Phenotype, penetrance, and treatment of 133 cytotoxic T-lymphocyte antigen 4-insufficient subjects
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
207556/Z/17/Z
Wellcome Trust - United Kingdom
BB/H013598/2
Biotechnology and Biological Sciences Research Council - United Kingdom
R01 AI085090
NIAID NIH HHS - United States
R34 AI106570
NIAID NIH HHS - United States
BB/H013598/1
Biotechnology and Biological Sciences Research Council - United Kingdom
P01 AI061093
NIAID NIH HHS - United States
204798/Z/16/Z
Wellcome Trust - United Kingdom
PubMed
29729943
PubMed Central
PMC6215742
DOI
10.1016/j.jaci.2018.02.055
PII: S0091-6749(18)30630-4
Knihovny.cz E-zdroje
- Klíčová slova
- Cytotoxic T-lymphocyte antigen 4, abatacept, autoimmunity, common variable immunodeficiency, hematopoietic stem cell transplantation, hypogammaglobulinemia, immune dysregulation, primary immunodeficiency, sirolimus,
- MeSH
- antigen CTLA-4 genetika MeSH
- dítě MeSH
- dospělí MeSH
- fenotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mutace MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- syndromy imunologické nedostatečnosti diagnostické zobrazování genetika terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigen CTLA-4 MeSH
- CTLA4 protein, human MeSH Prohlížeč
BACKGROUND: Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is a negative immune regulator. Heterozygous CTLA4 germline mutations can cause a complex immune dysregulation syndrome in human subjects. OBJECTIVE: We sought to characterize the penetrance, clinical features, and best treatment options in 133 CTLA4 mutation carriers. METHODS: Genetics, clinical features, laboratory values, and outcomes of treatment options were assessed in a worldwide cohort of CTLA4 mutation carriers. RESULTS: We identified 133 subjects from 54 unrelated families carrying 45 different heterozygous CTLA4 mutations, including 28 previously undescribed mutations. Ninety mutation carriers were considered affected, suggesting a clinical penetrance of at least 67%; median age of onset was 11 years, and the mortality rate within affected mutation carriers was 16% (n = 15). Main clinical manifestations included hypogammaglobulinemia (84%), lymphoproliferation (73%), autoimmune cytopenia (62%), and respiratory (68%), gastrointestinal (59%), or neurological features (29%). Eight affected mutation carriers had lymphoma, and 3 had gastric cancer. An EBV association was found in 6 patients with malignancies. CTLA4 mutations were associated with lymphopenia and decreased T-, B-, and natural killer (NK) cell counts. Successful targeted therapies included application of CTLA-4 fusion proteins, mechanistic target of rapamycin inhibitors, and hematopoietic stem cell transplantation. EBV reactivation occurred in 2 affected mutation carriers after immunosuppression. CONCLUSIONS: Affected mutation carriers with CTLA-4 insufficiency can present in any medical specialty. Family members should be counseled because disease manifestation can occur as late as 50 years of age. EBV- and cytomegalovirus-associated complications must be closely monitored. Treatment interventions should be coordinated in clinical trials.
Clinical Immunology and Allergy Unit Nottingham University Hospitals Nottingham United Kingdom
Department of Clinical Immunology and Allergy Royal Melbourne Hospital Melbourne Australia
Department of Hematology Oslo University Hospital Oslo Norway
Department of Immunology University Hospital Zurich University of Zurich Zurich Switzerland
Department of Internal Medicine 3 University Hospital Regensburg Regensburg Germany
Department of Internal Medicine Radboudumc Center for Infectious Diseases Nijmegen The Netherlands
Department of Paediatric Gastroenterology Great North Children's Hospital Newcastle United Kingdom
Department of Pathology University Medical Center University of Freiburg Freiburg Germany
Department of Pediatrics University Hospital Jena Jena Germany
Department of Pediatrics University Medical Center Ulm Ulm Germany
Department of Radiology Royal Free Hospital University College London London United Kingdom
Division of Gastroenterology and Department of Pediatrics Harvard Medical School Boston Mass
Division of Immunology University Children's Hospital Zurich University of Zurich Zurich Switzerland
HELIOS Children's Hospital Krefeld Germany
Immunology Team American Insurance Montevideo Uruguay
Institute of Clinical Molecular Biology Christian Albrechts University of Kiel Kiel Germany
Institute of Immunology University Hospital Heidelberg Heidelberg Germany
Section of Allergy and Clinical Immunology Yale University School of Medicine New Haven Conn
UCL Institute of Immunity and Transplantation Royal Free Hospital London United Kingdom
University of Manchester Royal Manchester Children's Hospital Manchester United Kingdom
Zobrazit více v PubMed
Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, et al. Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science. 2014;345(6204):1623–7. PubMed PMC
Zeissig S, Petersen BS, Tomczak M, Melum E, Huc-Claustre E, Dougan SK, et al. Early-onset Crohn's disease and autoimmunity associated with a variant in CTLA-4. Gut. 2015;64(12):1889–97. PubMed PMC
Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20(12):1410–6. PubMed PMC
Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med. 2000;192(2):303–10. PubMed PMC
Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med. 2000;192(2):295–302. PubMed PMC
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299(5609):1057–61. PubMed
Friedline RH, Brown DS, Nguyen H, Kornfeld H, Lee J, Zhang Y, et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J Exp Med. 2009;206(2):421–34. PubMed PMC
Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271–5. PubMed
Walker LS. Treg and CTLA-4: two intertwining pathways to immune tolerance. Journal of autoimmunity. 2013;45:49–57. PubMed PMC
Collins AV, Brodie DW, Gilbert RJ, Iaboni A, Manso-Sancho R, Walse B, et al. The interaction properties of costimulatory molecules revisited. Immunity. 2002;17(2):201–10. PubMed
Bour-Jordan H, Bluestone JA. Regulating the regulators: costimulatory signals control the homeostasis and function of regulatory T cells. Immunological reviews. 2009;229(1):41–66. PubMed PMC
Walker LS, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol. 2011;11(12):852–63. PubMed
Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, et al. Transendocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3. PubMed PMC
Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature. 2001;410(6828):604–8. PubMed
Slatter MA, Engelhardt KR, Burroughs LM, Arkwright PD, Nademi Z, Skoda-Smith S, et al. Hematopoietic stem cell transplantation for CTLA4 deficiency. J Allergy Clin Immunol. 2016;138(2):615–9. e1. PubMed
Hayakawa S, Okada S, Tsumura M, Sakata S, Ueno Y, Imai K, et al. A Patient with CTLA-4 Haploinsufficiency Presenting Gastric Cancer. J Clin Immunol. 2015 PubMed
Hou TZ, Olbrich P, Soto JML, Sanchez B, Moreno PS, Borte S, et al. Study of an extended family with CTLA-4 deficiency suggests a CD28/CTLA-4 independent mechanism responsible for differences in disease manifestations and severity. Clinical immunology. 2018;188:94–102. PubMed
Kucuk ZY, Charbonnier LM, McMasters RL, Chatila T, Bleesing JJ. CTLA-4 haploinsufficiency in a patient with an autoimmune lymphoproliferative disorder. J Allergy Clin Immunol. 2017;140(3):862–4. e4. PubMed PMC
Navarini AA, Hruz P, Berger CT, Hou TZ, Schwab C, Gabrysch A, et al. Vedolizumab as a successful treatment of CTLA-4-associated autoimmune enterocolitis. J Allergy Clin Immunol. 2017;139(3):1043–6. e5. PubMed
Immunodeficiencies ESf. New clinical diagnosis criteria for the ESID Registry. 2014 https://esidorg/Working-Parties/Registry/Diagnosis-criteria.
Picard C, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, Conley ME, et al. Primary Immunodeficiency Diseases: an Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726. PubMed PMC
Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, et al. Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood. 2017;129(11):1458–68. PubMed PMC
Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349(6246):436–40. PubMed
Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40. PubMed PMC
Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211. PubMed PMC
Charbonnier LM, Janssen E, Chou J, Ohsumi TK, Keles S, Hsu JT, et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol. 2015;135(1):217–27. PubMed PMC
Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nature genetics. 2014;46(8):812–4. PubMed PMC
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330–6. PubMed
Gamez-Diaz L, August D, Stepensky P, Revel-Vilk S, Seidel MG, Noriko M, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137(1):223–30. PubMed
Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. American journal of human genetics. 2012;90(6):986–1001. PubMed PMC
Milner JD, Vogel TP, Forbes L, Ma CA, Stray-Pedersen A, Niemela JE, et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9. PubMed PMC
Ochs HD, Gambineri E, Torgerson TR. IPEX, FOXP3 and regulatory T-cells: a model for autoimmunity. Immunologic research. 2007;38(1–3):112–21. PubMed
Serwas NK, Kansu A, Santos-Valente E, Kuloglu Z, Demir A, Yaman A, et al. Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype. Inflammatory bowel diseases. 2015;21(1):40–7. PubMed
Seidel MG, Hirschmugl T, Gamez-Diaz L, Schwinger W, Serwas N, Deutschmann A, et al. Long-term remission after allogeneic hematopoietic stem cell transplantation in LPS-responsive beige-like anchor (LRBA) deficiency. J Allergy Clin Immunol. 2015;135(5):1384–90. e1–8. PubMed PMC
Revel-Vilk S, Fischer U, Keller B, Nabhani S, Gamez-Diaz L, Rensing-Ehl A, et al. Autoimmune lymphoproliferative syndrome-like disease in patients with LRBA mutation. Clinical immunology. 2015;159(1):84–92. PubMed
Schreiner F, Plamper M, Dueker G, Schoenberger S, Gamez-Diaz L, Grimbacher B, et al. Infancy-Onset T1DM, Short Stature, and Severe Immunodysregulation in Two Siblings With a Homozygous LRBA Mutation. J Clin Endocrinol Metab. 2016;101(3):898–904. PubMed
Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130(2):481–8. e2. PubMed PMC
Alkhairy OK, Abolhassani H, Rezaei N, Fang M, Andersen KK, Chavoshzadeh Z, et al. Spectrum of Phenotypes Associated with Mutations in LRBA. J Clin Immunol. 2016;36(1):33–45. PubMed
Burns SO, Zenner HL, Plagnol V, Curtis J, Mok K, Eisenhut M, et al. LRBA gene deletion in a patient presenting with autoimmunity without hypogammaglobulinemia. J Allergy Clin Immunol. 2012;130(6):1428–32. PubMed PMC
Levy E, Stolzenberg MC, Bruneau J, Breton S, Neven B, Sauvion S, et al. LRBA deficiency with autoimmunity and early onset chronic erosive polyarthritis. Clinical immunology. 2016;168:88–93. PubMed
Sari S, Dogu F, Hwa V, Haskologlu S, Dauber A, Rosenfeld R, et al. A Successful HSCT in a Girl with Novel LRBA Mutation with Refractory Celiac Disease. J Clin Immunol. 2016;36(1):8–11. PubMed PMC
Tesi B, Priftakis P, Lindgren F, Chiang SC, Kartalis N, Lofstedt A, et al. Successful Hematopoietic Stem Cell Transplantation in a Patient with LPS-Responsive Beige-Like Anchor (LRBA) Gene Mutation. J Clin Immunol. 2016;36(5):480–9. PubMed
Do common infections trigger disease-onset or -severity in CTLA-4 insufficiency?
Mutual alteration of NOD2-associated Blau syndrome and IFNγR1 deficiency