Penetration, distribution and brain toxicity of titanium nanoparticles in rodents' body: a review
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
30104440
PubMed Central
PMC8676074
DOI
10.1049/iet-nbt.2017.0109
Knihovny.cz E-zdroje
- MeSH
- biologický transport MeSH
- hlodavci MeSH
- kovové nanočástice * toxicita MeSH
- mozek účinky léků metabolismus MeSH
- nanočástice toxicita MeSH
- neurotoxické syndromy * metabolismus patologie veterinární MeSH
- reaktivní formy kyslíku metabolismus MeSH
- titan farmakokinetika toxicita MeSH
- tkáňová distribuce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- reaktivní formy kyslíku MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
Titanium dioxide (TiO2) has been vastly used commercially, especially as white pigment in paints, colorants, plastics, coatings, cosmetics. Certain industrial uses TiO2 in diameter <100 nm. There are three common exposure routes for TiO2: (i) inhalation exposure, (ii) exposure via gastrointestinal tract, (iii) dermal exposure. Inhalation and gastrointestinal exposure appear to be the most probable ways of exposure, although nanoparticle (NP) penetration is limited. However, the penetration rate may increase substantially when the tissue is impaired. When TiO2 NPs migrate into the circulatory system, they can be distributed into all tissues including brain. In brain, TiO2 lead to oxidative stress mediated by the microglia phagocytic cells which respond to TiO2 NPs by the production and release of superoxide radicals that convert to multiple reactive oxygen species (ROS). The ROS production may also cause the damage of blood-brain barrier which then becomes more permeable for NPs. Moreover, several studies have showed neuron degradation and the impairment of spatial recognition memory and learning abilities in laboratory rodent exposed to TiO2 NPs.
Zobrazit více v PubMed
Popov A.P. Priezzhev A.V. Lademann J. et al.: ‘TiO2 nanoparticles as an effective UV‐B radiation skin‐protective compound in sunscreens’, J. Phys. D Appl. Phys., 2005, 38, (15), pp. 2564 –2570
Shah S.N.A. Shah Z. Hussain M. et al.: ‘Hazardous effects of titanium dioxide nanoparticles in ecosystem’, Bioinorganic Chem. Appl., 2017, 4101735 PubMed PMC
Kreyling W.G. Semmler‐Behnke M. Takenaka S. et al.: ‘Differences in the biokinetics of inhaled nano‐ versus micrometer‐sized particles’, Acc. Chem. Res., 2013, 46, (3), pp. 714 –722 PubMed PMC
Grassian V.H. O'Shaughnessy P.T. Adamcakova‐Dodd A. et al.: ‘Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 Nm’, Environ. Health Perspect., 2007, 115, (3), pp. 397 –402 PubMed PMC
Yu K.N. Sung J.H. Lee S. et al.: ‘Inhalation of titanium dioxide induces endoplasmic reticulum stress‐mediated autophagy and inflammation in mice’, Food Chem. Toxicol., 2015, 85, pp. 106 –113 PubMed
Bermudez E. Mangum J.B. Asgharian B. et al.: ‘Long‐term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary titanium dioxide particles’, Toxicol. Sci., 2002, 70, (1), pp. 86 –97 PubMed
Bermudez E. Mangum J.B. Wong B.A. et al.: ‘Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles’, Toxicol. Sci., 2004, 77, (2), pp. 347 –357 PubMed
Oberdorster G. Ferin J. Soderholm S. et al.: ‘Increased pulmonary toxicity of inhaled ultrafine particles ‐ due to lung overload alone’, Inhaled Particles VII, 1994, 38, (1), pp. 295 –302
Nemmar A. Hoet P.H.M. Vanquickenborne B. et al.: ‘Passage of inhaled particles into the blood circulation in humans’, Circulation, 2002, 105, (4), pp. 411 –414 PubMed
Wiebert P. Sanchez‐Crespo A. Seitz J. et al.: ‘Negligible clearance of ultrafine particles retained in healthy and affected human lungs’, Eur. Respir. J., 2006, 28, (2), pp. 286 –290 PubMed
Geiser M. Rothen‐Rutishauser B. Kapp N. et al.: ‘Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells’, Environ. Health Perspect., 2005, 113, (11), pp. 1555 –1560 PubMed PMC
Muhlfeld C. Geiser M. Kapp N. et al.: ‘Re‐evaluation of pulmonary titanium dioxide nanoparticle distribution using the ‘relative deposition index’: evidence for clearance through microvasculature’, Part Fibre Toxicol., 2007, 4, p. 7 PubMed PMC
Geiser M.: ‘Update on macrophage clearance of inhaled micro‐ and nanoparticles’, J. Aerosol. Med. Pulm. Drug Deliv., 2010, 23, (4), pp. 207 –217 PubMed
Li Y. Li J. Yin J. et al.: ‘Systematic influence induced by 3 Nm titanium dioxide following intratracheal instillation of mice’, J. Nanosci. Nanotechnol., 2010, 10, (12), pp. 8544 –8549 PubMed
Eydner M. Schaudien D. Creutzenberg O. et al.: ‘Impacts after inhalation of nano‐ and fine‐sized titanium dioxide particles: morphological changes, translocation within the rat lung, and evaluation of particle deposition using the relative deposition index’, Inhal. Toxicol., 2012, 24, (9), pp. 557 –569 PubMed
Liu H. Ma L. Zhao J. et al.: ‘Biochemical toxicity of nano‐anatase TiO2 particles in mice’, Biol. Trace Elem. Res., 2009, 129, (1–3), pp. 170 –180 PubMed
Chen J.Y. Dong X. Zhao J. et al.: ‘In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitioneal injection’, J. Appl. Toxicol., 2009, 29, (4), pp. 330 –337 PubMed
Wang J. Liu Y. Jiao F. et al.: ‘Time‐dependent translocation and potential impairment on central nervous system by intranasally instilled TiO(2) nanoparticles’, Toxicology, 2008, 254, (1–2), pp. 82 –90 PubMed
Wang J. Chen C. Liu Y. et al.: ‘Potential neurological lesion after nasal instillation of TiO(2) nanoparticles in the anatase and rutile crystal phases’, Toxicol. Lett., 2008, 183, (1–3), pp. 72 –80 PubMed
Yah C.S. Simate G.S. Iyuke S.E.: ‘Nanoparticles toxicity and their routes of exposures’, Pak. J. Pharm. Sci., 2012, 25, (2), pp. 477 –491 PubMed
Martirosyan A. Polet M. Bazes A. et al.: ‘Food nanoparticles and intestinal inflammation: a real risk?’. InTech, 2012, Inflammatory Bowel Disease edition
Jani P.U. McCarthy D.E. Florence A.T.: ‘Titanium dioxide (rutile) particle uptake from the Rat Gi tract and translocation to systemic organs after oral administration’, Int. J. Pharm., 1994, 105, (2), pp. 157 –168
Wang J. Zhou G. Chen C. et al.: ‘Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration’, Toxicol. Lett., 2007, 168, (2), pp. 176 –185 PubMed
Janer G. Mas del Molino E. Fernandez‐Rosas E. et al.: ‘Cell uptake and oral absorption of titanium dioxide nanoparticles’, Toxicol. Lett., 2014, 228, (2), pp. 103 –110 PubMed
MacNicoll A. Kelly M. Aksoy H. et al.: ‘A study of the uptake and biodistribution of nano‐titanium dioxide using in vitro and in vivo models of oral intake’, J. Nanoparticle Res., 2015, 17, (2)
Tassinari R. Cubadda F. Moracci G. et al.: ‘Oral, short‐term exposure to titanium dioxide nanoparticles in Sprague‐Dawley rat: focus on reproductive and endocrine systems and spleen’, Nanotoxicology, 2014, 8, (6), pp. 654 –662 PubMed
Mohammadipour A. Fazel A. Haghir H. et al.: ‘Maternal exposure to titanium dioxide nanoparticles during pregnancy; impaired memory and decreased hippocampal cell proliferation in rat offspring’, Environ. Toxicol. Pharmacol., 2014, 37, (2), pp. 617 –625 PubMed
Powell J.J. Faria N. Thomas‐McKay E. et al.: ‘Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract’, J. Autoimmunity, 2010, 34, (3), pp. J226 –J233 PubMed
Senzui M. Tamura T. Miura K. et al.: ‘Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro’, J. Toxicol. Sci., 2010, 35, (1), pp. 107 –113 PubMed
Tan M.H. Commens C.A. Burnett L. et al.: ‘A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens’, Australas J. Dermatol., 1996, 37, (4), pp. 185 –187 PubMed
Lademann J. Weigmann H. Rickmeyer C. et al.: ‘Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice’, Skin Pharmacol. Appl. Skin Physiol., 1999, 12, (5), pp. 247 –256 PubMed
Newman M.D. Stotland M. Ellis J.I.: ‘The safety of nanosized particles in titanium dioxide‐ and zinc oxide‐based sunscreens’, J. Am. Acad. Dermatol., 2009, 61, (4), pp. 685 –692 PubMed
Sadrieh N. Wokovich A.M. Gopee N.V. et al.: ‘Lack of significant dermal penetration of titanium dioxide from sunscreen formulations containing nano‐ and submicron‐size TiO2 particles’, Toxicol. Sci., 2010, 115, (1), pp. 156 –166 PubMed PMC
Bennat C. Muller‐Goymann C.C.: ‘Skin penetration and stabilization of formulations containing microfine titanium dioxide as physical UV filter’, Int. J. Cosmet. Sci., 2000, 22, (4), pp. 271 –283 PubMed
Wu J. Liu W. Xue C. et al.: ‘Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure’, Toxicol. Lett., 2009, 191, (1), pp. 1 –8 PubMed
Liu X. Sui B. Sun J.: ‘Size‐and shape‐dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood–brain barrier’, J. Mater. Chem. B, 2017, 5, (48), pp. 9558 –9570 PubMed
Brun E. Carriere M. Mabondzo A.: ‘In vitro evidence of dysregulation of blood‐brain barrier function after acute and repeated/long‐term exposure to TiO2 nanoparticles’, Biomaterials, 2012, 33, (3), pp. 886 –896 PubMed
Chen I.C. Hsiao I.L. Lin H.C. et al.: ‘Influence of silver and titanium dioxide nanoparticles on in vitro blood‐brain barrier permeability’, Environ. Toxicol. Pharmacol., 2016, 47, pp. 108 –118 PubMed
Disdier C. Chalansonnet M. Gagnaire F. et al.: ‘Brain inflammation, blood brain barrier dysfunction and neuronal synaptophysin decrease after inhalation exposure to titanium dioxide nano‐Aerosol in aging rats’, Sci. Rep., 2017, 7, (1), p. 12196 PubMed PMC
Allouni Z.E. Hol P.J. Cauqui M.A. et al.: ‘Role of physicochemical characteristics in the uptake of TiO2 nanoparticles by fibroblasts’, Toxicol. In Vitro, 2012, 26, (3), pp. 469 –479 PubMed
Andersson‐Willman B. Gehrmann U. Cansu Z. et al.: ‘Effects of subtoxic concentrations of TiO2 and Zno nanoparticles on human lymphocytes, dendritic cells and exosome production’, Toxicol. Appl. Pharmacol., 2012, 264, (1), pp. 94 –103 PubMed
Halamoda Kenzaoui B. Chapuis Bernasconi C. Guney‐Ayra S. et al.: ‘Induction of oxidative stress, lysosome activation and autophagy by nanoparticles in human brain‐derived endothelial cells’, Biochem. J., 2012, 441, (3), pp. 813 –821 PubMed
Wang Y. Aker W.G. Hwang H.M. et al.: ‘A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human Hepg2 cells’, Sci. Total Environ., 2011, 409, (22), pp. 4753 –4762 PubMed PMC
Long T.C. Tajuba J. Sama P. et al.: ‘Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro’, Environ. Health Perspect., 2007, 115, (11), pp. 1631 –1637 PubMed PMC
Long T.C. Saleh N. Tilton R.D. et al.: ‘Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (Bv2): implications for nanoparticle neurotoxicity’, Environ. Sci. Technol., 2006, 40, (14), pp. 4346 –4352 PubMed
Rothen‐Rutishauser B.M. Schurch S. Haenni B. et al.: ‘Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques’, Environ. Sci. Technol., 2006, 40, (14), pp. 4353 –4359 PubMed
Takeda K. Suzuki K.I. Ishihara A. et al.: ‘Nanoparticles transferred from pregnant mice to their offspring can damage the genital and cranial nerve systems’, J. Health Sci., 2009, 55, (1), pp. 95 –102
Afaq F. Abidi P. Matin R. et al.: ‘Cytotoxicity, pro‐oxidant effects and antioxidant depletion in rat lung alveolar macrophages exposed to ultrafine titanium dioxide’, J. Appl. Toxicol., 1998, 18, (5), pp. 307 –312 PubMed
Gurr J.R. Wang A.S. Chen C.H. et al.: ‘Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells’, Toxicology, 2005, 213, (1–2), pp. 66 –73 PubMed
Sayes C.M. Wahi R. Kurian P.A. et al.: ‘Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells’, Toxicolog. Sci., 2006, 92, (1), pp. 174 –185 PubMed
Wang J.J. Sanderson B.J. Wang H.: ‘Cyto‐ and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells’, Mutat. Res., 2007, 628, (2), pp. 99 –106 PubMed
Zhang Y. Yu W. Jiang X. et al.: ‘Analysis of the cytotoxicity of differentially sized titanium dioxide nanoparticles in murine Mc3t3‐E1 preosteoblasts’, J. Mater. Sci. Mater. Med., 2011, 22, (8), pp. 1933 –1945 PubMed
Lee K.P. Trochimowicz H.J. Reinhardt C.F.: ‘Pulmonary response of rats exposed to titanium dioxide (TiO2) by inhalation for two years’, Toxicol. Appl. Pharmacol., 1985, 79, (2), pp. 179 –192 PubMed
Warheit D.B. Brock W.J. Lee K.P. et al.: ‘Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity’, Toxicol. Sci., 2005, 88, (2), pp. 514 –524 PubMed
Kwon S. Yang Y.S. Yang H.S. et al.: ‘Nasal and pulmonary toxicity of titanium dioxide nanoparticles in rats’, Toxicol. Res., 2012, 28, (4), pp. 217 –224 PubMed PMC
Iavicoli I. Leso V. Bergamaschi A.: ‘Toxicological effects of titanium dioxide nanoparticles: a review of in vivo studies’, J. Nanomater., 2012, 2012 PubMed
Grissa I. Guezguez S. Ezzi L. et al.: ‘The effect of titanium dioxide nanoparticles on neuroinflammation response in rat brain’, Environ. Sci. Pollut. Res., 2016, 23, (20), pp. 20205 –20213 PubMed
Jia X. Wang S. Zhou L. et al.: ‘The potential liver, brain, and embryo toxicity of titanium dioxide nanoparticles on mice’, Nanoscale Res. Lett., 2017, 12, (1), p. 478 PubMed PMC
Ma L.L. Liu J. Li N. et al.: ‘Oxidative stress in the brain of mice caused by translocated nanoparticulate TiO2 delivered to the abdominal cavity’, Biomaterials, 2010, 31, (1), pp. 99 –105 PubMed
Umezawa M. Tainaka H. Kawashima N. et al.: ‘Effect of fetal exposure to titanium dioxide nanoparticle on brain development– brain region information’, J. Toxicol. Sci., 2012, 37, (6), pp. 1247 –1252 PubMed
Block M.L. Zecca L. Hong J.S.: ‘Microglia‐mediated neurotoxicity: uncovering the molecular mechanisms’, Nat. Rev. Neurosci., 2007, 8, (1), pp. 57 –69 PubMed
Xue Y. Wu J. Sun J.: ‘Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro’, Toxicol. Lett., 2012, 214, (2), pp. 91 –98 PubMed
Huerta‐Garcia E. Perez‐Arizti J.A. Marquez‐Ramirez S.G. et al.: ‘Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells’, Free Radical Biol. Med., 2014, 73, pp. 84 –94 PubMed
Hu R.P. Gong X.L. Duan Y.M. et al.: ‘Neurotoxicological effects and the impairment of spatial recognition memory in mice caused by exposure to TiO2 nanoparticles’, Biomaterials, 2010, 31, (31), pp. 8043 –8050 PubMed
Irie T. Kawakami T. Sato K. et al.: ‘Sub‐toxic concentrations of nano‐ZnO and nano‐TiO2 suppress neurite outgrowth in differentiated PC12 cells’, J. Toxicolog. Sci., 2017, 42, (6), pp. 723 –729 PubMed
Zhou Y. Hong F. Tian Y. et al.: ‘Nanoparticulate titanium dioxide‐inhibited dendritic development is involved in apoptosis and autophagy of hippocampal neurons in offspring mice’, Toxicol. Res., 2017, 6, (6), pp. 889 –901 PubMed PMC
Shin J.A. Lee E.J. Seo S.M. et al.: ‘Nanosized titanium dioxide enhanced inflammatory responses in the septic brain of mouse’, Neuroscience, 2010, 165, (2), pp. 445 –454 PubMed
Hsiao I.L. Chang C.C. Wu C.Y.: ‘Indirect effects of TiO2 nanoparticle on neuron‐glial cell interactions’, Chemico‐Biolog. Interact., 2016, 254, pp. 34 –44 PubMed
Mohamed H.R. Hussien N.A.: ‘Genotoxicity studies of titanium dioxide nanoparticles (TiO2 NPs) in the brain of mice’, Scientifica, 2016. PubMed PMC
Shimizu M. Tainaka H. Oba T. et al.: ‘Maternal exposure to nanoparticulate titanium dioxide during the prenatal period alters gene expression related to brain development in the mouse’, Part Fibre Toxicol., 2009, 6, 6:20 doi:10.1186/1743‐8977‐6‐20 PubMed PMC
Mohammadipour A. Hosseini M. Fazel A. et al.: ‘The effects of exposure to titanium dioxide nanoparticles during lactation period on learning and memory of rat offspring’, Toxicol. Ind. Health, 2016, 32, (2), pp. 221 –228 PubMed
Cui Y. Chen X. Zhou Z. et al.: ‘Prenatal exposure to nanoparticulate titanium dioxide enhances depressive‐like behaviors in adult rats’, Chemosphere, 2014, 96, pp. 99 –104 PubMed
Hu Q. Guo F. Zhao F. et al.: ‘Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12’, Chemosphere, 2017, 173, pp. 373 –379 PubMed
Milaneschi Y. Cesari M. Simonsick E.M. et al.: ‘Lipid peroxidation and depressed mood in community‐dwelling older men and women’, PLoS One, 2013, 8, (6), doi: 10.1371/journal.pone.0065406. Print 2013 PubMed PMC
Zhao Y. Zhao B.: ‘Oxidative stress and the pathogenesis of Alzheimer's disease’, Oxid. Med. Cell. Longev., 2013, 2013, p. 316523 PubMed PMC
Joshi Y.B. Pratico D.: ‘Lipid peroxidation in psychiatric illness: overview of clinical evidence’, Oxid. Med. Cell. Longev., 2014, 2014, p. 828702 PubMed PMC