Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 CA204621
NCI NIH HHS - United States
P01 CA069246
NCI NIH HHS - United States
R01 GM117916
NIGMS NIH HHS - United States
R01 DA047807
NIDA NIH HHS - United States
P30 DK058404
NIDDK NIH HHS - United States
U19 CA179514
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
UL1 TR001860
NCATS NIH HHS - United States
R56 AG057430
NIA NIH HHS - United States
R01 CA224769
NCI NIH HHS - United States
U01 CA230697
NCI NIH HHS - United States
T32 AG052375
NIA NIH HHS - United States
BB/E002080/1
Biotechnology and Biological Sciences Research Council - United Kingdom
T32 OD011089
NIH HHS - United States
KL2 TR001859
NCATS NIH HHS - United States
U01 HL126499
NHLBI NIH HHS - United States
R01 CA218526
NCI NIH HHS - United States
19076
Cancer Research UK - United Kingdom
P01 CA140043
NCI NIH HHS - United States
T32 HL086350
NHLBI NIH HHS - United States
MR/R023166/1
Medical Research Council - United Kingdom
R01 CA193473
NCI NIH HHS - United States
R21 MH118164
NIMH NIH HHS - United States
R33 MH118164
NIMH NIH HHS - United States
R01 MH113645
NIMH NIH HHS - United States
R01 DA040385
NIDA NIH HHS - United States
R01 DK111378
NIDDK NIH HHS - United States
PubMed
30637094
PubMed Central
PMC6322352
DOI
10.1080/20013078.2018.1535750
PII: 1535750
Knihovny.cz E-zdroje
- Klíčová slova
- ectosomes, exosomes, extracellular vesicles, guidelines, microparticles, microvesicles, minimal information requirements, reproducibility, rigor, standardization,
- Publikační typ
- časopisecké články MeSH
The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.
A C Camargo Cancer Center São Paulo Brazil
Aalborg University Clinical Institute Aalborg Denmark
Aalborg University Hospital Department of Clinical Biochemistry Aalborg Denmark
Aalborg University Hospital Department of Clinical Immunology Aalborg Denmark
Aarhus University Department of Clinical Medicine Aarhus Denmark
Advanced Center for Chronic Diseases Santiago Chile
American Red Cross Scientific Affairs Gaithersburg MD USA
Amsterdam University Medical Centers Department of Pathology Amsterdam The Netherlands
Aston University School of Life and Health Sciences Birmingham UK
AstraZeneca Discovery Sciences IMED Biotech Unit Cambridge UK
AstraZeneca Discovery Sciences IMED Biotech Unit Gothenburg Sweden
Atlantic Cancer Research Institute Moncton Canada
BC Cancer Canada's Michael Smith Genome Sciences Centre Vancouver Canada
Beth Israel Deaconess Medical Center Boston MA USA
Boston University School of Medicine Boston MA USA
Brigham and Women's Hospital Center for Interdisciplinary Cardiovascular Sciences Boston MA USA
Brown University Women and Infants Hospital Providence RI USA
Cancer Institute of JFCR Tokyo Japan
Cancer Research Institute Ghent Ghent Belgium
Cardiff University School of Medicine Cardiff UK
Case Western Reserve University Department of Medicine Cleveland OH USA
Cedars Sinai Medical Center Los Angeles CA USA
Cedars Sinai Medical Center Smidt Heart Institute Los Angeles CA USA
Center for Psychiatry and Neuroscience INSERM U894 Paris France
Central Research Laboratories Sysmex Co Kobe Japan
Children's Hospital of Los Angeles Los Angeles CA USA
Chinese Academy of Sciences Wenzhou Institute of Biomaterials and Engineering Wenzhou China
CIC bioGUNE CIBERehd Exosomes Laboratory and Metabolomics Platform Derio Spain
Cincinnati Cancer Center Cincinnati OH USA
Clínica las Condes Extracellular Vesicles in Personalized Medicine Group Santiago Chile
CNR Institute of Neuroscience Milan Italy
Copenhagen Lupus and Vasculitis Clinic Section 4242 Rigshospitalet Copenhagen Denmark
CSGI Research Center for Colloids and Nanoscience Florence Italy
Department of Pathology Erasmus MC Erasmus Optical Imaging Centre Rotterdam The Netherlands
Department of Urology Rotterdam The Netherlands
Department of Veterans Affairs San Francisco CA USA
Duke University Department of Ophthalmology Durham NC USA
Duke University Medical Center Departments of Medicine and Immunology Durham NC USA
Durham VAMC Medical Research Service Durham NC USA
École normale supérieure Paris France
Erasmus MC Rotterdam The Netherlands
ETH Zurich Institute of Pharmaceutical Sciences Zurich Switzerland
Eulji University School of Medicine Daejeon South Korea
Evox Therapeutics Limited Oxford UK
Exogenus Therapeutics Cantanhede Portugal
Exosomics Siena SpA Siena Italy
FAU Erlangen Nuremberg Transfusion and Haemostaseology Department Erlangen Germany
Federal Research and Clinical Center of Physical Chemical Medicine Moscow Russia
FEMTO ST Institute UBFC CNRS ENSMM UTBM Besançon France
Finnish Red Cross Blood Service Research and Development Helsinki Finland
Florida State University College of Medicine Department of Biomedical Sciences Tallahassee FL USA
Fondazione IRCCS Istituto Nazionale dei Tumori Unit of Immunotherapy of Human Tumors Milan Italy
Genome Institute of Singapore ASTAR Singapore
Georg Speyer Haus Institute for Tumor Biology and Experimental Therapy Frankfurt Germany
Georgetown University Department of Medicine Washington DC USA
German Cancer Consortium Heidelberg Germany
German Cancer Research Center Clinical Cooperation Unit Applied Tumor Biology Heidelberg Germany
German Cancer Research Center Division Signaling and Functional Genomics Heidelberg Germany
German Centre for Neurodegenerative Diseases Bonn Germany
German Research Center for Environmental Health Institute for Virology Munich Germany
Germans Trias i Pujol Research Institute Can Ruti Campus REMAR IVECAT Group Badalona Spain
Germans Trias i Pujol University Hospital Nephrology Service Badalona Spain
Ghent University Hospital Department of Urology Ghent Belgium
Haaglanden Medical Center Department of Neurosurgery The Hague The Netherlands
Harvard Medical School Cardiovascular Medicine Boston MA USA
Harvard Medical School Department of Medicine Boston MA USA
Harvard University Harvard T H Chan School of Public Health Boston MA USA
Harvard University School of Engineering and Applied Sciences Cambridge MA USA
Hasselt University Biomedical Research Institute Hasselt Belgium
Helmholtz Centre for Infection Research Braunschweig Germany
Helmholtz Institute for Pharmaceutical Research Saarland Saarbrücken Germany
Houston Methodist Research Institute Department of Nanomedicine Houston TX USA
Hudson Institute of Medical Research Melbourne Australia
Icahn School of Medicine at Mount Sinai Department of Medicine Cardiology New York City NY USA
Icahn School of Medicine at Mount Sinai New York City NY USA
IIS Fundacion Jimenez Diaz UAM Department of Nephrology and Hypertension Madrid Spain
IKERBASQUE Research Science Foundation Bilbao Spain
Imperial College London London UK
INEB Instituto de Engenharia Biomédica Porto Portugal
INSERM U1063 Université d'Angers CHU d'Angers Angers France
INSERM U1068 Aix Marseille University CNRS UMR7258 Marseille France
INSERM U1110 Strasbourg France
INSERM UMR S 970 Paris Cardiovascular Research Center Paris France
Institució Catalana de Recerca i Estudis Avançats Barcelona Spain
Institut Curie CNRS UMR144 PSL Research University Paris France
Institut Curie INSERM U932 PSL Research University Paris France
Institut d'Investigació Germans Trias i Pujol PVREX group Badalona Spain
Institut Pasteur de Montevideo Functional Genomics Unit Montevideo Uruguay
Institute of Biomedicine and Molecular Immunology of Italy Palermo Italy
Institute of Medical Biology Singapore
Institute of Physiology CAS Department of Biomaterials and Tissue Engineering Prague Czech Republic
Instituto Oswaldo Cruz Rio de Janeiro Brazil
INSTM National Interuniversity Consortium of Materials Science and Technology Florence Italy
IPATIMUP Institute of Molecular Pathology and Immunology of the University of Porto Porto Portugal
IRCCS Fondazione Don Carlo Gnocchi Laboratory of Nanomedicine and Clinical Biophotonics Milan Italy
ISGlobal Hospital Clínic Universitat de Barcelona PVREX Group Barcelona Spain
Istanbul University Oncology Institute Basic Oncology Department Istanbul Turkey
K G Jebsen Brain Tumor Research Centre Department of Biomedicine University of Bergen Bergen Norway
Kansas State University College of Veterinary Medicine Manhattan KS USA
Karolinska Institute Clinical Research Center Department of Laboratory Medicine Stockholm Sweden
Karolinska Institute Stockholm Sweden
Kidney Research Centre Ottawa Canada
KU Leuven Department of Human Genetics Leuven Belgium
Kyung Hee University Department of Applied Chemistry Yongin Korea
Latvian Biomedical Research and Study Centre Riga Latvia
Leibniz Institute for Farm Animal Biology Institute of Reproductive Biology Dummerstorf Germany
Leiden University Medical Center Department of Neurosurgery Leiden The Netherlands
Loyola University Chicago Department of Urology Maywood IL USA
Lund University Department of Cardiology Lund Sweden
Maria Sklodowska Curie Institute Oncology Center Gliwice Branch Gliwice Poland
Massachusetts General Cancer Center Boston MA USA
Massachusetts General Hospital Boston MA USA
Massachusetts General Hospital Department of Neurology Boston MA USA
Massachusetts General Hospital Department of Neurosurgery Boston MA USA
Massachusetts General Hospital Harvard Medical School Department of Neurology Boston MA USA
Mayo Clinic College of Medicine Department of Physiology and Biomedical Engineering Rochester MN USA
Mayo Clinic Department of Orthopedic Surgery Rochester MN USA
Mayo Clinic Department of Transplantation Jacksonville FL USA
McGill University Division of Experimental Medicine Montreal Canada
McGill University Montreal Canada
McGill University The Research Institute of the McGill University Health Centre Montreal Canada
Memorial Sloan Kettering Cancer Center Department of Medicine New York City NY USA
Monash University Melbourne Australia
Mossakowski Medical Research Centre NeuroRepair Department Warsaw Poland
Mount Allison University Department of Chemistry and Biochemistry Sackville Canada
MRC The Gambia Fajara The Gambia
MTA SE Immuno Proteogenomics Research Groups Budapest Hungary
Namur Thrombosis and Hemostasis Center NARILIS Namur Belgium
National Cancer Center Research Institute Division of Molecular and Cellular Medicine Tokyo Japan
National Cancer Center Research Institute Tokyo Japan
National Institutes of Health National Cancer Institute Center for Cancer Research Bethesda MD USA
National Institutes of Health National Institute on Aging Baltimore MD USA
National Taiwan University Hospital Department of Internal Medicine Taipei Taiwan
National Tsing Hua University Department of Power Mechanical Engineering Hsinchu Taiwan
National Tsing Hua University Institute of Nanoengineering and Microsystems Hsinchu Taiwan
National University of Singapore Faculty of Dentistry Singapore
Nationwide Children's Hospital Columbus OH USA
Oslo University Hospital Department of Medical Biochemistry Blood Cell Research Group Oslo Norway
Oslo University Hospital Rikshospitalet Research Institute of Internal Medicine Oslo Norway
Ospedale Santo Spirito Pescara Italy
Ottawa Hospital Research Institute Ottawa Canada
Oxford Brookes University Department of Biological and Medical Sciences Oxford UK
Paracelsus Medical University Department of Transfusion Medicine Salzburg Austria
Paracelsus Medical University GMP Unit Salzburg Austria
Philipps University Marburg Experimental Tumor Biology Marburg Germany
Pontificia Universidad Católica de Chile Advanced Center for Chronic Diseases Santiago Chile
POSTECH Department of Life Sciences Pohang South Korea
Princess Margaret Cancer Centre University Health Network Toronto Canada
QIMR Berghofer Medical Research Institute Herston Australia
Radboud University Medical Center Department of Rheumatology Nijmegen The Netherlands
Regional Research Network on Extracellular Vesicles RRNEV Oslo Norway
René Rachou Institute FIOCRUZ Belo Horizonte Brazil
Research Service Olin E Teague Veterans' Medical Center Temple TX USA
Saarland University Medical Center Department of Medicine 2 Homburg Germany
Saarland University Saarbrücken Germany
Sapienza University of Rome Department of Experimental Medicine Rome Italy
Scintillon Institute La Jolla CA USA
Semmelweis University Department of Genetics Cell and Immunobiology Budapest Hungary
Semmelweis University Department of Physiology Budapest Hungary
SickKids Hospital Department of Anesthesia and Pain Medicine Toronto Canada
Simon Fraser University Department of Molecular Biology and Biochemistry Burnaby Canada
Spanish Kidney Research Network REDINREN Madrid Spain
Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg Austria
Statens Serum Institut Department of Autoimmunology and Biomarkers Copenhagen Denmark
Stellenbosch University Department of Physiological Sciences Stellenbosch South Africa
Technical University Eindhoven Faculty Biomedical Technology Eindhoven The Netherlands
Technische Universität Darmstadt Department of Biology Darmstadt Germany
TGen Neurogenomics Division Phoenix AZ USA
The Florey Institute of Neuroscience and Mental Health Melbourne Australia
The Johns Hopkins University School of Medicine Department of Neurology Baltimore MD USA
The Ohio State University Columbus OH USA
The Ohio State University Comprehensive Cancer Center Columbus OH USA
The School of Biomedical Sciences University of Western Australia Perth Australia
The Scripps Research Institute Scripps Florida Department of Molecular Medicine Jupiter FL USA
The Sociedade Beneficente Israelita Brasileira Albert Einstein São Paulo Brazil
The University of Melbourne The Department of Medicine Melbourne Australia
The University of Queensland Brisbane Australia
The University of Sheffield Sheffield UK
The University of Vermont Medical Center Department of Medicine Burlington VT USA
The Warren Alpert Medical School of Brown University Department of Medicine Providence RI USA
Toronto General Hospital Research Institute University Health Network Toronto Canada
TPM of Mirandola Mirandola Italy
Tsinghua University School of Pharmaceutical Sciences Beijing China
UMR 7365 CNRS Université de Lorraine Vandœuvre lès Nancy France
UMR CBMN CNRS Université de Bordeaux Bordeaux France
UNICAMP Institute of Biology Campinas Brazil
UNIFESP Departamento de Ciências Farmacêuticas Diadema Brazil
Universidad Autónoma de Madrid Departamento de Biología Molecular Madrid Spain
Universidad Autónoma de Madrid School of Medicine Department of Medicine Madrid Spain
Universidade Federal de Paraná Paraná Brazil
Universidade Federal do Rio de Janeiro Instituto de Microbiologia Rio de Janeiro Brazil
Université Bretagne Loire Oniris INRA IECM Nantes France
Université Catholique de Louvain CHU UCL Namur Hematology Hemostasis Laboratory Yvoir Belgium
Université de Strasbourg Strasbourg France
Université Paris Descartes Sorbonne Paris Cité Paris France
Universiteit Hasselt Diepenbeek Belgium
University Clinic Eppendorf Hamburg Germany
University College London London UK
University Hospital Bonn Bonn Germany
University Hospital Essen University Duisburg Essen Institute for Transfusion Medicine Essen Germany
University Hospital Heidelberg Institute of Pathology Applied Tumor Biology Heidelberg Germany
University Hospital RWTH Aachen Department of Thoracic and Cardiovascular Surgery Aachen Germany
University Hospitals Cleveland Medical Center Department of Medicine Cleveland OH USA
University Medical Center Göttingen Developmental Biochemistry Göttingen Germany
University Medical Center Göttingen Hematology and Oncology Göttingen Germany
University Medical Center Hamburg Eppendorf Department of Neurosurgery Hamburg Germany
University Medical Center Hamburg Eppendorf Institute of Neuropathology Hamburg Germany
University Medical Center Utrecht Department of Nephrology and Hypertension Utrecht The Netherlands
University of Antwerp Centre for Proteomics Antwerp Belgium
University of Auckland Auckland New Zealand
University of Auckland Department of Molecular Medicine and Pathology Auckland New Zealand
University of Auckland Department of Obstetrics and Gynaecology Auckland New Zealand
University of Belgrade Institute for the Application of Nuclear Energy INEP Belgrade Serbia
University of Birmingham Birmingham UK
University of Birmingham Institute of Microbiology and Infection Birmingham UK
University of Brescia Department of Molecular and Translational Medicine Brescia Italy
University of Bristol Bristol UK
University of British Columbia Okanagan Kelowna Canada
University of California Davis Department of Nutrition Davis CA USA
University of California Davis Department of Otolaryngology Davis CA USA
University of California Los Angeles California NanoSystems Institute Los Angeles CA USA
University of California Los Angeles Department of Bioengineering Los Angeles CA USA
University of California Los Angeles Jonsson Comprehensive Cancer Center Los Angeles CA USA
University of California San Diego Department of Neurosurgery La Jolla CA USA
University of California San Diego Department of Pediatrics San Diego CA USA
University of California San Francisco CA USA
University of Campinas Piracicaba Dental School Department of Oral Diagnosis Piracicaba Brazil
University of Cincinnati College of Medicine Cincinnati OH USA
University of Cologne Department of Internal Medicine 1 Cologne Germany
University of Copenhagen Institute of Clinical Medicine Copenhagen Denmark
University of Edinburgh Institute of Immunology and Infection Research Edinburgh UK
University of Helsinki EV Core Facility Helsinki Finland
University of Kentucky College of Medicine Department of Physiology Lexington KY USA
University of L'Aquila Department of Life Health and Environmental Sciences L'Aquila Italy
University of Liège GIGA R PSI Laboratory Liège Belgium
University of Ljubljana Faculty of Medicine Institute of Biochemistry Ljubljana Slovenia
University of Lyon INRA EPHE UMR754 Viral Infections and Comparative Pathology Lyon France
University of Lyon Lyon Sud Faculty of Medicine CarMeN Laboratory Pierre Bénite France
University of Mainz Institute of Developmental Biology and Neurobiology Mainz Germany
University of Malta Department of Pathology Msida Malta
University of Manchester Division of Cancer Sciences Manchester Cancer Research Centre Manchester UK
University of Manchester Manchester UK
University of Maryland Fischell Department of Bioengineering College Park MD USA
University of Massachusetts Medical School RNA Therapeutics Institute Worcester MA USA
University of Michigan Biointerfaces Institute Ann Arbor MI USA
University of Michigan Department of Biomedical Engineering Ann Arbor MI USA
University of Michigan Department of Internal Medicine Hematology Oncology Division Ann Arbor MI USA
University of Michigan Department of Medicine Ann Arbor MI USA
University of Michigan Department of Urology Ann Arbor MI USA
University of Michigan Medical School Ann Arbor MI USA
University of Modena and Reggio Emilia Division of Oncology Modena Italy
University of Notre Dame Department of Biological Sciences Notre Dame IN USA
University of Oslo Institute of Clinical Medicine Oslo Norway
University of Ottawa Ottawa Canada
University of Oulu Faculty of Medicine Cancer and Translational Medicine Research Unit Oulu Finland
University of Oxford Department of Physiology Anatomy and Genetics Oxford UK
University of Padova Department of Comparative Biomedicine and Food Science Padova Italy
University of Padova Department of Women's and Children's Health Padova Italy
University of Palermo Department of Biopathology and Medical Biotechnologies Palermo Italy
University of Perugia Department of Chemistry Biology and Biotechnology Perugia Italy
University of Pisa Centro Dipartimentale di Biologia Cellulare Cardio Respiratoria Pisa Italy
University of Porto Faculty of Pharmacy IBMC I3S Porto Portugal
University of Porto Faculty of Pharmacy Porto Portugal
University of Porto i3S Instituto de Investigação e Inovação em Saúde Porto Portugal
University of Porto ICBAS Instituto de Ciências Biomédicas Abel Salazar Porto Portugal
University of Rochester Rochester NY USA
University of São Paulo Ribeirão Preto Medical School Ribeirão Preto Brazil
University of Science and Culture ACECR Department of Developmental Biology Tehran Iran
University of South Alabama Department of Pharmacology Center for Lung Biology Mobile AL USA
University of Southern California Keck School of Medicine Los Angeles CA USA
University of Southern California Los Angeles CA USA
University of Technology Sydney Discipline of Pharmacy Graduate School of Health Sydney Australia
University of Torino Department of Medical Sciences Torino Italy
University of Torino Department of Molecular Biotechnology and Health Sciences Torino Italy
University of Toronto Department of Anesthesia Toronto Canada
University of Toronto Department of Laboratory Medicine and Pathobiology Toronto Canada
University of Toronto Department of Medical Biophysics Toronto Canada
University of Toronto Department of Medicine Division of Neurology Toronto Canada
University of Tsukuba Tsukuba Japan
University of Virginia Flow Cytometry Core School of Medicine Charlottesville VA USA
University of Würzburg Rudolf Virchow Center Würzburg Germany
Utrecht University University Medical Center Utrecht Department of Pathology Utrecht The Netherlands
Veterans Affairs Medical Center San Francisco CA USA
Vlaamse Instelling voor Technologisch Onderzoek Mol Belgium
Washington University Saint Louis MO USA
Weill Cornell Medicine Department of Medicine New York City NY USA
Weizmann Institute of Science Department of Biomolecular Sciences Rehovot Israel
West Virginia University Department of Microbiology Immunology and Cell Biology Morgantown WV USA
West Virginia University Morgantown WV USA
Xiamen University Department of Chemical Biology Xiamen China
Zobrazit více v PubMed
References, especially those provided to illustrate methods and approaches, are representative only, and are not meant to be a comprehensive review of the literature. Most references were derived from suggestions provided in the MISEV2018 Survey results. Each reference was checked by multiple authors. Citation implies deemed relevance of scientific content and not an endorsement by the authors or ISEV of any particular journal or editorial practice.
Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014;3:26913 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25536934 PubMed PMC
Witwer KW, Soekmadji C, Hill AF, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6(1):1396823 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1396823 PubMed DOI PMC
Stein JM, Luzio JP. Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J. 1991;274 (Pt 2):381–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1848755 PubMed PMC
Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25683921 PubMed
Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009890 PubMed PMC
Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27802845 PubMed PMC
Rojas A.The imperative authentication of cell lines. Antimicrob Agents Chemother. 2017;61(11):e01823–17. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01823-17 PubMed DOI PMC
Reid Y, Storts D, Riss T, et al. Authentication of human cell lines by STR DNA profiling analysis [Internet]. Assay Guidance Manual. 2004. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805434
Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9(1):47 Available from: http://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-9-47 PubMed DOI PMC
Lima LG, Chammas R, Monteiro RQ, et al. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 2009;283(2):168–175. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304383509002420 PubMed
Frey B, Gaipl US. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol. 2011;33(5):497–516. Available from: http://link.springer.com/10.1007/s00281-010-0228-6 PubMed DOI
Roseblade A, Luk F, Ung A, et al. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance. Curr Cancer Drug Targets. 2015;15(3):205–214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25714701 PubMed
Takasugi M.Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018;17(2):e12734. PubMed PMC
Patel DB, Gray KM, Santharam Y, et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med. 2017;2(2):170–179. PubMed PMC
Dang VD, Jella KK, Ragheb RRT, et al. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J. 2017;31(12):5399–5408. Available from: http://www.fasebj.org/doi/10.1096/fj.201700417R PubMed DOI PMC
Klingeborn M, Dismuke WM, Skiba NP, et al. Directional exosome proteomes reflect polarity-specific functions in retinal pigmented epithelium monolayers. Sci Rep. 2017;7(1):4901 Available from: http://www.nature.com/articles/s41598-017-05102-9 PubMed PMC
Mittelbrunn M, Vicente-Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic. 2015;16(4):327–337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25614958 PubMed PMC
van Niel G, Raposo G, Candalh C, et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001;121(2):337–349. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11487543 PubMed
Tauro BJ, Greening DW, Mathias RA, et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013;12(3):587–598. Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021303 PubMed DOI PMC
Yan IK, Shukla N, Borrelli DA, et al. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018;1740:35–41. Available from: http://link.springer.com/10.1007/978-1-4939-7652-2_4 PubMed DOI
Watson DC, Yung BC, Bergamaschi C, et al. Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles. 2018;7(1):1442088 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29535850 PubMed PMC
Lowry MC, O’Driscoll L. Can hi-jacking hypoxia inhibit extracellular vesicles in cancer? Drug Discov Today. 2018;23(6):1267–1273. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644617303252 PubMed
Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213(4Suppl): S173–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002937815007176 PubMed
de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1(1):18396 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.18396 PubMed DOI PMC
Stratton D, Moore C, Antwi-Baffour S, et al. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9. Biochem Biophys Res Commun. 2015;460(3):589–595. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X15005203 PubMed
Dozio V, Sanchez J-C. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles. 2017;6(1):1302705 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1302705 PubMed DOI PMC
Taylor J, Jaiswal R, Bebawy M. Calcium-calpain dependent pathways regulate vesiculation in malignant breast cells. Curr Cancer Drug Targets. 2017;17(5):486–494. Available from: http://www.eurekaselect.com/node/146745/article PubMed
Mostefai HA, Agouni A, Carusio N, et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol. 2008;180(7):5028–5035. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354228 PubMed
Agouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007;21(11):2735–2741. Available from: http://www.fasebj.org/doi/10.1096/fj.07-8079com PubMed DOI
Soekmadji C, Riches JD, Russell PJ, et al. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget. 2017;8(32):52237–52255. Available from: http://www.oncotarget.com/fulltext/11111 PubMed PMC
Saari H, Lázaro-Ibáñez E, Viitala T, et al. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(PtB):727–737. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365915301322 PubMed
Lázaro-Ibáñez E, Neuvonen M, Takatalo M, et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles. 2017;6(1):1354645 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1354645 PubMed DOI PMC
Chernov VM, Mouzykantov AA, Baranova NB, et al. Extracellular membrane vesicles secreted by mycoplasma acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics. 2014;110:117–128. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1874391914003819 PubMed
Corral-Vázquez C, Aguilar-quesada R, Catalina P, et al. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017;18(2):271–280. Available from: http://link.springer.com/10.1007/s10561-017-9617-6 PubMed DOI PMC
Yang C, Chalasani G, Ng Y-H, et al. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012;7(4):e36138 Available from: http://dx.plos.org/10.1371/journal.pone.0036138 PubMed DOI PMC
Quah BJC, O’Neill HC. Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol. 2007;82(5):1070–1082. PubMed
Mathivanan S, Lim JW, Tauro BJ, et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010;9(2):197–208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19837982 PubMed PMC
Burger D, Turner M, Xiao F, et al. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017;60(9):1791–1800. Available from: http://link.springer.com/10.1007/s00125-017-4331-2 PubMed DOI
Thom SR, Bhopale VM, Yu K, et al. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J Biol Chem. 2017;292(44):18312–18324. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M117.802629 PubMed DOI PMC
Rice GE, Scholz-Romero K, Sweeney E, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015;100(10):E1280–8. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2015-2270 PubMed DOI
Németh A, Orgovan N, Sódar BW, et al. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep. 2017;7(1):8202 Available from: http://www.nature.com/articles/s41598-017-08392-1 PubMed PMC
Zhou X, Zhang W, Yao Q, et al. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol. 2017;312(6):F963–70. Available from: http://www.physiology.org/doi/10.1152/ajprenal.00078.2017 PubMed DOI PMC
Pachler K, Lener T, Streif D, et al. A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy. 2017;19(4):458–472. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1465324917300038 PubMed
Saury C, Lardenois A, Schleder C, et al. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches. Stem Cell Res Ther. 2018;9(1):128 Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0852-y PubMed DOI PMC
Li J, Lee Y, Johansson HJ, et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles. 2015;4(1):26883 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26883 PubMed DOI PMC
Beninson LA, Fleshner M. Exosomes in fetal bovine serum dampen primary macrophage IL-1β response to lipopolysaccharide (LPS) challenge. Immunol Lett. 2015;163(2):187–192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25455591 PubMed
Eitan E, Zhang S, Witwer KW, et al. Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015;4:26373 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25819213 PubMed PMC
Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids In: Current protocols in cell biology. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2006. p. Unit 3.22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18228490 PubMed
van Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121(19):3997–4006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23532734 PubMed
Kornilov R, Puhka M, Mannerström B, et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018;7(1):1422674 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1422674 PubMed DOI PMC
Wei Z, Batagov AO, Carter DRF, et al. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci Rep. 2016;6:31175 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27503761 PubMed PMC
Shelke GV, Lässer C, Gho YS, et al. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014;3:24783 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317276 PubMed PMC
Tosar JP, Cayota A, Eitan E, et al. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. 2017;6(1):1272832 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28326168 PubMed PMC
Kaur S, Singh SP, Elkahloun AG, et al. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014;37:49–59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000924 PubMed PMC
Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research: an ISEV position paper. J Extracell Vesicles. 2013;2:20360. PubMed PMC
Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzàs EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA- An ISEV Position Paper. J Extracell Vesicles. 2017;6:1286095. PubMed PMC
Bæk R, Søndergaard EKL, Varming K, et al. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Meth. 2016;438:11–20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175916301624 PubMed
Barteneva NS, Fasler-Kan E, Bernimoulin M, et al. Circulating microparticles: square the circle. BMC Cell Biol. 2013;14(1):23 Available from: http://bmccellbiol.biomedcentral.com/articles/10.1186/1471-2121-14-23 PubMed DOI PMC
Mullier F, Bailly N, Chatelain C, et al. Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23410207 PubMed
Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012;10(3):437–446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22212198 PubMed
Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–1648. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.309417 PubMed DOI
Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011;105(3):396–408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21174005 PubMed
Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015;4:29260. PubMed PMC
Robbins PD.Extracellular vesicles and aging. Stem Cell Investig. 2017;4(12):98 Available from: http://sci.amegroups.com/article/view/17758/18069 PubMed PMC
Danielson KM, Estanislau J, Tigges J, et al. Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One. 2016;11(1):e0144678 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26745887 PubMed PMC
Fendl B, Weiss R, Fischer MB, et al. Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem Biophys Res Commun. 2016;478(1):168–173. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X16311950 PubMed
Wisgrill L, Lamm C, Hartmann J, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A. 2016;89(7):663–672. PubMed
György B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014;133(2):285–292. Available from: http://linkinghub.elsevier.com/retrieve/pii/S004938481300546X PubMed
Mitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep. 2016;6(1):32651 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27623086 PubMed PMC
Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23762257 PubMed PMC
Muller L, Hong C-S, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma. J Immunol Meth. 2014;411:55–65. PubMed PMC
Ayers L, Kohler M, Harrison P, et al. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011;127(4):370–377. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21257195 PubMed
Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–3799. PubMed
Mincheva-Nilsson L, Baranov V, Nagaeva O, et al. Isolation and characterization of exosomes from cultures of tissue explants and cell lines. Curr Protoc Immunol. 2016;115:14.42.1–14.42.21. PubMed
Lunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A. 2017;114(29):E5930–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1705206114 PubMed DOI PMC
Gupta AK, Rusterholz C, Huppertz B, et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta. 2005;26(1):59–66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0143400404001080 PubMed
Holder BS, Tower CL, Forbes K, et al. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology. 2012;136(2):184–191. PubMed PMC
Perez-Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–43115. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M112.404467 PubMed DOI PMC
Vella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017;6(1):1348885 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28804598 PubMed PMC
Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58(11):2498–2505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19675137 PubMed PMC
Wang GJ, Liu Y, Qin A, et al. Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008;181(8):5242–5248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18832678 PubMed PMC
Kranendonk MEG, Visseren FLJ, van Balkom BWM, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 2014;22(5):1296–1308. PubMed
Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):100–106. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.311326 PubMed DOI PMC
Leroyer AS, Ebrahimian TG, Cochain C, et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 2009;119(21):2808–2817. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.108.816710 PubMed DOI
Michaelis ML, Jiang L, Michaelis EK. Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes In: Methods in molecular biology. Clifton, NJ: 2017. p. 107–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27943187 PubMed
Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69(8):1471–1476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16501490 PubMed PMC
Vila-Liante V, Sánchez-López V, Martínez-Sales V, et al. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clin Chem Lab Med. 2016;54(11):1759–1767. Available from: https://www.degruyter.com/view/j/cclm.2016.54.issue-11/cclm-2016-0036/cclm-2016-0036.xml PubMed
Kriebardis AG, Antonelou MH, Georgatzakou HT, et al. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects. Blood Transfus. 2016;14(2):228–237. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27136430 PubMed PMC
Lőrincz ÁM, Timár CI, Marosvári KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014;3(1):25465 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.25465 PubMed DOI PMC
Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6(1):36162 Available from: http://www.nature.com/articles/srep36162 PubMed PMC
Maroto R, Zhao Y, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017;6(1):1359478 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359478 PubMed DOI PMC
Jin Y, Chen K, Wang Z, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016;16(1):753 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27662833 PubMed PMC
Jeyaram A, Jay SM.. Preservation and storage stability of extracellular vesicles for therapeutic applications. Aaps J. 2017;20(1):1 Available from: http://link.springer.com/10.1208/s12248-017-0160-y PubMed DOI PMC
Trummer A, De Rop C, Tiede A, et al. Recovery and composition of microparticles after snap-freezing depends on thawing temperature. Blood Coagul Fibrinolysis. 2009;20(1):52–56. Available from: https://insights.ovid.com/crossref?an=00001721-200901000-00010 PubMed
Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4698466&tool=pmcentrez&rendertype=abstract PubMed PMC
Reiner AT, Witwer KW, Van Balkom BWM, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8). PubMed PMC
Clayton A, Buschmann D, Byrd JB, et al. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018;7(1):1473707 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1473707 PubMed DOI PMC
Montis C, Zendrini A, Valle F, et al. Size distribution of extracellular vesicles by optical correlation techniques. Colloids Surf B Biointerfaces. 2017;158:331–338. Available from: http://linkinghub.elsevier.com/retrieve/pii/S092777651730406X PubMed
Morales-Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017;7(1):1878 Available from: http://www.nature.com/articles/s41598-017-01731-2 PubMed PMC
Corso G, Mäger I, Lee Y, et al. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep. 2017;7(1):11561 Available from: http://www.nature.com/articles/s41598-017-10646-x PubMed PMC
Welton JL, Webber JP, Botos L-A, et al. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015;4:27269 Available from: http://www.tandfonline.com/doi/full/10.3402/jev.v4.27269 PubMed DOI PMC
Vergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep. 2017;7(1):2704 Available from: http://www.nature.com/articles/s41598-017-02599-y PubMed PMC
Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.27031 PubMed DOI PMC
Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76 Available from: http://stemcellres.com/content/5/3/76 PubMed PMC
Jong AY, Wu C-H, Li J, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6(1):1294368 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1294368 PubMed DOI PMC
Heinemann ML, Ilmer M, Silva LP, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014;1371:125–135. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314015908 PubMed
Heinemann ML, Vykoukal J. Sequential filtration: A gentle method for the isolation of functional extracellular vesicles In: Methods in molecular biology. Clifton, NJ: 2017. p. 33–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28828646 PubMed
Wei Z, Batagov AO, Schinelli S, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017;8(1):1145 Available from: http://www.nature.com/articles/s41467-017-01196-x PubMed PMC
Lamparski HG, Metha-Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Meth. 2002;270(2):211–226. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12379326 PubMed
Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15740633 PubMed PMC
Roda B, Zattoni A, Reschiglian P, et al. Field-flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta. 2009;635(2):132–143. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003267009000865 PubMed
Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29459780 PubMed PMC
Yang JS, Lee JC, Byeon SK, et al. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89(4):2488–2496. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.6b04634 PubMed DOI
Agarwal K, Saji M, Lazaroff SM, et al. Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir. 2015;31(19):5440–5448. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25915504 PubMed PMC
Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017;11(7):6968–6976. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b02277 PubMed DOI
Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano. 2017;11(7):6641–6651. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b00549 PubMed DOI
Lewis JM, Vyas AD, Qiu Y, et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018;12(4):3311–3320. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b08199 PubMed DOI
Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano. 2015;9(3):2321–2327. Available from: http://pubs.acs.org/doi/10.1021/nn506538f PubMed DOI PMC
Satzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. J Chromatogr A. 2014;1349:44–49. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314006979 PubMed PMC
Mol EA, Goumans M-J, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017;13(6):2061–2065. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963417300540 PubMed
de Menezes-Neto A, Sáez MJF, Lozano-Ramos I, et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015;4:27378 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26154623 PubMed PMC
Kosanović M, Milutinović B, Goč S, et al. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques. 2017;63(2):65–71. Available from: https://www.future-science.com/doi/10.2144/000114575 PubMed DOI
Heath N, Grant L, De Oliveira TM, et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep. 2018;8(1):5730 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29636530 PubMed PMC
Kim D, Nishida H, An SY, et al. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci. 2016;113(1):170–175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26699510 PubMed PMC
Merchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. PROTEOMICS - Clin Appl. 2010;4(1):84–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21137018 PubMed
Higginbotham JN, Zhang Q, Jeppesen DK, et al. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell Vesicles. 2016;5:29254 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27345057 PubMed PMC
Groot Kormelink T, Arkesteijn GJA, Nauwelaers FA, et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A. 2016;89(2):135–147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25688721 PubMed
Atkin-Smith GK, Paone S, Zanker DJ, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 Available from: http://www.nature.com/articles/srep39846 PubMed PMC
Minciacchi VR, Spinelli C, Reis-Sobreiro M, et al. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017;77(9):2306–2317. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-16-2942 PubMed DOI
Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016;11(11):936–940. Available from: http://www.nature.com/articles/nnano.2016.134 PubMed
Echevarria J, Royo F, Pazos R, et al. Microarray-based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples. Chembiochem. 2014;15(11):1621–1626. PubMed
Ghosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One. 2014;9(10):e110443 Available from: http://dx.plos.org/10.1371/journal.pone.0110443 PubMed DOI PMC
Balaj L, Atai NA, Chen W, et al. Heparin affinity purification of extracellular vesicles. Sci Rep. 2015;5:10266 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25988257 PubMed PMC
Fang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform. Anal Chem. 2018;90(4):2787–2795. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b04861 PubMed DOI PMC
Sharma P, Ludwig S, Muller L, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018;7(1):1435138 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1435138 PubMed DOI PMC
Brett SI, Lucien F, Guo C, et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate. 2017;77(13):1335–1343. PubMed
Nakai W, Yoshida T, Diez D, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6(1):33935 Available from: http://www.nature.com/articles/srep33935 PubMed PMC
Welton JL, Loveless S, Stone T, et al. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles. 2017;6(1):1369805 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1369805 PubMed DOI PMC
Lai RC, Tan SS, Yeo RWY, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016;5(1):29828 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.29828 PubMed DOI PMC
Gallart-Palau X, Serra A, Wong ASW, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015;5(1):14664 Available from: http://www.nature.com/articles/srep14664 PubMed PMC
Shin H, Han C, Labuz JM, et al. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep. 2015;5(1):13103 Available from: http://www.nature.com/articles/srep13103 PubMed PMC
Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates epstein-barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol. 2017;91(5):e02251–16. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.02251-16 PubMed DOI PMC
Musante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014;4(1):7532 Available from: http://www.nature.com/articles/srep07532 PubMed PMC
Sedykh SE, Purvinish LV, Monogarov AS, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open. 2017;4:61–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214008517300056 PubMed PMC
Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–3577. PubMed PMC
Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–10589. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1709210114 PubMed DOI PMC
Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010/02/04 2010;10(4):505–511. PubMed PMC
Liang L-G, Kong M-Q, Zhou S, et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017;7:46224 Available from: http://www.nature.com/articles/srep46224 PubMed PMC
Shin S, Han D, Park MC, et al. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep. 2017;7(1):9907 Available from: http://www.nature.com/articles/s41598-017-08826-w PubMed PMC
Yasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3(12):e1701133 Available from: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701133 PubMed DOI PMC
Zhao Z, Yang Y, Zeng Y, et al. A microfluidic exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16(3):489–496. PubMed PMC
Wang Z, Wu H, Fine D, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13(15):2879–2882. PubMed PMC
Reátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun. 2018;9(1):175 Available from: http://www.nature.com/articles/s41467-017-02261-1 PubMed PMC
Böing AN, van der Pol E, Grootemaat AE, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3:23430 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.23430 PubMed DOI PMC
Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med. 2018;16(1):1 Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1374-6 PubMed DOI PMC
Enderle D, Spiel A, Coticchia CM, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 2015;10(8):e0136133 Available from: http://dx.plos.org/10.1371/journal.pone.0136133 PubMed DOI PMC
Jeppesen DK, Hvam ML, Primdahl-Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25396408 PubMed PMC
Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5(1):17319 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26616523 PubMed PMC
Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–7710. Available from: http://pubs.acs.org/doi/10.1021/nn402232g PubMed DOI
Li K, Wong DK, Hong KY, et al. Cushioned-density gradient ultracentrifugation (C-DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol. 2018;1740:69–83. Available from: http://link.springer.com/10.1007/978-1-4939-7652-2_7 PubMed DOI PMC
Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28245209 PubMed
Mitchell JP, Court J, Mason MD, et al. Increased exosome production from tumour cell cultures using the integra celline culture system. J Immunol Meth. 2008;335(1–2):98–105. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175908000926 PubMed
Ortiz A, Sanchez-Niño MD, Sanz AB. The meaning of urinary creatinine concentration. Kidney Int. 2011;79(7):791 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0085253815548849 PubMed
Cointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost. 2017;15(1):187–193. PubMed PMC
Krishnan SR, Luk F, Brown RD, et al. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016;18(1):25–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558615001566 PubMed PMC
McVey MJ, Spring CM, Semple JW, et al. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. Am J Physiol Lung Cell Mol Physiol. 2016;310(9):L802–14. Available from: http://www.physiology.org/doi/10.1152/ajplung.00369.2015 PubMed DOI
Atkin-Smith GK, Tixeira R, Paone S, et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun. 2015;6:7439 Available from: http://www.nature.com/doifinder/10.1038/ncomms8439 PubMed DOI PMC
van der Vlist EJ, Nolte-’T Hoen EN, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012/06/23 2012;7(7):1311–1326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22722367 PubMed
van der Pol E, van Gemert MJ, Sturk A, et al. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012/03/08 2012;10(5):919–930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22394434 PubMed
Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4(1):25530 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.25530 PubMed DOI PMC
Tian Y, Ma L, Gong M, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano. 2018;12(1):671–680. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07782 PubMed DOI
McVey MJ, Spring CM, Kuebler WM. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter. J Extracell Vesicles. 2018;7(1):1454776 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1454776 PubMed DOI PMC
Nolan JP, Stoner SA. A trigger channel threshold artifact in nanoparticle analysis. Cytometry A. 2013;83(3):301–305. PubMed PMC
Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12(5):614–627. PubMed
Arraud N, Gounou C, Linares R, et al. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–247. PubMed PMC
Maas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015;200:87–96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365914008384 PubMed PMC
de Vrij J, Maas SL, van Nispen M, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond). 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23384702 PubMed
Obeid S, Ceroi A, Mourey G, et al. Development of a NanoBioAnalytical platform for on-chip qualification and quantification of platelet-derived microparticles. Biosens Bioelectron. 2017;93:250–259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566316308569 PubMed
Libregts SFWM, Arkesteijn GJA, Németh A, et al. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J Thromb Haemost. 2018;16(7):1423–1436. PubMed
van der Pol E, Hoekstra AG, Sturk A, et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–2607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20880256 PubMed
Carnell-Morris P, Tannetta D, Siupa A, et al. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol. 2017;1660:153–173. Available from: http://link.springer.com/10.1007/978-1-4939-7253-1_13 PubMed DOI
Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles. 2017;6(1):1388731 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29184625 PubMed PMC
van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–1192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24818656 PubMed
Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780–788. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21601655 PubMed PMC
Gardiner C, Ferreira YJ, Dragovic RA, et al. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2:19671 Available from: PubMed PMC
Osteikoetxea X, Balogh A, Szabó-Taylor K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One. 2015;10(3):e0121184 Available from: http://dx.plos.org/10.1371/journal.pone.0121184 PubMed DOI PMC
Benmoussa A, Ly S, Shan ST, et al. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J Extracell Vesicles. 2017;6(1):1401897 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1401897 PubMed DOI PMC
Mihály J, Deák R, Szigyártó IC, et al. Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations. Biochim Biophys Acta. 2017;1859(3):459–466. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000527361630390X PubMed
Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21609964 PubMed PMC
Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21383194 PubMed PMC
Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–433. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21423178 PubMed PMC
Duijvesz D, Versluis CYL, van der Fels CAM, et al. Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int J Cancer. 2015;137(12):2869–2878. PubMed
Suárez H, Gámez-Valero A, Reyes R, et al. A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles. Sci Rep. 2017;7(1):11271 Available from: http://www.nature.com/articles/s41598-017-11249-2 PubMed PMC
Koliha N, Wiencek Y, Heider U, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5:29975 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26901056 PubMed PMC
Xia Y, Liu M, Wang L, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0956566317300635 PubMed
Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017;1(4):0021 Available from: http://www.nature.com/articles/s41551-016-0021 PubMed PMC
Rupert DLM, Lässer C, Eldh M, et al. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014;86(12):5929–5936. Available from: http://pubs.acs.org/doi/10.1021/ac500931f PubMed DOI
Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2:19861 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009896 PubMed PMC
Maiolo D, Paolini L, Di Noto G, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015;87(8):4168–4176. Available from: http://pubs.acs.org/doi/abs/10.1021/ac504861d PubMed DOI
Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. PubMed
Cvjetkovic A, Lotvall J, Lasser C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3:23111 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24678386 PubMed PMC
Valkonen S, van der Pol E, Böing A, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017;98:4–16. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0928098716303578 PubMed
Minciacchi VR, You S, Spinelli C, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6(13):11327–11341. Available from: http://www.oncotarget.com/fulltext/3598 PubMed PMC
Keerthikumar S, Gangoda L, Liem M, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015;6(17):15375–15396. Available from: http://www.oncotarget.com/fulltext/3801 PubMed PMC
Haraszti RA, Didiot M-C, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.32570 PubMed DOI PMC
Clark DJ, Fondrie WE, Liao Z, et al. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem. 2015;87(20):10462–10469. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b02586 PubMed DOI PMC
Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017;6(1):1305677 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677 PubMed DOI PMC
Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci. 2016;113(8):E968–77. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1521230113 PubMed DOI PMC
Xu R, Greening DW, Rai A, et al. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods. 2015;87:11–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1046202315001541 PubMed
Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6(1):22519 Available from: http://www.nature.com/articles/srep22519 PubMed PMC
Meehan B, Rak J, Di Vizio D. Oncosomes - large and small: what are they, where they came from? J Extracell Vesicles. 2016;5:33109 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27680302 PubMed PMC
Sódar BW, Kittel Á, Pálóczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:24316 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087061 PubMed PMC
Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75(15):2873–2886. Available from: http://link.springer.com/10.1007/s00018-018-2773-4 PubMed DOI PMC
Østergaard O, Nielsen CT, Iversen LV, et al. Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res. 2012;11(4):2154–2163. Available from: http://pubs.acs.org/doi/10.1021/pr200901p PubMed DOI
Musante L, Saraswat M, Duriez E, et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One. 2012;7(7):e37279 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22808001 PubMed PMC
Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317274 PubMed PMC
McKenzie AJ, Hoshino D, Hong NH, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15(5):978–987. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27117408 PubMed PMC
Melo SAA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–721. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25446899 PubMed PMC
Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014;5(1):5488 Available from: http://www.nature.com/articles/ncomms6488 PubMed PMC
Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. Embo J. 2017;36(20):3012–3028. Available from: http://emboj.embopress.org/lookup/doi/10.15252/embj.201696003 PubMed DOI PMC
Jorgensen MM, Baek R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862471 PubMed PMC
Gool EL, Stojanovic I, Schasfoort RBM, et al. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin Chem. 2017;63(10):1633–1641. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2016.271049 PubMed DOI
Zhu L, Wang K, Cui J, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–8864. Available from: http://pubs.acs.org/doi/10.1021/ac5023056 PubMed DOI PMC
Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–1950. Available from: http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00534 PubMed DOI PMC
Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0163782716300492 PubMed
Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–120. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1388198113002199 PubMed
Nielsen MH, Beck-Nielsen H, Andersen MN, et al. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J Extracell Vesicles. 2014;3(1):20795 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.20795 PubMed DOI PMC
de Gassart A, Geminard C, Fevrier B, et al. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102(13):4336–4344. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12881314 PubMed
Gualerzi A, Niada S, Giannasi C, et al. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep. 2017;7(1):9820 Available from: http://www.nature.com/articles/s41598-017-10448-1 PubMed PMC
Neri T, Lombardi S, Faìta F, et al. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells. Pulm Pharmacol Ther. 2016;39:1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27237042 PubMed
de Rond L, van der Pol E, Hau CM, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018;64(4):680–689. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2017.278978 PubMed DOI
Ullal AJ, Pisetsky DS, Reich CF. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010;77(3):294–301. PubMed PMC
Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017;114(43):E9066–75. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1704862114 PubMed DOI PMC
Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2(1):20677 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24223256 PubMed PMC
Nolte-’t Hoen EN, Buermans HP, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821563 PubMed PMC
Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980 [2013/12/21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24356509 PubMed PMC
Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–7304. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku347 PubMed DOI PMC
Tosar JP, Gambaro F, Sanguinetti J, et al. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015;43(11):5601–5616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25940616 PubMed PMC
van Balkom BWM, Eisele AS, Pegtel DM, et al. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015;4(1):26760 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26760 PubMed DOI PMC
Li K, Rodosthenous RS, Kashanchi F, et al. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA strategic workshop. JCI Insight. 2018;3(7). Available from: https://insight.jci.org/articles/view/98942 PubMed PMC
Chen M, Xu R, Ji H, et al. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep. 2016;6(1):38397 Available from: http://www.nature.com/articles/srep38397 PubMed PMC
Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6(May):7029. PubMed PMC
Ter-Ovanesyan D, Kowal EJK, Regev A, et al. Imaging of isolated extracellular vesicles using fluorescence microscopy. Methods Mol Biol. 2017;1660:233–241. Available from: http://link.springer.com/10.1007/978-1-4939-7253-1_19 PubMed DOI
Wu Y, Deng W, Klinke DJ. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140(19):6631–6642. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26332016 PubMed PMC
Linares R, Tan S, Gounou C, et al. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015;4(0):29509 Available from: http://www.journalofextracellularvesicles.net/index.php/jev/article/view/29509 PubMed PMC
Höög JL, Lötvall J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles. 2015;4:28680 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26563734 PubMed PMC
Sharma S, Rasool HI, Palanisamy V, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010;4(4):1921–1926. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20218655 PubMed PMC
Treps L, Perret R, Edmond S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6(1):1359479 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359479 PubMed DOI PMC
Chen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope. ACS Appl Mater Interfaces. 2016;8(39):25825–25833. Available from: http://pubs.acs.org/doi/10.1021/acsami.6b09442 PubMed DOI
Mehdiani A, Maier A, Pinto A, et al. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015;95:50974 Available from: http://www.jove.com/video/50974/an-innovative-method-for-exosome-quantification-and-size-measurement PubMed PMC
Tatischeff I, Larquet E, Falcón-Pérez JM, et al. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012;1(1):19179 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179 PubMed DOI PMC
Carney RP, Hazari S, Colquhoun M, et al. Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations. Anal Chem. 2017;89(10):5357–5363. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b00017 PubMed DOI PMC
Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4(1):28533 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.28533 PubMed DOI PMC
Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytom Part A. 2016;89(2):196–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26484737 PubMed
Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017;28(3):256–262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28277059 PubMed PMC
Sitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem. 2015;87(18):9225–9233. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b01636 PubMed DOI
Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol. 2016;213(2):173–184. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27114500 PubMed PMC
Wyss R, Grasso L, Wolf C, et al. Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem. 2014;86(15):7229–7233. Available from: http://pubs.acs.org/doi/10.1021/ac501801m PubMed DOI
Baietti MF, Zhang Z, Mortier E, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–685. PubMed
Erdbrügger U, Rudy CK, Etter ME, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014;85(9):756–770. PubMed
Headland SE, Jones HR, Asv D, et al. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014;4(1):5237 Available from: http://www.nature.com/articles/srep05237 PubMed PMC
Lee K, Fraser K, Ghaddar B, et al. Multiplexed profiling of single extracellular vesicles. ACS Nano. 2018;12(1):494–503. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07060 PubMed DOI PMC
Daaboul GG, Lopez CA, Yurt A, et al. Label-free optical biosensors for virus detection and characterization. IEEE J Sel Top Quantum Electron. 2012;18(4):1422–1433.
Daaboul GG, Freedman DS, Scherr SM, et al. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS One. 2017;12(6):e0179728. PubMed PMC
van der Pol E, Sturk A, van Leeuwen T, et al., ISTH-SSC-VB Working group . Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018;16(6):1236–1245. PubMed
Cvjetkovic A, Jang SC, Konečná B, et al. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep. 2016;6(1):36338 Available from: http://www.nature.com/articles/srep36338 PubMed PMC
Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–2448. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2007-03-078709 PubMed DOI
Sharma A, Mariappan M, Appathurai S, et al. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol. 2010;619:339–363. Available from: http://link.springer.com/10.1007/978-1-60327-412-8_20 PubMed DOI PMC
Sung BH, Weaver AM. Exosome secretion promotes chemotaxis of cancer cells. Cell Adh Migr. 2017;11(2):187–195. Available from: https://www.tandfonline.com/doi/full/10.1080/19336918.2016.1273307 PubMed DOI PMC
Osteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015;13(38):9775–9782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26264754 PubMed
Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–34222. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M109.041152 PubMed DOI PMC
Franzen CA, Simms PE, Van Huis AF, et al. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int. 2014;2014:619829 Available from: http://www.hindawi.com/journals/bmri/2014/619829/ PubMed PMC
Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43):17380–17385. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110 PubMed DOI PMC
Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24641 PubMed DOI PMC
Wahlgren J, Karlson TDL, Glader P, et al. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723 Available from: http://dx.plos.org/10.1371/journal.pone.0049723 PubMed DOI PMC
Szabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci. 2014;71(20):4055–4067. Available from: http://link.springer.com/10.1007/s00018-014-1618-z PubMed DOI PMC
Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641 Available from: http://www.nature.com/articles/srep33641 PubMed PMC
Paolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016;6(1):23550 Available from: http://www.nature.com/articles/srep23550 PubMed PMC
Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041717 PubMed
Benedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep. 2017;7(1):15297 Available from: http://www.nature.com/articles/s41598-017-15717-7 PubMed PMC
Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–1247. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124 PubMed DOI
Figuera-Losada M, Stathis M, Dorskind JM, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One. 2015;10(5):e0124481 Available from: http://dx.plos.org/10.1371/journal.pone.0124481 PubMed DOI PMC
Dinkins MB, Enasko J, Hernandez C, et al. Neutral sphingomyelinase-2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016;36(33):8653–8667. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1429-16.2016 PubMed DOI PMC
Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–1316. PubMed PMC
Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588 Available from: http://www.nature.com/doifinder/10.1038/ncomms13588 PubMed DOI PMC
Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002;115(Pt 12):2505–2515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12045221 PubMed
Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):13–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19966785 PubMed
Hsu C, Morohashi Y, Yoshimura S-I, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223–232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404108 PubMed PMC
Hyenne V, Apaydin A, Rodriguez D, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211(1):27–37. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201504136 PubMed DOI PMC
Gross JC, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):1036–1045. Available from: http://www.nature.com/articles/ncb2574 PubMed
Imjeti NS, Menck K, Egea-Jimenez AL, et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc Natl Acad Sci U S A. 2017;114(47):12495–12500. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1713433114 PubMed DOI PMC
Sinha S, Hoshino D, Hong NH, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214(2):197–213. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201601025 PubMed DOI PMC
Jackson CE, Scruggs BS, Schaffer JE, et al. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017;113(6):1342–1352. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006349517305714 PubMed PMC
Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457–471. Available from: http://www.jci.org/articles/view/40483 PubMed PMC
Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–766. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22031862 PubMed PMC
Savina A, Furlán M, Vidal M, et al. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278(22):20083–20090. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M301642200 PubMed DOI
Minakaki G, Menges S, Kittel A, et al. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy. 2018;14(1):98–119. Available from: https://www.tandfonline.com/doi/full/10.1080/15548627.2017.1395992 PubMed DOI PMC
Edgar JR, Manna PT, Nishimura S, et al. Tetherin is an exosomal tether. Elife. 2016;5:17180 Available from: https://elifesciences.org/articles/17180 PubMed PMC
Atai NA, Balaj L, van Veen H, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24002181 PubMed PMC
Wang Q, Lu Q. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat Commun. 2017;8(1):709 Available from: http://www.nature.com/articles/s41467-017-00767-2 PubMed PMC
Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109(11):4146–4151. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200448109 PubMed DOI PMC
Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–1885. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982209017722 PubMed PMC
Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011;31(8):1898–1907. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.110.222703 PubMed DOI
Gao C, Li R, Liu Y, et al. Rho-kinase-dependent F-actin rearrangement is involved in the release of endothelial microparticles during IFN-α-induced endothelial cell apoptosis. J Trauma Acute Care Surg. 2012;73(5):1152–1160. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154-201211000-00017 PubMed
Yu X, Xu J, Liu W, et al. Bubbles induce endothelial microparticle formation via a calcium-dependent pathway involving flippase inactivation and rho kinase activation. Cell Physiol Biochem. 2018;46(3):965–974. Available from: https://www.karger.com/Article/FullText/488825 PubMed
Di Vizio D, Kim J, Hager MH, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009;69(13):5601–5609. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-08-3860 PubMed DOI PMC
Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015;13(10):605–619. Available from: http://www.nature.com/articles/nrmicro3525 PubMed PMC
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–289. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25288114 PubMed
Romancino DP, Paterniti G, Campos Y, et al. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 2013;587(9):1379–1384. PubMed PMC
Booth AM, Fang Y, Fallon JK, et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172(6):923–935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533950 PubMed PMC
Hoang TQ, Rampon C, Freyssinet J-M, et al. A method to assess the migration properties of cell-derived microparticles within a living tissue. Biochim Biophys Acta. 2011;1810(9):863–866. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416511001061 PubMed
Menck K, Sönmezer C, Worst TS, et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles. 2017;6(1):1378056 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1378056 PubMed DOI PMC
Bobrie A, Colombo M, Krumeich S, et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012;1:18297. PubMed PMC
Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–891. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22635005 PubMed PMC
Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009897 PubMed PMC
Kim D-K, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31(6):933–939. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388151 PubMed PMC
Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450. PubMed PMC
Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19810033 PubMed
Subramanian SL, Kitchen RR, Alexander R, et al. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and linked data technologies. J Extracell Vesicles. 2015;4:27497 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26320941 PubMed PMC
miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery
Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid
Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration
Protein cargo in extracellular vesicles as the key mediator in the progression of cancer
Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes
Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer
Modified activities of macrophages' deubiquitinating enzymes after Francisella infection
Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia
Cell-Taxi: Mesenchymal Cells Carry and Transport Clusters of Cancer Cells