Transcriptomic and Proteomic Profiling Revealed High Proportions of Odorant Binding and Antimicrobial Defense Proteins in Olfactory Tissues of the House Mouse
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29459883
PubMed Central
PMC5807349
DOI
10.3389/fgene.2018.00026
Knihovny.cz E-zdroje
- Klíčová slova
- MUP, OBP, antimicrobial cationic peptides, chemical communication, evolvability, immunity, lipocalin, olfactory,
- Publikační typ
- časopisecké články MeSH
Mammalian olfaction depends on chemosensory neurons of the main olfactory epithelia (MOE), and/or of the accessory olfactory epithelia in the vomeronasal organ (VNO). Thus, we have generated the VNO and MOE transcriptomes and the nasal cavity proteome of the house mouse, Mus musculus musculus. Both transcriptomes had low levels of sexual dimorphisms, while the soluble proteome of the nasal cavity revealed high levels of sexual dimorphism similar to that previously reported in tears and saliva. Due to low levels of sexual dimorphism in the olfactory receptors in MOE and VNO, the sex-specific sensing seems less likely to be dependent on receptor repertoires. However, olfaction may also depend on a continuous removal of background compounds from the sites of detection. Odorant binding proteins (OBPs) are thought to be involved in this process and in our study Obp transcripts were most expressed along other lipocalins (e.g., Lcn13, Lcn14) and antimicrobial proteins. At the level of proteome, OBPs were highly abundant with only few being sexually dimorphic. We have, however, detected the major urinary proteins MUP4 and MUP5 in males and females and the male-biased central/group-B MUPs that were thought to be abundant mainly in the urine. The exocrine gland-secreted peptides ESP1 and ESP22 were male-biased but not male-specific in the nose. For the first time, we demonstrate that the expression of nasal lipocalins correlates with antimicrobial proteins thus suggesting that their individual variation may be linked to evolvable mechanisms that regulate natural microbiota and pathogens that regularly enter the body along the 'eyes-nose-oral cavity' axis.
Zobrazit více v PubMed
Anders S., Pyl P. T., Huber W. (2015). HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31 166–169. 10.1093/bioinformatics/btu638 PubMed DOI PMC
Augustin R., Schroder K., Murillo Rincon A. P., Fraune S., Anton-Erxleben F., Herbst E. M., et al. (2017). A secreted antibacterial neuropeptide shapes the microbiome of Hydra. Nat. Commun. 8:698. 10.1038/s41467-017-00625-1 PubMed DOI PMC
Benaglia T., Chauveau D., Hunter D. R., Young D. S. (2009). mixtools: an R package for analyzing finite mixture models. J. Stat. Softw. 32 1–29. 10.18637/jss.v032.i06 DOI
Ben-Shaul Y., Katz L. C., Mooney R., Dulac C. (2010). In vivo vomeronasal stimulation reveals sensory encoding of conspecific and allospecific cues by the mouse accessory olfactory bulb. Proc. Natl. Acad. Sci. U.S.A. 107 5172–5177. 10.1073/pnas.0915147107 PubMed DOI PMC
Bergan J. F., Ben-Shaul Y., Dulac C. (2014). Sex-specific processing of social cues in the medial amygdala. eLife 3:e02743. 10.7554/eLife.02743 PubMed DOI PMC
Bolstad B. M., Irizarry R. A., Astrand M., Speed T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19 185–193. 10.1093/bioinformatics/19.2.185 PubMed DOI
Buck L., Axel R. (1991). A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65 175–187. 10.1016/0092-8674(91)90418-Xs PubMed DOI
Buck L. B. (2000). The molecular architecture of odor and pheromone sensing in mammals. Cell 100 611–618. 10.1016/S0092-8674(00)80698-4 PubMed DOI
Bufe B., Zufall F. (2016). The sensing of bacteria: emerging principles for the detection of signal sequences by formyl peptide receptors. Biomol. Concepts 7 205–214. 10.1515/bmc-2016-0013 PubMed DOI
Cerna M., Kuntova B., Talacko P., Stopkova R., Stopka P. (2017). Differential regulation of vaginal lipocalins (OBP, MUP) during the estrous cycle of the house mouse. Sci. Rep. 7:11674. 10.1038/s41598-017-12021-2 PubMed DOI PMC
Chen Y., Zhao Y. H., Kalaslavadi T. B., Hamati E., Nehrke K., Le A. D., et al. (2004). Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am. J. Respir. Cell Mol. Biol. 30 155–165. 10.1165/rcmb.2003-0103OC PubMed DOI
Cichy A., Ackels T., Tsitoura C., Kahan A., Gronloh N., Sochtig M., et al. (2015). Extracellular pH regulates excitability of vomeronasal sensory neurons. J. Neurosci. 35 4025–4039. 10.1523/JNEUROSCI.2593-14.2015 PubMed DOI PMC
Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13 2513–2526. 10.1074/mcp.M113.031591 PubMed DOI PMC
Crawley M. J. (2007). The R Book. Hoboken, NJ: Wiley Publishing; 10.1002/9780470515075 DOI
Cunningham C. B., Nelson A. C., Ruff J. S., Potts W. K. (2013). MUP expression is linked with sociality not competitive ability in male house mice. Integr. Comp. Biol. 53:E46.
Dobin A., Davis C. A., Schlesinger F., Drenkow J., Zaleski C., Jha S., et al. (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Earl D., Bradnam K., St John J., Darling A., Lin D., Fass J., et al. (2011). Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21 2224–2241. 10.1101/gr.126599.111 PubMed DOI PMC
Enk V. M., Baumann C., Thoß M., Luzynski K. C., Razzazi-Fazeli E., Penn D. J. (2016). Regulation of highly homologous major urinary proteins in house mice quantified with label-free proteomic methods. Mol. Biosyst. 12 3005–3016. 10.1039/c6mb00278a PubMed DOI PMC
Flo T. H., Smith K. D., Sato S., Rodriguez D. J., Holmes M. A., Strong R. K., et al. (2004). Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432 917–921. 10.1038/nature03104 PubMed DOI
Gallo R. L., Kim K. J., Bernfield M., Kozak C. A., Zanetti M., Merluzzi L., et al. (1997). Identification of CRAMP, a cathelin-related antimicrobial peptide expressed in the embryonic and adult mouse. J. Biol. Chem. 272 13088–13093. 10.1074/jbc.272.20.13088 PubMed DOI
Gentleman R. C., Carey V. J., Bates D. M., Bolstad B., Dettling M., Dudoit S., et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5:R80. 10.1186/gb-2004-5-10-r80 PubMed DOI PMC
Ghazalpour A., Bennett B., Petyuk V. A., Orozco L., Hagopian R., Mungrue I. N., et al. (2011). Comparative analysis of proteome and transcriptome variation in mouse. PLOS Genet. 7:e1001393. 10.1371/journal.pgen.1001393 PubMed DOI PMC
Goetz D. H., Holmes M. A., Borregaard N., Bluhm M. E., Raymond K. N., Strong R. K. (2002). The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10 1033–1043. 10.1016/S1097-2765(02)00708-6 PubMed DOI
Grolli S., Merli E., Conti V., Scaltriti E., Ramoni R. (2006). Odorant binding protein has the biochemical properties of a scavenger for 4-hydroxy-2-nonenal in mammalian nasal mucosa. FEBS J. 273 5131–5142. 10.1111/j.1742-4658.2006.05510.x PubMed DOI
Haider S., Pal R. (2013). Integrated analysis of transcriptomic and proteomic data. Curr. Genomics 14 91–110. 10.2174/1389202911314020003 PubMed DOI PMC
Hurst J. L., Beynon R. J., Armstrong S. D., Davidson A. J., Roberts S. A., Gomez-Baena G., et al. (2017). Molecular heterogeneity in major urinary proteins of Mus musculus subspecies: potential candidates involved in speciation. Sci. Rep. 7:44992. 10.1038/srep44992 PubMed DOI PMC
Ibarra-Soria X., Levitin M. O., Saraiva L. R., Logan D. W. (2014). The olfactory transcriptomes of mice. PLOS Genet. 10:e1004593. 10.1371/journal.pgen.1004593 PubMed DOI PMC
Ibarra-Soria X., Nakahara T. S., Lilue J., Jiang Y., Trimmer C., Souza M. A., et al. (2017). Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. eLife 6:e21476. 10.7554/eLife.21476 PubMed DOI PMC
Janotova K., Stopka P. (2011). The level of major urinary proteins is socially regulated in wild Mus musculus musculus. J. Chem. Ecol. 37 647–656. 10.1007/s10886-011-9966-8 PubMed DOI
Jemiolo B., Andreolini F., Xie T.-M., Wiesler D., Novotny M. (1989). Puberty-affecting synthetic analogs of urinary chemosignals in the house mouse, Mus domesticus. Physiol. Behav. 46 293–298. 10.1016/0031-9384(89)90270-9 PubMed DOI
Jemiolo B., Harvey S., Novotny M. (1986). Promotion of the Whitten effect in female mice by synthetic analogs of male urinary constituents. Proc. Natl. Acad. Sci. U.S.A. 83 4576–4579. 10.1073/pnas.83.12.4576 PubMed DOI PMC
Jemiolo B., Novotny M. V. (1994). Inhibition of sexual maturation in juvenile female and male mice by a chemosignal of female origin. Physiol. Behav. 55 519–522. 10.1016/0031-9384(94)90110-4 PubMed DOI
Jemiolo B., Xie T.-M., Novotny M. (1992). Urine marking in male mice: responses to natural and synthetic chemosignals. Physiol. Behav. 52 521–526. 10.1016/0031-9384(92)90341-X PubMed DOI
Kahan A., Ben-Shaul Y. (2016). Extracting behaviorally relevant traits from natural stimuli: benefits of combinatorial representations at the accessory olfactory bulb. PLOS Comput. Biol. 12:e1004798. 10.1371/journal.pcbi.1004798 PubMed DOI PMC
Kimoto H., Haga S., Sato K., Touhara K. (2005). Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437 898–901. 10.1038/nature04033 PubMed DOI
Kimoto H., Sato K., Nodari F., Haga S., Holy T. E., Touhara K. (2007). Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17 1879–1884. 10.1016/j.cub.2007.09.042 PubMed DOI
Knopf J. L., Gallagher J. F., Held W. A. (1983). Differential, multihormonal regulation of the mouse major urinary protein gene family in the liver. Mol. Cell. Biol. 3 2232–2240. 10.1128/MCB.3.12.2232 PubMed DOI PMC
Kwak J., Strasser E., Luzynski K., Thoß M., Penn D. J. (2016). Are MUPs a toxic waste disposal system? PLOS ONE 11:e0151474. 10.1371/journal.pone.0151474 PubMed DOI PMC
Leclair E. E. (2003a). Four BPI (bactericidal/permeability-increasing protein)-like genes expressed in the mouse nasal, oral, airway and digestive epithelia. Biochem. Soc. Trans. 31 801–805. PubMed
Leclair E. E. (2003b). Four reasons to consider a novel class of innate immune molecules in the oral epithelium. J. Dent. Res. 82 944–950. PubMed
Lee W., Khan A., Curley J. P. (2017). Major urinary protein levels are associated with social status and context in mouse social hierarchies. Proc. R. Soc. B Biol. Sci. 284 20171570. 10.1098/rspb.2017.1570 PubMed DOI PMC
Leinders-Zufall T., Lane A. P., Puche A. C., Ma W., Novotny M. V., Shipley M. T., et al. (2000). Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405 792–796. 10.1038/35015572 PubMed DOI
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Logan D. W., Marton T. F., Stowers L. (2008). Species specificity in major urinary proteins by parallel evolution. PLOS ONE 3:e3280. 10.1371/journal.pone.0003280 PubMed DOI PMC
Loire E., Tusso S., Caminade P., Severac D., Boursot P., Ganem G., et al. (2017). Do changes in gene expression contribute to sexual isolation and reinforcement in the house mouse? Mol. Ecol. 26 5189–5202. 10.1111/mec.14212 PubMed DOI
Lu Z., Elliott M. R., Chen Y., Walsh J. T., Klibanov A. L., Ravichandran K. S., et al. (2011). Phagocytic activity of neuronal progenitors regulates adult neurogenesis. Nat. Cell Biol. 13 1076–1083. 10.1038/ncb2299 PubMed DOI PMC
Ma W., Miao Z., Novotny M. V. (1999). Induction of estrus in grouped female mice (Mus domesticus) by synthetic analogues of preputial gland constituents. Chem. Senses 24 289–293. 10.1093/chemse/24.3.289 PubMed DOI
Manteniotis S., Lehmann R., Flegel C., Vogel F., Hofreuter A., Schreiner B. S., et al. (2013). Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia. PLOS ONE 8:e79523. 10.1371/journal.pone.0079523 PubMed DOI PMC
Moss R. L., Flynn R. E., Shen X., Dudley C., Shi J., Novotny M. (1997). Urine-derived compound evokes membrane responses in mouse vomeronasal receptor neurons. J. Neurophysiol. 77 2856–2862. 10.1152/jn.1997.77.5.2856 PubMed DOI
Mudge J. M., Armstrong S. D., Mclaren K., Beynon R. J., Hurst J. L., Nicholson C., et al. (2008). Dynamic instability of the major urinary protein gene family revealed by genomic and phenotypic comparisons between C57 and 129 strain mice. Genome Biol. 9:R91. 10.1186/gb-2008-9-5-r91 PubMed DOI PMC
Nelson A. C., Cauceglia J. W., Merkley S. D., Youngson N. A., Oler A. J., Nelson R. J., et al. (2013). Reintroducing domesticated wild mice to sociality induces adaptive transgenerational effects on MUP expression. Proc. Natl. Acad. Sci. U.S.A. 110 19848–19853. 10.1073/pnas.1310427110 PubMed DOI PMC
Novotny M. V., Jemiolo B., Wiesler D., Ma W., Harvey S., Xu F., et al. (1999a). A unique urinary constituent, 6-hydroxy-6-methyl-3-heptanone, is a pheromone that accelerates puberty in female mice. Chem. Biol. 6 377–383. PubMed
Novotny M. V., Ma W., Zidek L., Daev E. (1999b). “Recent biochemical insights into puberty acceleration, estrus induction, and puberty delay in the house mouse,” in Advances in Chemical Communication in Vertebrates, eds Johnston R. E., Muller-Schwarze D., Sorensen P. (New York, NY: Plenum Press; ), 99–116.
Pavelka N., Fournier M. L., Swanson S. K., Pelizzola M., Ricciardi-Castagnoli P., Florens L., et al. (2008). Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics 7 631–644. 10.1074/mcp.M700240-MCP200 PubMed DOI
Pavelka N., Pelizzola M., Vizzardelli C., Capozzoli M., Splendiani A., Granucci F., et al. (2004). A power law global error model for the identification of differentially expressed genes in microarray data. BMC Bioinformatics 5:203. 10.1186/1471-2105-5-203 PubMed DOI PMC
Phelan M. M., Mclean L., Hurst J. L., Beynon R. J., Lian L. Y. (2014). Comparative study of the molecular variation between ‘central’ and ‘peripheral’ MUPs and significance for behavioural signalling. Biochem. Soc. Trans. 42 866–872. 10.1042/BST20140082 PubMed DOI
Pigliucci M. (2008). Is evolvability evolvable? Nat. Rev. Genet. 9 75–82. 10.1038/nrg2278 PubMed DOI
Riviere S., Challet L., Fluegge D., Spehr M., Rodriguez I. (2009). Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459 574–577. 10.1038/nature08029 PubMed DOI
Rodriguez J., Gupta N., Smith R. D., Pevzner P. A. (2008). Does trypsin cut before proline? J. Proteome Res. 7 300–305. 10.1021/pr0705035 PubMed DOI
Royet J., Gupta D., Dziarski R. (2011). Peptidoglycan recognition proteins: modulators of the microbiome and inflammation. Nat. Rev. Immunol. 11 837–851. 10.1038/nri3089 PubMed DOI
Rusu A. S., Krackow S., Jedelsky P. L., Stopka P., Konig B. (2008). A qualitative investigation of major urinary proteins in relation to the onset of aggressive behavior and dispersive motivation in male wild house mice (Mus musculus domesticus). J. Ethol. 26 127–135. 10.1007/s10164-007-0042-3 DOI
Sam M., Vora S., Malic B., Ma W., Novotny M. V., Buck L. B. (2001). Odorants may arouse instinctive behaviours. Nature 412:142. 10.1038/35084137 PubMed DOI
Sampsell B., Held W. (1985). Variation in the major urinary protein multigene family in wild-derived mice. Genetics 109 549–568. PubMed PMC
Scott A., Weldon S., Taggart C. C. (2011). SLPI and elafin: multifunctional antiproteases of the WFDC family. Biochem. Soc. Trans. 39 1437–1440. 10.1042/BST0391437 PubMed DOI
Sharrow S. D., Novotny M. V., Stone M. J. (2003). Thermodynamic analysis of binding between mouse major urinary protein-I and the pheromone 2-sec-butyl-4,5-dihydrothiazole. Biochemistry 42 6302–6309. 10.1021/bi026423q PubMed DOI
Sharrow S. D., Vaughn J. L., Žídek L., Novotny M. V., Stone M. J. (2002). Pheromone binding by polymorphic mouse major urinary proteins. Protein Sci. 11 2247–2256. 10.1110/ps.0204202 PubMed DOI PMC
Shiao M. S., Chang A. Y., Liao B. Y., Ching Y. H., Lu M. Y., Chen S. M., et al. (2012). Transcriptomes of mouse olfactory epithelium reveal sexual differences in odorant detection. Genome Biol. Evol. 4 703–712. 10.1093/gbe/evs039 PubMed DOI PMC
Singh V., Yeoh B. S., Chassaing B., Zhang B. Y., Saha P., Xiao X., et al. (2016). Microbiota-inducible innate immune, siderophore binding protein lipocalin 2 is critical for intestinal homeostasis. Cell. Mol. Gastroenterol. Hepatol. 196 482.e6–498.e6. 10.1016/j.jcmgh.2016.03.007 PubMed DOI PMC
Stopka P., Janotova K., Heyrovsky D. (2007). The advertisement role of major urinary proteins in mice. Physiol. Behav. 91 667–670. 10.1016/j.physbeh.2007.03.030 PubMed DOI
Stopka P., Kuntova B., Klempt P., Havrdova L., Cerna M., Stopkova R. (2016). On the saliva proteome of the Eastern European house mouse (Mus musculus musculus) focusing on sexual signalling and immunity. Sci. Rep. 6:32481. 10.1038/srep32481 PubMed DOI PMC
Stopkova R., Dudkova B., Hajkova P., Stopka P. (2014). Complementary roles of mouse lipocalins in chemical communication and immunity. Biochem. Soc. Trans. 42 893–898. 10.1042/BST20140053 PubMed DOI
Stopková R., Hladovcová D. J. K., Vyoral D., Stopka P. (2009). Multiple roles of secretory lipocalins (MUP, OBP) in mice. Folia Zool. 58 29–40.
Stopkova R., Klempt P., Kuntova B., Stopka P. (2017). On the tear proteome of the house mouse (Mus musculus musculus) in relation to chemical signalling. PeerJ 6:e3541. 10.7717/peerj.3541 PubMed DOI PMC
Stopková R., Stopka P., Janotová K., Jedelsky P. L. (2007). Species-specific expression of major urinary proteins in the house mice (Mus musculus musculus and Mus musculus domesticus). J. Chem. Ecol. 33 861–869. 10.1007/s10886-007-9262-9 PubMed DOI
Stopkova R., Vinkler D., Kuntová B., Sedo O., Albrecht T., Suchan J., et al. (2016). Mouse lipocalins (MUP, OBP, LCN) are co-expressed in tissues involved in chemical communication. Front. Ecol. Evol. 4:47 10.3389/fevo.2016.00047 DOI
Strotmann J., Breer H. (2011). Internalization of odorant-binding proteins into the mouse olfactory epithelium. Histochem. Cell Biol. 136 357–369. 10.1007/s00418-011-0850-y PubMed DOI
Szklarczyk D., Morris J. H., Cook H., Kuhn M., Wyder S., Simonovic M., et al. (2017). The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 45 D362–D368. 10.1093/nar/gkw937 PubMed DOI PMC
Thoß M., Enk V., Yu H., Miller I., Luzynski K. C., Balint B., et al. (2016). Diversity of major urinary proteins (MUPs) in wild house mice. Sci. Rep. 6:38378. 10.1038/srep38378 PubMed DOI PMC
Thoß M., Luzynski K., Ante M., Miller I., Penn D. J. (2015). Major urinary protein (MUP) profiles show dynamic changes rather than individual ‘barcode’ signatures. Front. Ecol. Evol. 3:71. 10.3389/fevo.2015.00071PMID:26973837 PubMed DOI PMC
Timm D. E., Baker L. J., Mueller H., Zidek L., Novotny M. V. (2001). Structural basis of pheromone binding to mouse major urinary protein (MUP-I). Protein Sci. 10 997–1004. 10.1110/ps.52201 PubMed DOI PMC
Wagner G. P., Altenberg L. (1996). Perspective: complex adaptations and the evolution of evolvability. Evolution 50 967–976. 10.1111/j.1558-5646.1996.tb02339.x PubMed DOI
Yu D. F., Chen Y., Han J. M., Zhang H., Chen X. P., Zou W. J., et al. (2008). MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjogren syndrome patients. Exp. Eye Res. 86 403–411. 10.1016/j.exer.2007.11.013 PubMed DOI
Zala S. M., Bilak A., Perkins M., Potts W. K., Penn D. J. (2015). Female house mice initially shun infected males, but do not avoid mating with them. Behav. Ecol. Sociobiol. 69 715–722. 10.1007/s00265-015-1884-2 DOI
Zala S. M., Potts W. K., Penn D. J. (2004). Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15 338–344. 10.1093/beheco/arh022 DOI
Zidek L., Stone M. J., Lato S. M., Pagel M. D., Miao Z., Ellington A. D., et al. (1999). NMR mapping of the recombinant mouse major urinary protein I binding site occupied by the pheromone 2-sec-Butyl-4,5-dihydrothiazole. Biochemistry 38 9850–9861. 10.1021/bi990497t PubMed DOI
Microbial, proteomic, and metabolomic profiling of the estrous cycle in wild house mice
Variation in mouse chemical signals is genetically controlled and environmentally modulated
Perioral secretions enable complex social signaling in African mole-rats (genus Fukomys)
Biological Roles of Lipocalins in Chemical Communication, Reproduction, and Regulation of Microbiota
Oral and vaginal microbiota in selected field mice of the genus Apodemus: a wild population study