. 10.4161/rna.18494 PubMed DOI

Claudius A.K., Romani P., Lamkemeyer T., Jindra M., and Uhlířová M.. 2014. Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet. 10:e1004287 10.1371/journal.pgen.1004287 PubMed DOI PMC

Cloutier P., and Coulombe B.. 2010. New insights into the biogenesis of nuclear RNA polymerases? Biochem. Cell Biol. 88:211–221. 10.1139/O09-173 PubMed DOI PMC

Cvačková Z., Matějů D., and Staněk D.. 2014. Retinitis pigmentosa mutations of SNRNP200 enhance cryptic splice-site recognition. Hum. Mutat. 35:308–317. 10.1002/humu.22481 PubMed DOI

Darzacq X., Kittur N., Roy S., Shav-Tal Y., Singer R.H., and Meier U.T.. 2006. Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. J. Cell Biol. 173:207–218. 10.1083/jcb.200601105 PubMed DOI PMC

Dibble C.C., and Cantley L.C.. 2015. Regulation of mTORC1 by PI3K signaling. Trends Cell Biol. 25:545–555. 10.1016/j.tcb.2015.06.002 PubMed DOI PMC

Forget D., Lacombe A.A., Cloutier P., Al-Khoury R., Bouchard A., Lavallée-Adam M., Faubert D., Jeronimo C., Blanchette M., and Coulombe B.. 2010. The protein interaction network of the human transcription machinery reveals a role for the conserved GTPase RPAP4/GPN1 and microtubule assembly in nuclear import and biogenesis of RNA polymerase II. Mol. Cell. Proteomics. 9:2827–2839. 10.1074/mcp.M110.003616 PubMed DOI PMC

Gonzalez-Santos J.M., Cao H., Duan R.C., and Hu J.. 2008. Mutation in the splicing factor Hprp3p linked to retinitis pigmentosa impairs interactions within the U4/U6 snRNP complex. Hum. Mol. Genet. 17:225–239. 10.1093/hmg/ddm300 PubMed DOI PMC

Gottschalk A., Kastner B., Lührmann R., and Fabrizio P.. 2001. The yeast U5 snRNP coisolated with the U1 snRNP has an unexpected protein composition and includes the splicing factor Aar2p. RNA. 7:1554–1565. PubMed PMC

Hartong D.T., Berson E.L., and Dryja T.P.. 2006. Retinitis pigmentosa. Lancet. 368:1795–1809. 10.1016/S0140-6736(06)69740-7 PubMed DOI

Hořejší Z., Takai H., Adelman C.A., Collis S.J., Flynn H., Maslen S., Skehel J.M., de Lange T., and Boulton S.J.. 2010. CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol. Cell. 39:839–850. 10.1016/j.molcel.2010.08.037 PubMed DOI

Hořejší Z., Stach L., Flower T.G., Joshi D., Flynn H., Skehel J.M., O’Reilly N.J., Ogrodowicz R.W., Smerdon S.J., and Boulton S.J.. 2014. Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Reports. 7:19–26. 10.1016/j.celrep.2014.03.013 PubMed DOI PMC

Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., and Skrzypek E.. 2015. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 43(D1):D512–D520. 10.1093/nar/gku1267 PubMed DOI PMC

Huranová M., Hnilicová J., Fleischer B., Cvačková Z., and Staněk D.. 2009. A mutation linked to retinitis pigmentosa in HPRP31 causes protein instability and impairs its interactions with spliceosomal snRNPs. Hum. Mol. Genet. 18:2014–2023. 10.1093/hmg/ddp125 PubMed DOI

Islam M.P., and Roach E.S.. 2015. Tuberous sclerosis complex. Handb. Clin. Neurol. 132:97–109. 10.1016/B978-0-444-62702-5.00006-8 PubMed DOI

Kamano Y., Saeki M., Egusa H., Kakihara Y., Houry W.A., Yatani H., and Kamisaki Y.. 2013. PIH1D1 interacts with mTOR complex 1 and enhances ribosome RNA transcription. FEBS Lett. 587:3303–3308. 10.1016/j.febslet.2013.09.001 PubMed DOI

Kondo H., Tahira T., Mizota A., Adachi-Usami E., Oshima K., and Hayashi K.. 2003. Diagnosis of autosomal dominant retinitis pigmentosa by linkage-based exclusion screening with multiple locus-specific microsatellite markers. Invest. Ophthalmol. Vis. Sci. 44:1275–1281. 10.1167/iovs.02-0895 PubMed DOI

Kuhn A.N., Li Z., and Brow D.A.. 1999. Splicing factor Prp8 governs U4/U6 RNA unwinding during activation of the spliceosome. Mol. Cell. 3:65–75. 10.1016/S1097-2765(00)80175-6 PubMed DOI

Linder B., Hirmer A., Gal A., Rüther K., Bolz H.J., Winkler C., Laggerbauer B., and Fischer U.. 2014. Identification of a PRPF4 loss-of-function variant that abrogates U4/U6.U5 tri-snRNP integration and is associated with retinitis pigmentosa. PLoS One. 9:e111754 10.1371/journal.pone.0111754 PubMed DOI PMC

Machado-Pinilla R., Liger D., Leulliot N., and Meier U.T.. 2012. Mechanism of the AAA+ ATPases pontin and reptin in the biogenesis of H/ACA RNPs. RNA. 18:1833–1845. 10.1261/rna.034942.112 PubMed DOI PMC

Maeder C., Kutach A.K., and Guthrie C.. 2009. ATP-dependent unwinding of U4/U6 snRNAs by the Brr2 helicase requires the C terminus of Prp8. Nat. Struct. Mol. Biol. 16:42–48. 10.1038/nsmb.1535 PubMed DOI PMC

Makarov E.M., Makarova O.V., Urlaub H., Gentzel M., Will C.L., Wilm M., and Lührmann R.. 2002. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 298:2205–2208. 10.1126/science.1077783 PubMed DOI

Martínez-Gimeno M., Gamundi M.J., Hernan I., Maseras M., Millá E., Ayuso C., García-Sandoval B., Beneyto M., Vilela C., Baiget M., et al. . 2003. Mutations in the pre-mRNA splicing-factor genes PRPF3, PRPF8, and PRPF31 in Spanish families with autosomal dominant retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 44:2171–2177. 10.1167/iovs.02-0871 PubMed DOI

Matera A.G., and Wang Z.. 2014. A day in the life of the spliceosome. Nat. Rev. Mol. Cell Biol. 15:108–121. 10.1038/nrm3742 PubMed DOI PMC

McKeegan K.S., Debieux C.M., Boulon S., Bertrand E., and Watkins N.J.. 2007. A dynamic scaffold of pre-snoRNP factors facilitates human box C/D snoRNP assembly. Mol. Cell. Biol. 27:6782–6793. 10.1128/MCB.01097-07 PubMed DOI PMC

McKie A.B., McHale J.C., Keen T.J., Tarttelin E.E., Goliath R., van Lith-Verhoeven J.J., Greenberg J., Ramesar R.S., Hoyng C.B., Cremers F.P., et al. . 2001. Mutations in the pre-mRNA splicing factor gene PRPC8 in autosomal dominant retinitis pigmentosa (RP13). Hum. Mol. Genet. 10:1555–1562. 10.1093/hmg/10.15.1555 PubMed DOI

Mir R.A., Bele A., Mirza S., Srivastava S., Olou A.A., Ammons S.A., Kim J.H., Gurumurthy C.B., Qiu F., Band H., and Band V.. 2015. A novel interaction of ecdysoneless (ECD) protein with R2TP complex component RUVBL1 is required for the functional role of ECD in cell cycle progression. Mol. Cell. Biol. 36:886–899. 10.1128/MCB.00594-15 PubMed DOI PMC

Mordes D., Luo X., Kar A., Kuo D., Xu L., Fushimi K., Yu G., Sternberg P. Jr., and Wu J.Y.. 2006. Pre-mRNA splicing and retinitis pigmentosa. Mol. Vis. 12:1259–1271. PubMed PMC

Mordes D., Yuan L., Xu L., Kawada M., Molday R.S., and Wu J.Y.. 2007. Identification of photoreceptor genes affected by PRPF31 mutations associated with autosomal dominant retinitis pigmentosa. Neurobiol. Dis. 26:291–300. 10.1016/j.nbd.2006.08.026 PubMed DOI PMC

Mozaffari-Jovin S., Santos K.F., Hsiao H.H., Will C.L., Urlaub H., Wahl M.C., and Lührmann R.. 2012. The Prp8 RNase H-like domain inhibits Brr2-mediated U4/U6 snRNA unwinding by blocking Brr2 loading onto the U4 snRNA. Genes Dev. 26:2422–2434. 10.1101/gad.200949.112 PubMed DOI PMC

Mozaffari-Jovin S., Wandersleben T., Santos K.F., Will C.L., Lührmann R., and Wahl M.C.. 2013. Inhibition of RNA helicase Brr2 by the C-terminal tail of the spliceosomal protein Prp8. Science. 341:80–84. 10.1126/science.1237515 PubMed DOI

Mozaffari-Jovin S., Wandersleben T., Santos K.F., Will C.L., Lührmann R., and Wahl M.C.. 2014. Novel regulatory principles of the spliceosomal Brr2 RNA helicase and links to retinal disease in humans. RNA Biol. 11:298–312. 10.4161/rna.28353 PubMed DOI PMC

Nguyen T.H.D., Li J., Galej W.P., Oshikane H., Newman A.J., and Nagai K.. 2013. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure. 21:910–919. 10.1016/j.str.2013.04.017 PubMed DOI PMC

Novotný I., Malinová A., Stejskalová E., Matějů D., Klimešová K., Roithová A., Švéda M., Knejzlík Z., and Staněk D.. 2015. SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Reports. 10:429–440. 10.1016/j.celrep.2014.12.030 PubMed DOI

Ong S.E., Blagoev B., Kratchmarova I., Kristensen D.B., Steen H., Pandey A., and Mann M.. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics. 1:376–386. 10.1074/mcp.M200025-MCP200 PubMed DOI

Pal M., Morgan M., Phelps S.E.L., Roe S.M., Parry-Morris S., Downs J.A., Polier S., Pearl L.H., and Prodromou C.. 2014. Structural basis for phosphorylation-dependent recruitment of Tel2 to Hsp90 by Pih1. Structure. 22:805–818. 10.1016/j.str.2014.04.001 PubMed DOI PMC

Pena V., Liu S., Bujnicki J.M., Lührmann R., and Wahl M.C.. 2007. Structure of a multipartite protein-protein interaction domain in splicing factor prp8 and its link to retinitis pigmentosa. Mol. Cell. 25:615–624. 10.1016/j.molcel.2007.01.023 PubMed DOI

Poser I., Sarov M., Hutchins J.R., Hériché J.K., Toyoda Y., Pozniakovsky A., Weigl D., Nitzsche A., Hegemann B., Bird A.W., et al. . 2008. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods. 5:409–415. 10.1038/nmeth.1199 PubMed DOI PMC

Raimer A.C., Gray K.M., and Matera A.G.. 2016. SMN - A chaperone for nuclear RNP social occasions? RNA Biol. 20:1–11. 10.1080/15476286.2016.1236168 PubMed DOI PMC

Růžičková Š., and Staněk D.. 2016. Mutations in spliceosomal proteins and retina degeneration. RNA Biol. 14:1–9. 10.1080/15476286.2016.1191735 PubMed DOI PMC

Sleeman J.E., and Lamond A.I.. 1999. Newly assembled snRNPs associate with coiled bodies before speckles, suggesting a nuclear snRNP maturation pathway. Curr. Biol. 9:1065–1074. 10.1016/S0960-9822(99)80475-8 PubMed DOI

Small E.C., Leggett S.R., Winans A.A., and Staley J.P.. 2006. The EF-G-like GTPase Snu114p regulates spliceosome dynamics mediated by Brr2p, a DExD/H box ATPase. Mol. Cell. 23:389–399. 10.1016/j.molcel.2006.05.043 PubMed DOI PMC

Staněk D. 2016. Cajal body and snRNPs - friends with benefits. RNA Biol. 14:1–9. 10.1080/15476286.2016.1231359 PubMed DOI PMC

Staněk D., Pridalová-Hnilicová J., Novotný I., Huranová M., Blazíková M., Wen X., Sapra A.K., and Neugebauer K.M.. 2008. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol. Biol. Cell. 19:2534–2543. 10.1091/mbc.E07-12-1259 PubMed DOI PMC

Tanackovic G., Ransijn A., Thibault P., Abou Elela S., Klinck R., Berson E.L., Chabot B., and Rivolta C.. 2011. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum. Mol. Genet. 20:2116–2130. 10.1093/hmg/ddr094 PubMed DOI PMC

Towns K.V., Kipioti A., Long V., McKibbin M., Maubaret C., Vaclavik V., Ehsani P., Springell K., Kamal M., Ramesar R.S., et al. . 2010. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum. Mutat. 31:E1361–E1376. 10.1002/humu.21236 PubMed DOI

Trinkle-Mulcahy L., Boulon S., Lam Y.W., Urcia R., Boisvert F.M., Vandermoere F., Morrice N.A., Swift S., Rothbauer U., Leonhardt H., and Lamond A.. 2008. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 183:223–239. 10.1083/jcb.200805092 PubMed DOI PMC

Verheggen C., Pradet-Balade B., and Bertrand E.. 2015. SnoRNPs, ZNHIT proteins and the R2TP pathway. Oncotarget. 6:41399–41400. PubMed PMC

Weber G., Cristão V.F., de L Alves F., Santos K.F., Holton N., Rappsilber J., Beggs J.D., and Wahl M.C.. 2011. Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes Dev. 25:1601–1612. 10.1101/gad.635911 PubMed DOI PMC

Weber G., Cristão V.F., Santos K.F., Jovin S.M., Heroven A.C., Holton N., Lührmann R., Beggs J.D., and Wahl M.C.. 2013. Structural basis for dual roles of Aar2p in U5 snRNP assembly. Genes Dev. 27:525–540. 10.1101/gad.213207.113 PubMed DOI PMC

Whitesell L., Mimnaugh E.G., De Costa B., Myers C.E., and Neckers L.M.. 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc. Natl. Acad. Sci. USA. 91:8324–8328. 10.1073/pnas.91.18.8324 PubMed DOI PMC

Yan C., Hang J., Wan R., Huang M., Wong C.C.L., and Shi Y.. 2015. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science. 349:1182–1191. 10.1126/science.aac7629 PubMed DOI

Yuan L., Kawada M., Havlioglu N., Tang H., and Wu J.Y.. 2005. Mutations in PRPF31 inhibit pre-mRNA splicing of rhodopsin gene and cause apoptosis of retinal cells. J. Neurosci. 25:748–757. 10.1523/JNEUROSCI.2399-04.2005 PubMed DOI PMC

Zhao R., Kakihara Y., Gribun A., Huen J., Yang G., Khanna M., Costanzo M., Brost R.L., Boone C., Hughes T.R., et al. . 2008. Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. J. Cell Biol. 180:563–578. 10.1083/jcb.200709061 PubMed DOI PMC

Ziviello C., Simonelli F., Testa F., Anastasi M., Marzoli S.B., Falsini B., Ghiglione D., Macaluso C., Manitto M.P., Garrè C., et al. . 2005. Molecular genetics of autosomal dominant retinitis pigmentosa (ADRP): a comprehensive study of 43 Italian families. J. Med. Genet. 42:e47 10.1136/jmg.2005.031682 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...