Isoprenoids responsible for protein prenylation modulate the biological effects of statins on pancreatic cancer cells
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.1.07/2.3.00/30.0060
European Social Fund
NT13112-4
Ministerstvo Zdravotnictví Ceské Republiky
RVO-VFN64165/2017
Ministerstvo Zdravotnictví Ceské Republiky
APVV-15-0217
Agentúra na Podporu Výskumu a Vývoja
PubMed
29262834
PubMed Central
PMC5738693
DOI
10.1186/s12944-017-0641-0
PII: 10.1186/s12944-017-0641-0
Knihovny.cz E-zdroje
- Klíčová slova
- Farnesyl pyrophosphate, Gene expression, Geranylgeranyl pyrophosphate, HMG-CoA reductase inhibitors, Isoprenoids, K-Ras oncogene, Mevalonate, Pancreatic cancer, Prenylation, Statins,
- MeSH
- anticholesteremika farmakologie MeSH
- atorvastatin farmakologie MeSH
- beta-buňky účinky léků metabolismus patologie MeSH
- fluvastatin MeSH
- indoly farmakologie MeSH
- kyselina mevalonová analogy a deriváty farmakologie MeSH
- kyseliny mastné mononenasycené farmakologie MeSH
- lidé MeSH
- lovastatin farmakologie MeSH
- mikročipová analýza MeSH
- mutace MeSH
- nádorové buněčné linie MeSH
- polyisoprenylfosfáty farmakologie MeSH
- prenylace proteinů MeSH
- protoonkogenní proteiny p21(ras) genetika metabolismus MeSH
- regulace genové exprese MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- seskviterpeny farmakologie MeSH
- signální transdukce MeSH
- simvastatin farmakologie MeSH
- stanovení celkové genové exprese MeSH
- transport proteinů účinky léků MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- anticholesteremika MeSH
- atorvastatin MeSH
- farnesyl pyrophosphate MeSH Prohlížeč
- fluvastatin MeSH
- geranylgeranyl pyrophosphate MeSH Prohlížeč
- indoly MeSH
- KRAS protein, human MeSH Prohlížeč
- kyselina mevalonová MeSH
- kyseliny mastné mononenasycené MeSH
- lovastatin MeSH
- polyisoprenylfosfáty MeSH
- protoonkogenní proteiny p21(ras) MeSH
- rekombinantní fúzní proteiny MeSH
- seskviterpeny MeSH
- simvastatin MeSH
- zelené fluorescenční proteiny MeSH
BACKGROUND: Statin treatment of hypercholesterolemia is accompanied also with depletion of the mevalonate intermediates, including farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) necessary for proper function of small GTPases. These include Ras proteins, prevalently mutated in pancreatic cancer. In our study, we evaluated the effect of three key intermediates of the mevalonate pathway on GFP-K-Ras protein localization and the gene expression profile in pancreatic cancer cells after exposure to individual statins. METHODS: These effects were tested on MiaPaCa-2 human pancreatic cancer cells carrying a K-Ras activating mutation (G12C) after exposure to individual statins (20 μM). The effect of statins (atorvastatin, lovastatin, simvastatin, fluvastatin, cerivastatin, rosuvastatin, and pitavastatin) and mevalonate intermediates on GFP-K-Ras protein translocation was analyzed using fluorescence microscopy. The changes in gene expression induced in MiaPaCa-2 cells treated with simvastatin, FPP, GGPP, and their combinations with simvastatin were examined by whole genome DNA microarray analysis. RESULTS: All tested statins efficiently inhibited K-Ras protein trafficking from cytoplasm to the cell membrane of the MiaPaCa-2 cells. The inhibitory effect of statins on GFP-K-Ras protein trafficking was partially prevented by addition of any of the mevalonate pathway's intermediates tested. Expressions of genes involved in metabolic and signaling pathways modulated by simvastatin treatment was normalized by the concurrent addition of FPP or GGPP. K-Ras protein trafficking within the pancreatic cancer cells is effectively inhibited by the majority of statins; the inhibition is eliminated by isoprenoid intermediates of the mevalonate pathway. CONCLUSIONS: Our data indicate that the anticancer effects of statins observed in numerous studies to a large extent are mediated through isoprenoid intermediates of the mevalonate pathway, as they influence expression of genes involved in multiple intracellular pathways.
Zobrazit více v PubMed
Lim S, Sakuma I, Quon MJ, Koh KK. Potentially important considerations in choosing specific statin treatments to reduce overall morbidity and mortality. Int J Cardiol. 2013;167(5):1696–1702. doi: 10.1016/j.ijcard.2012.10.037. PubMed DOI
Ghaneh P, Neoptolemos J. A new approach to managing intraductal papillary mucinous pancreatic neoplasms. Gut. 2007;56(8):1041–1044. doi: 10.1136/gut.2006.113068. PubMed DOI PMC
Magee T, Marshall C. New insights into the interaction of Ras with the plasma membrane. Cell. 1999;98(1):9–12. doi: 10.1016/S0092-8674(00)80601-7. PubMed DOI
Konstantinopoulos PA, Karamouzis MV, Papavassiliou AG. Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nat Rev Drug Discov. 2007;6:541–555. doi: 10.1038/nrd2221. PubMed DOI
Yeganeh B, Wiechec E, Ande SR, Sharma P, Moghadam AR, Post M, et al. Targeting the mevalonate cascade as a new therapeutic approach in heart disease, cancer and pulmonary disease. Pharmacol Ther. 2014;143(1):87–110. doi: 10.1016/j.pharmthera.2014.02.007. PubMed DOI PMC
Plemenitas A, Watson JA. Down-regulation of mammalian 3-hydroxy-3-methylglutaryl coenzyme a reductase activity with highly purified liposomal cholesterol. Eur J Biochem. 1999;266(2):317–326. doi: 10.1046/j.1432-1327.1999.00829.x. PubMed DOI
Mo H, Elson CE. Studies of the isoprenoid-mediated inhibition of mevalonate synthesis applied to cancer chemotherapy and chemoprevention. Exp Biol Med (Maywood) 2004;229(7):567–585. doi: 10.1177/153537020422900701. PubMed DOI
Zeitouni D, Pylayeva-Gupta Y, Der CJ, Bryant KL. KRAS mutant pancreatic cancer: no lone path to an effective treatment. Cancers (Basel). 2016;8(4). doi:10.3390/cancers8040045. PubMed PMC
Eser S, Schnieke A, Schneider G, Saur D. Oncogenic KRAS signalling in pancreatic cancer. Br J Cancer. 2014;111(5):817–822. doi: 10.1038/bjc.2014.215. PubMed DOI PMC
Mann KM, Ying H, Juan J, Jenkins NA, Copeland NG. KRAS-related proteins in pancreatic cancer. Pharmacol Ther. 2016;168:29–42. doi: 10.1016/j.pharmthera.2016.09.003. PubMed DOI
Gbelcova H, Lenicek M, Zelenka J, Knejzlik Z, Dvorakova G, Zadinova M, et al. Differences in antitumor effects of various statins on human pancreatic cancer. Int J Cancer. 2008;122(6):1214–1221. doi: 10.1002/ijc.23242. PubMed DOI
Dunning MJ, Smith ML, Ritchie ME, Tavare S. Beadarray. R classes and methods for Illumina bead-based data. Bioinformatics. 2007;23(16):2183–2184. doi: 10.1093/bioinformatics/btm311. PubMed DOI
Smyth GK, Michaud J, Scott HS. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics. 2005;21(9):2067–2075. doi: 10.1093/bioinformatics/bti270. PubMed DOI
Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80. PubMed DOI PMC
A language and environment for statistical computing [https://www.r-project.org/]. Accessed 16 Dec 2017.
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A. 2003;100(16):9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. Discovering statistically significant pathways in expression profiling studies. Proc Natl Acad Sci U S A. 2005;102(38):13544–13549. doi: 10.1073/pnas.0506577102. PubMed DOI PMC
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. doi: 10.1093/nar/28.1.27. PubMed DOI PMC
Nguyen UT, Guo Z, Delon C, Wu Y, Deraeve C, Franzel B, et al. Analysis of the eukaryotic prenylome by isoprenoid affinity tagging. Nat Chem Biol. 2009;5(4):227–235. doi: 10.1038/nchembio.149. PubMed DOI
Caraglia M, Budillon A, Tagliaferri P, Marra M, Abbruzzese A, Caponigro F. Isoprenylation of intracellular proteins as a new target for the therapy of human neoplasms: preclinical and clinical implications. Curr Drug Targets. 2005;6(3):301–323. doi: 10.2174/1389450053765833. PubMed DOI
Park J, Matralis AN, Berghuis AM, Tsantrizos YS. Human isoprenoid synthase enzymes as therapeutic targets. Front Chem. 2014;2:50. PubMed PMC
Khurana V, Sheth A, Caldito G, Barkin JS. Statins reduce the risk of pancreatic cancer in humans: a case-control study of half a million veterans. Pancreas. 2007;34(2):260–265. doi: 10.1097/MPA.0b013e318030e963. PubMed DOI
Lee HS, Lee SH, Lee HJ, Chung MJ, Park JY, Park SW, et al. Statin use and its impact on survival in pancreatic cancer patients. Medicine (Baltimore) 2016;95(19):e3607. doi: 10.1097/MD.0000000000003607. PubMed DOI PMC
H uang BZ, Chang JI, Li E, Xiang AH, Wu BU. Influence of statins and cholesterol on mortality among patients with pancreatic cancer. J Natl Cancer Inst. 2016;109(5). doi:10.1093/jnci/djw275. PubMed
Cui X, Xie Y, Chen M, Li J, Liao X, Shen J, et al. Statin use and risk of pancreatic cancer: a meta-analysis. Cancer Causes Control. 2012;23(7):1099–1011. doi: 10.1007/s10552-012-9979-9. PubMed DOI
Cafforio P, Dammacco F, Gernone A, Silvestris F. Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis. 2005;26(5):883–891. doi: 10.1093/carcin/bgi036. PubMed DOI
Dimitroulakos J, Marhin WH, Tokunaga J, Irish J, Gullane P, Penn LZ, et al. Microarray and biochemical analysis of lovastatin-induced apoptosis of squamous cell carcinomas. Neoplasia. 2002;4(4):337–346. doi: 10.1038/sj.neo.7900247. PubMed DOI PMC
Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia. 2001;15(9):1398–1407. doi: 10.1038/sj.leu.2402196. PubMed DOI
Agarwal B, Rao CV, Bhendwal S, Ramey WR, Shirin H, Reddy BS, et al. Lovastatin augments sulindac-induced apoptosis in colon cancer cells and potentiates chemopreventive effects of sulindac. Gastroenterology. 1999;117(4):838–847. doi: 10.1016/S0016-5085(99)70342-2. PubMed DOI
Dudakovic A, Wiemer AJ, Lamb KM, Vonnahme LA, Dietz SE, et al. Inhibition of geranylgeranyl diphosphate synthase induces apoptosis through multiple mechanisms and displays synergy with inhibition of other isoprenoid biosynthetic enzymes. J Pharmacol Exp Ther. 2008;324(3):1028–1036. doi: 10.1124/jpet.107.132217. PubMed DOI
Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR. Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res. 1999;5(8):2223–2229. PubMed
Rubins JB, Greatens T, Kratzke RA, Tan AT, Polunovsky VA, Bitterman P. Lovastatin induces apoptosis in malignant mesothelioma cells. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1616–1622. doi: 10.1164/ajrccm.157.5.9709020. PubMed DOI
Chang MY, Jan MS, Won SJ, Liu HS. Ha-rasVal12 oncogene increases susceptibility of NIH/3T3 cells to lovastatin. Biochem Biophys Res Commun. 1998;248(1):62–68. doi: 10.1006/bbrc.1998.8911. PubMed DOI
Wang M, Casey PJ. Protein prenylation: unique fats make their mark on biology. Nat Rev Mol Cell Biol. 2016;17(2):110–122. doi: 10.1038/nrm.2015.11. PubMed DOI
Whyte DB, Kirschmeier P, Hockenberry TN, Nunez O, James L, Catino JJ, et al. K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. J Biol Chem. 1997;272(22):14459–14464. doi: 10.1074/jbc.272.22.14459. PubMed DOI
Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM. Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem. 1997;272(22):14093–14097. doi: 10.1074/jbc.272.22.14093. PubMed DOI
Gardner RG, Hampton RY. A highly conserved signal controls degradation of 3-hydroxy-3-methylglutaryl-coenzyme a (HMG-CoA) reductase in eukaryotes. J Biol Chem. 1999;274(44):31671–31678. doi: 10.1074/jbc.274.44.31671. PubMed DOI
Correll CC, Ng L, Edwards PA. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme a reductase. J Biol Chem. 1994;269(26):17390–17393. PubMed
Holstein SA, Hohl RJ. Isoprenoids: remarkable diversity of form and function. Lipids. 2004;39(4):293–309. doi: 10.1007/s11745-004-1233-3. PubMed DOI
Holstein SA, Wohlford-Lenane CL, Hohl RJ. Isoprenoids influence expression of Ras and Ras-related proteins. Biochemistry. 2002;41(46):13698–13704. doi: 10.1021/bi026251x. PubMed DOI
Liliom K, Tsukahara T, Tsukahara R, Zelman-Femiak M, Swiezewska E, Tigyi G. Farnesyl phosphates are endogenous ligands of lysophosphatidic acid receptors: inhibition of LPA GPCR and activation of PPARs. Biochim Biophys Acta. 2006;1761(12):1506–1514. doi: 10.1016/j.bbalip.2006.09.012. PubMed DOI PMC
Das S, Schapira M, Tomic-Canic M, Goyanka R, Cardozo T, Samuels HH. Farnesyl pyrophosphate is a novel transcriptional activator for a subset of nuclear hormone receptors. Mol Endocrinol. 2007;21(11):2672–2686. doi: 10.1210/me.2007-0080. PubMed DOI
Gan X, Kaplan R, Menke JG, MacNaul K, Chen Y, Sparrow CP, et al. Dual mechanisms of ABCA1 regulation by geranylgeranyl pyrophosphate. J Biol Chem. 2001;276(52):48702–48708. doi: 10.1074/jbc.M109402200. PubMed DOI
Maltese WA, Aprille JR. Relation of mevalonate synthesis to mitochondrial ubiquinone content and respiratory function in cultured neuroblastoma cells. J Biol Chem. 1985;260:11524–11529. PubMed
Pedersen PL. Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res. 1978;22:190–274. doi: 10.1159/000401202. PubMed DOI
Oliveira KA, Zecchin KG, Alberici LC, Castilho RF, Vercesi AE. Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J Bioenerg Biomembr. 2008;40(4):307–314. doi: 10.1007/s10863-008-9155-9. PubMed DOI
Kosek V, Stranska M, Fenclova M, Ruml T, Vitek L, Hajslova J. High resolution mass spectrometry based method applicable for a wide range of 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase inhibitors in blood serum including intermediates and products of the cholesterol biosynthetic pathway. J Chrom A. 2017;1489:86–94. doi: 10.1016/j.chroma.2017.01.084. PubMed DOI
Gbelcova H, Rimpelova S, Ruml T, Fenclova M, Kosek V, Hajslova J, et al. Variability in statin-induced changes in gene expression profiles of pancreatic cancer. Sci Rep. 2017;7:44219. doi: 10.1038/srep44219. PubMed DOI PMC
Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ, et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res. 1996;2(3):483–491. PubMed
Kim WS, Kim MM, Choi HJ, Yoon SS, Lee MH, Park K, et al. Phase II study of high-dose lovastatin in patients with advanced gastric adenocarcinoma. Investig New Drugs. 2001;19(1):81–83. doi: 10.1023/A:1006481423298. PubMed DOI
de Wolf E, Abdullah MI, Jones SM, Menezes K, Moss DM, Drijfhout FP, et al. Dietary geranylgeraniol can limit the activity of pitavastatin as a potential treatment for drugresistant ovarian cancer. Sci Rep. 2017;7:5410. doi: 10.1038/s41598-017-05595-4. PubMed DOI PMC