Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines

. 2018 ; 7 (1) : 1535750. [epub] 20181123

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30637094

Grantová podpora
R01 CA204621 NCI NIH HHS - United States
P01 CA069246 NCI NIH HHS - United States
R01 GM117916 NIGMS NIH HHS - United States
R01 DA047807 NIDA NIH HHS - United States
P30 DK058404 NIDDK NIH HHS - United States
U19 CA179514 NCI NIH HHS - United States
P30 CA008748 NCI NIH HHS - United States
UL1 TR001860 NCATS NIH HHS - United States
R56 AG057430 NIA NIH HHS - United States
R01 CA224769 NCI NIH HHS - United States
U01 CA230697 NCI NIH HHS - United States
T32 AG052375 NIA NIH HHS - United States
BB/E002080/1 Biotechnology and Biological Sciences Research Council - United Kingdom
T32 OD011089 NIH HHS - United States
KL2 TR001859 NCATS NIH HHS - United States
U01 HL126499 NHLBI NIH HHS - United States
R01 CA218526 NCI NIH HHS - United States
19076 Cancer Research UK - United Kingdom
P01 CA140043 NCI NIH HHS - United States
T32 HL086350 NHLBI NIH HHS - United States
MR/R023166/1 Medical Research Council - United Kingdom
R01 CA193473 NCI NIH HHS - United States
R21 MH118164 NIMH NIH HHS - United States
R33 MH118164 NIMH NIH HHS - United States
R01 MH113645 NIMH NIH HHS - United States
R01 DA040385 NIDA NIH HHS - United States
R01 DK111378 NIDDK NIH HHS - United States

The last decade has seen a sharp increase in the number of scientific publications describing physiological and pathological functions of extracellular vesicles (EVs), a collective term covering various subtypes of cell-released, membranous structures, called exosomes, microvesicles, microparticles, ectosomes, oncosomes, apoptotic bodies, and many other names. However, specific issues arise when working with these entities, whose size and amount often make them difficult to obtain as relatively pure preparations, and to characterize properly. The International Society for Extracellular Vesicles (ISEV) proposed Minimal Information for Studies of Extracellular Vesicles ("MISEV") guidelines for the field in 2014. We now update these "MISEV2014" guidelines based on evolution of the collective knowledge in the last four years. An important point to consider is that ascribing a specific function to EVs in general, or to subtypes of EVs, requires reporting of specific information beyond mere description of function in a crude, potentially contaminated, and heterogeneous preparation. For example, claims that exosomes are endowed with exquisite and specific activities remain difficult to support experimentally, given our still limited knowledge of their specific molecular machineries of biogenesis and release, as compared with other biophysically similar EVs. The MISEV2018 guidelines include tables and outlines of suggested protocols and steps to follow to document specific EV-associated functional activities. Finally, a checklist is provided with summaries of key points.

A C Camargo Cancer Center São Paulo Brazil

Aalborg University Clinical Institute Aalborg Denmark

Aalborg University Hospital Department of Clinical Biochemistry Aalborg Denmark

Aalborg University Hospital Department of Clinical Immunology Aalborg Denmark

Aarhus University Department of Clinical Medicine Aarhus Denmark

Aberystwyth University Institute of Biological Environmental and Rural Sciences Aberystwyth United Kingdom

Academic Medical Centre of the University of Amsterdam Department of Clinical Chemistry and Vesicle Observation Centre Amsterdam The Netherlands

Advanced Center for Chronic Diseases Santiago Chile

Aix Marseille Université Institut Paoli Calmettes INSERM U1068 CNRS UMR7258 Centre de Recherche en Cancérologie de Marseille Marseille France

American Red Cross Scientific Affairs Gaithersburg MD USA

Amsterdam University Medical Centers Department of Pathology Amsterdam The Netherlands

Aston University School of Life and Health Sciences Birmingham UK

AstraZeneca Discovery Sciences IMED Biotech Unit Cambridge UK

AstraZeneca Discovery Sciences IMED Biotech Unit Gothenburg Sweden

Atlantic Cancer Research Institute Moncton Canada

BC Cancer Canada's Michael Smith Genome Sciences Centre Vancouver Canada

Beth Israel Deaconess Medical Center Boston MA USA

Boston University School of Medicine Boston MA USA

Brigham and Women's Hospital Center for Interdisciplinary Cardiovascular Sciences Boston MA USA

Brown University Women and Infants Hospital Providence RI USA

Cancer Institute of JFCR Tokyo Japan

Cancer Research Institute Ghent Ghent Belgium

Cardiff University School of Medicine Cardiff UK

Case Western Reserve University Department of Medicine Cleveland OH USA

Cedars Sinai Medical Center Los Angeles CA USA

Cedars Sinai Medical Center Smidt Heart Institute Los Angeles CA USA

Center for Psychiatry and Neuroscience INSERM U894 Paris France

Central Research Laboratories Sysmex Co Kobe Japan

Centro de Biología Molecular Severo Ochoa Instituto de Investigación Sanitaria la Princesa Madrid Spain

Children's Hospital of Los Angeles Los Angeles CA USA

Chinese Academy of Sciences Wenzhou Institute of Biomaterials and Engineering Wenzhou China

CIC bioGUNE CIBERehd Exosomes Laboratory and Metabolomics Platform Derio Spain

Cincinnati Cancer Center Cincinnati OH USA

City of Hope Comprehensive Cancer Center Beckman Research Institute Department of Molecular Medicine Duarte CA USA

Clínica las Condes Extracellular Vesicles in Personalized Medicine Group Santiago Chile

CNC Coimbra Portugal

CNR Institute of Neuroscience Milan Italy

Copenhagen Lupus and Vasculitis Clinic Section 4242 Rigshospitalet Copenhagen Denmark

CSGI Research Center for Colloids and Nanoscience Florence Italy

Danube University Krems Department for Biomedical Research and Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis Krems an der Donau Austria

Department of Pathology Erasmus MC Erasmus Optical Imaging Centre Rotterdam The Netherlands

Department of Urology Rotterdam The Netherlands

Department of Veterans Affairs San Francisco CA USA

Duke University Department of Ophthalmology Durham NC USA

Duke University Medical Center Departments of Medicine and Immunology Durham NC USA

Durham VAMC Medical Research Service Durham NC USA

École normale supérieure Paris France

Erasmus MC Rotterdam The Netherlands

ETH Zurich Institute of Pharmaceutical Sciences Zurich Switzerland

Eulji University School of Medicine Daejeon South Korea

Evox Therapeutics Limited Oxford UK

EVSEARCH DK Denmark

Exogenus Therapeutics Cantanhede Portugal

Exosomics Siena SpA Siena Italy

FAU Erlangen Nuremberg Transfusion and Haemostaseology Department Erlangen Germany

Federal Research and Clinical Center of Physical Chemical Medicine Moscow Russia

Federal University of Paraná Department of Genetics Human Molecular Genetics Laboratory Curitiba Brazil

FEMTO ST Institute UBFC CNRS ENSMM UTBM Besançon France

Finnish Red Cross Blood Service Research and Development Helsinki Finland

Florida State University College of Medicine Department of Biomedical Sciences Tallahassee FL USA

Fondazione IRCCS Istituto Nazionale dei Tumori Unit of Immunotherapy of Human Tumors Milan Italy

Genome Institute of Singapore ASTAR Singapore

Georg Speyer Haus Institute for Tumor Biology and Experimental Therapy Frankfurt Germany

George Papanicolaou Hospital Public Cord Blood Bank Department of Haematology BMT Unit Thessaloniki Greece

Georgetown University Department of Medicine Washington DC USA

German Armed Forces Central Hospital Department of General Visceral and Thoracic Surgery Koblenz Germany

German Cancer Consortium Heidelberg Germany

German Cancer Research Center Clinical Cooperation Unit Applied Tumor Biology Heidelberg Germany

German Cancer Research Center Division Signaling and Functional Genomics Heidelberg Germany

German Centre for Neurodegenerative Diseases Bonn Germany

German Research Center for Environmental Health Institute for Virology Munich Germany

Germans Trias i Pujol Research Institute Can Ruti Campus REMAR IVECAT Group Badalona Spain

Germans Trias i Pujol University Hospital Nephrology Service Badalona Spain

Ghent University Department of Radiation Oncology and Experimental Cancer Research Laboratory of Experimental Cancer Research Ghent Belgium

Ghent University Hospital Department of Urology Ghent Belgium

Graduate School of Public Health at the University of Pittsburgh Division of Occupational and Environmental Medicine Pittsburgh PA USA

Guangzhou Medical University School of Pharmaceutical Sciences and the 5th Affiliated Hospital Key Laboratory of Molecular Target and Clinical Pharmacology Guangzhou China

Haaglanden Medical Center Department of Neurosurgery The Hague The Netherlands

Harvard Medical School Cardiovascular Medicine Boston MA USA

Harvard Medical School Department of Medicine Boston MA USA

Harvard University Harvard T H Chan School of Public Health Boston MA USA

Harvard University School of Engineering and Applied Sciences Cambridge MA USA

Hasselt University Biomedical Research Institute Department of Medicine and Life Sciences Hasselt Belgium

Hasselt University Biomedical Research Institute Hasselt Belgium

Helmholtz Center Munich German Research Center for Environmental Health Research Unit Gene Vectors Munich Germany

Helmholtz Centre for Infection Research Braunschweig Germany

Helmholtz Institute for Pharmaceutical Research Saarland Saarbrücken Germany

Hiroshima University Institute of Biomedical and Health Sciences Department of Cellular and Molecular Biology Hiroshima Japan

Houston Methodist Research Institute Department of Nanomedicine Houston TX USA

Hudson Institute of Medical Research Melbourne Australia

Icahn School of Medicine at Mount Sinai Department of Medicine Cardiology New York City NY USA

Icahn School of Medicine at Mount Sinai New York City NY USA

IIS Fundacion Jimenez Diaz UAM Department of Nephrology and Hypertension Madrid Spain

IKERBASQUE Research Science Foundation Bilbao Spain

Imperial College London London UK

INEB Instituto de Engenharia Biomédica Porto Portugal

INSERM U1063 Université d'Angers CHU d'Angers Angers France

INSERM U1068 Aix Marseille University CNRS UMR7258 Marseille France

INSERM U1110 Strasbourg France

INSERM UMR S 970 Paris Cardiovascular Research Center Paris France

Institució Catalana de Recerca i Estudis Avançats Barcelona Spain

Institut Curie CNRS UMR144 PSL Research University Paris France

Institut Curie INSERM U932 PSL Research University Paris France

Institut d'Investigació Germans Trias i Pujol PVREX group Badalona Spain

Institut Pasteur de Montevideo Functional Genomics Unit Montevideo Uruguay

Institute of Biomedicine and Molecular Immunology of Italy Palermo Italy

Institute of Medical Biology Singapore

Institute of Physiology CAS Department of Biomaterials and Tissue Engineering BIOCEV Vestec Czech Republic

Institute of Physiology CAS Department of Biomaterials and Tissue Engineering Prague Czech Republic

Instituto Oswaldo Cruz Rio de Janeiro Brazil

INSTM National Interuniversity Consortium of Materials Science and Technology Florence Italy

Interuniversity Research Institute for Molecular Recognition and Technological Development University of Valencia Polytechnic University of Valencia Valencia Spain

IPATIMUP Institute of Molecular Pathology and Immunology of the University of Porto Porto Portugal

IRCCS Fondazione Don Carlo Gnocchi Laboratory of Nanomedicine and Clinical Biophotonics Milan Italy

IRCCS Istituto Ortopedico Rizzoli Laboratory for Orthopaedic Pathophysiology and Regenerative Medicine Bologna Italy

IRCCS MultiMedica Milan Italy

ISGlobal Hospital Clínic Universitat de Barcelona PVREX Group Barcelona Spain

Istanbul University Oncology Institute Basic Oncology Department Istanbul Turkey

Jagiellonian University Faculty of Biochemistry Biophysics and Biotechnology Department of Cell Biology Kraków Poland

James Cook University Australian Institute of Tropical Health and Medicine Centre for Biodiscovery and Molecular Development of Therapeutics Cairns Australia

K G Jebsen Brain Tumor Research Centre Department of Biomedicine University of Bergen Bergen Norway

Kansas State University College of Veterinary Medicine Manhattan KS USA

Karolinska Institute Clinical Research Center Department of Laboratory Medicine Stockholm Sweden

Karolinska Institute Clinical Research Center Unit for Molecular Cell and Gene Therapy Science Stockholm Sweden

Karolinska Institute Department of Medicine and Center for Molecular Medicine Respiratory Medicine Unit Stockholm Sweden

Karolinska Institute Department of Medicine Solna Division for Immunology and Allergy Stockholm Sweden

Karolinska Institute Stockholm Sweden

Kidney Research Centre Ottawa Canada

KU Leuven Department of Human Genetics Leuven Belgium

Kyung Hee University Department of Applied Chemistry Yongin Korea

La Trobe University La Trobe Institute for Molecular Science Department of Biochemistry and Genetics Bundoora Australia

Latvian Biomedical Research and Study Centre Riga Latvia

Leibniz Institute for Farm Animal Biology Institute of Reproductive Biology Dummerstorf Germany

Leiden University Medical Center Department of Neurosurgery Leiden The Netherlands

Loyola University Chicago Department of Urology Maywood IL USA

Lund University Department of Cardiology Lund Sweden

Maastricht University GROW School for Oncology and Developmental Biology Maastricht Radiation Oncology Lab Maastricht The Netherlands

Maria Sklodowska Curie Institute Oncology Center Gliwice Branch Gliwice Poland

Massachusetts General Cancer Center Boston MA USA

Massachusetts General Hospital and Neuroscience Program Harvard Medical School Department of Neurology and Radiology Boston MA USA

Massachusetts General Hospital Boston MA USA

Massachusetts General Hospital Department of Neurology Boston MA USA

Massachusetts General Hospital Department of Neurosurgery Boston MA USA

Massachusetts General Hospital Harvard Medical School Department of Neurology Boston MA USA

Mayo Clinic College of Medicine Department of Physiology and Biomedical Engineering Rochester MN USA

Mayo Clinic Department of Orthopedic Surgery Rochester MN USA

Mayo Clinic Department of Transplantation Jacksonville FL USA

Mayo Clinic Department of Transplantation Medicine Department of Physiology and Biomedical Engineering Jacksonville FL USA

Mayo Clinic Rochester MN USA

McGill University Division of Experimental Medicine Montreal Canada

McGill University Montreal Canada

McGill University The Research Institute of the McGill University Health Centre Child Health and Human Development Program Montreal Canada

McGill University The Research Institute of the McGill University Health Centre Montreal Canada

Medical Center University of Freiburg Faculty of Medicine University of Freiburg Institute for Infection Prevention and Hospital Epidemiology Freiburg Germany

Memorial Sloan Kettering Cancer Center Department of Medicine New York City NY USA

Monash University Melbourne Australia

Mossakowski Medical Research Centre NeuroRepair Department Warsaw Poland

Mount Allison University Department of Chemistry and Biochemistry Sackville Canada

MRC The Gambia Fajara The Gambia

MTA SE Immuno Proteogenomics Research Groups Budapest Hungary

Namur Thrombosis and Hemostasis Center NARILIS Namur Belgium

Nanfang Hospital Southern Medical University Department of Clinical Laboratory Medicine Guangzhou China

National Cancer Center Research Institute Division of Molecular and Cellular Medicine Tokyo Japan

National Cancer Center Research Institute Tokyo Japan

National Institute of Chemistry Department of Molecular Biology and Nanobiotechnology Ljubljana Slovenia

National Institutes of Health National Cancer Institute Center for Cancer Research Bethesda MD USA

National Institutes of Health National Cancer Institute Center for Cancer Research Laboratory of Pathology Bethesda MD USA

National Institutes of Health National Institute on Aging Baltimore MD USA

National Institutes of Health National Institute on Deafness and Other Communication Disorders Bethesda MD USA

National Taiwan University Hospital Department of Internal Medicine Taipei Taiwan

National Tsing Hua University Department of Power Mechanical Engineering Hsinchu Taiwan

National Tsing Hua University Institute of Nanoengineering and Microsystems Hsinchu Taiwan

National University of Singapore Faculty of Dentistry Singapore

Nationwide Children's Hospital Columbus OH USA

Oregon Health and Science University Department of Anesthesiology and Perioperative Medicine Portland OR USA

Oslo University Hospital Department of Medical Biochemistry Blood Cell Research Group Oslo Norway

Oslo University Hospital Rikshospitalet Research Institute of Internal Medicine Oslo Norway

Oslo University Hospital The Norwegian Radium Hospital Institute for Cancer Research Department of Molecular Cell Biology Oslo Norway

Ospedale Santo Spirito Pescara Italy

Ottawa Hospital Research Institute Ottawa Canada

Oxford Brookes University Department of Biological and Medical Sciences Oxford UK

Paracelsus Medical University Department of Transfusion Medicine Salzburg Austria

Paracelsus Medical University GMP Unit Salzburg Austria

Philipps University Marburg Experimental Tumor Biology Marburg Germany

Pontificia Universidad Católica de Chile Advanced Center for Chronic Diseases Santiago Chile

Pontificia Universidad Católica de Chile Faculty of Medicine Department of Hematology Oncology Santiago Chile

POSTECH Department of Life Sciences Pohang South Korea

Princess Margaret Cancer Centre University Health Network Toronto Canada

QIMR Berghofer Medical Research Institute Herston Australia

Queen Mary University of London Blizard Institute Epigenetics and Cellular Senescence Group London UK

Radboud University Medical Center Department of Rheumatology Nijmegen The Netherlands

Regional Research Network on Extracellular Vesicles RRNEV Oslo Norway

René Rachou Institute FIOCRUZ Belo Horizonte Brazil

Research Service Olin E Teague Veterans' Medical Center Temple TX USA

Royan Institute for Stem Cell Biology and Technology ACECR Cell Science Research Center Department of Stem Cells and Developmental Biology Tehran Iran

Saarland University Medical Center Department of Medicine 2 Homburg Germany

Saarland University Saarbrücken Germany

Sanjay Gandhi Postgraduate Institute of Medical Sciences Department of Molecular Medicine and Biotechnology Lucknow India

Sapienza University of Rome Department of Experimental Medicine Rome Italy

Scintillon Institute La Jolla CA USA

Semmelweis University Department of Genetics Cell and Immunobiology Budapest Hungary

Semmelweis University Department of Physiology Budapest Hungary

SickKids Hospital Department of Anesthesia and Pain Medicine Toronto Canada

Simon Fraser University Department of Molecular Biology and Biochemistry Burnaby Canada

Sorbonne Université Centre National de la Recherche Scientifique Research Unit Biology of Adaptation and Aging Paris France

Spanish Kidney Research Network REDINREN Madrid Spain

Spanish National Cancer Research Center Molecular Oncology Programme Microenvironment and Metastasis Laboratory Madrid Spain

Spinal Cord Injury and Tissue Regeneration Center Salzburg Salzburg Austria

Statens Serum Institut Department of Autoimmunology and Biomarkers Copenhagen Denmark

Stellenbosch University Department of Physiological Sciences Stellenbosch South Africa

Technical University Eindhoven Faculty Biomedical Technology Eindhoven The Netherlands

Technical University of Munich TUM School of Life Sciences Weihenstephan Division of Animal Physiology and Immunology Freising Germany

Technische Universität Darmstadt Department of Biology Darmstadt Germany

Texas A and M University College of Medicine Institute for Regenerative Medicine and Department of Molecular and Cellular Medicine College Station TX USA

TGen Neurogenomics Division Phoenix AZ USA

The Florey Institute of Neuroscience and Mental Health Melbourne Australia

The Johns Hopkins University School of Medicine Department of Molecular and Comparative Pathobiology Baltimore MD USA

The Johns Hopkins University School of Medicine Department of Neurology Baltimore MD USA

The Johns Hopkins University School of Medicine Department of Psychiatry and Behavioral Sciences Baltimore MD USA

The Ohio State University College of Pharmacy Division of Pharmaceutics and Pharmaceutical Chemistry Columbus OH USA

The Ohio State University Columbus OH USA

The Ohio State University Comprehensive Cancer Center Columbus OH USA

The School of Biomedical Sciences University of Western Australia Perth Australia

The Scripps Research Institute Scripps Florida Department of Molecular Medicine Jupiter FL USA

The Sociedade Beneficente Israelita Brasileira Albert Einstein São Paulo Brazil

The University of Melbourne The Department of Medicine Melbourne Australia

The University of Nottingham School of Medicine Children's Brain Tumour Research Centre Nottingham UK

The University of Queensland Brisbane Australia

The University of Sheffield Sheffield UK

The University of Vermont Medical Center Department of Medicine Burlington VT USA

The Warren Alpert Medical School of Brown University Department of Medicine Providence RI USA

Thomas Jefferson University Sidney Kimmel Medical School Department of Cancer Biology Philadelphia PA USA

Toronto General Hospital Research Institute University Health Network Toronto Canada

TPM of Mirandola Mirandola Italy

Trinity College Dublin School of Pharmacy and Pharmaceutical Sciences Panoz Institute and Trinity Biomedical Sciences Institute Dublin Ireland

Tsinghua University School of Pharmaceutical Sciences Beijing China

UMR 7365 CNRS Université de Lorraine Vandœuvre lès Nancy France

UMR CBMN CNRS Université de Bordeaux Bordeaux France

UNICAMP Institute of Biology Campinas Brazil

UNIFESP Departamento de Ciências Farmacêuticas Diadema Brazil

Universidad Autónoma de Madrid Departamento de Biología Molecular Madrid Spain

Universidad Autónoma de Madrid School of Medicine Department of Medicine Madrid Spain

Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Biológica Buenos Aires Argentina

Universidad de la República Faculty of Science Nuclear Research Center Analytical Biochemistry Unit Montevideo Uruguay

Universidade Federal de Paraná Paraná Brazil

Universidade Federal de São Paulo Campus Diadema Departamento de Ciências Farmacêuticas Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários São Paulo Brazil

Universidade Federal do Rio de Janeiro Instituto de Microbiologia Rio de Janeiro Brazil

Universidade Federal do Rio Grande do Sul Instituto de Ciências Básicas da Saúde Departamento de Microbiologia Imunologia e Parasitologia Porto Alegre Brazil

Università degli Studi di Milano Department of Clinical Sciences and Community Health EPIGET LAB Milan Italy

Universitat Autònoma de Barcelona Department of Cell Biology Physiology and Immunology Barcelona Spain

Universitat Autònoma de Barcelona Hospital Universitari and Health Sciences Research Institute Germans Trias i Pujol Department of Pathology Barcelona Spain

Universitat de València Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia Àrea de Parasitologia Valencia Spain

Universitat de València Health Research Institute La Fe Joint Research Unit on Endocrinology Nutrition and Clinical Dietetics Valencia Spain

Université Bretagne Loire Oniris INRA IECM Nantes France

Université Catholique de Louvain CHU UCL Namur Hematology Hemostasis Laboratory Yvoir Belgium

Université Catholique de Louvain Institut de Recherche Expérimentale et Clinique Laboratory of Pediatric Hepatology and Cell Therapy Brussels Belgium

Université de Lille INSERM U 1192 Laboratoire Protéomique Réponse Inflammatoire et Spectrométrie de Masse PRISM Lille France

Université de Nantes INSERM UMR 1238 Bone Sarcoma and Remodeling of Calcified Tissues PhyOS Nantes France

Université de Strasbourg Strasbourg France

Université Laval Centre de Recherche du CHU de Québec Department of Infectious Diseases and Immunity Quebec City Canada

Université Paris Descartes Sorbonne Paris Cité Paris France

Universiteit Hasselt Diepenbeek Belgium

University Clinic Eppendorf Hamburg Germany

University College London London UK

University Hospital Bonn Bonn Germany

University Hospital Essen University Duisburg Essen Institute for Transfusion Medicine Essen Germany

University Hospital Heidelberg Institute of Pathology Applied Tumor Biology Heidelberg Germany

University Hospital RWTH Aachen Department of Thoracic and Cardiovascular Surgery Aachen Germany

University Hospitals Cleveland Medical Center Department of Medicine Cleveland OH USA

University Medical Center Göttingen Developmental Biochemistry Göttingen Germany

University Medical Center Göttingen Hematology and Oncology Göttingen Germany

University Medical Center Hamburg Eppendorf Department of Neurosurgery Hamburg Germany

University Medical Center Hamburg Eppendorf Institute of Neuropathology Hamburg Germany

University Medical Center Utrecht Department of Nephrology and Hypertension Utrecht The Netherlands

University Medical Center Utrecht Laboratory for Clinical Chemistry and Hematology Utrecht The Netherlands

University of Antwerp Centre for Proteomics Antwerp Belgium

University of Auckland Auckland New Zealand

University of Auckland Department of Molecular Medicine and Pathology Auckland New Zealand

University of Auckland Department of Obstetrics and Gynaecology Auckland New Zealand

University of Belgrade Institute for the Application of Nuclear Energy INEP Belgrade Serbia

University of Birmingham Birmingham UK

University of Birmingham Institute of Microbiology and Infection Birmingham UK

University of Brescia Department of Molecular and Translational Medicine Brescia Italy

University of Bristol Bristol UK

University of British Columbia Okanagan Kelowna Canada

University of Buenos Aires Instituto de Investigaciones Biomédicas en Retrovirus y SIDA Buenos Aires Argentina

University of California Davis Department of Nutrition Davis CA USA

University of California Davis Department of Otolaryngology Davis CA USA

University of California Los Angeles California NanoSystems Institute Los Angeles CA USA

University of California Los Angeles Department of Bioengineering Los Angeles CA USA

University of California Los Angeles Department of Pathology and Laboratory Medicine Los Angeles CA USA

University of California Los Angeles Jonsson Comprehensive Cancer Center Los Angeles CA USA

University of California San Diego Department of Neurosurgery La Jolla CA USA

University of California San Diego Department of Obstetrics Gynecology and Reproductive Sciences La Jolla CA USA

University of California San Diego Department of Pediatrics San Diego CA USA

University of California San Francisco CA USA

University of Cambridge School of Clinical Medicine Addenbrooke's Hospital Department of Medicine Cambridge NIHR BRC Cell Phenotyping Hub Cambridge UK

University of Campinas Piracicaba Dental School Department of Oral Diagnosis Piracicaba Brazil

University of Chile Faculty of Chemical and Pharmaceutical Science Laboratory of Nanobiotechnology and Nanotoxicology Santiago Chile

University of Cincinnati College of Medicine Cincinnati OH USA

University of Cologne Department of Internal Medicine 1 Cologne Germany

University of Colorado School of Medicine Department of Ophthalmology Cell Sight Ocular Stem Cell and Regeneration Program Aurora CO USA

University of Copenhagen Faculty of Health and Medical Sciences Novo Nordisk Foundation Center for Protein Research Copenhagen Denmark

University of Copenhagen Institute of Clinical Medicine Copenhagen Denmark

University of Edinburgh Institute of Immunology and Infection Research Edinburgh UK

University of Gothenburg Institute of Clinical Sciences at Sahlgrenska Academy Department of Biomaterials Gothenburg Sweden

University of Gothenburg Institute of Clinical Sciences Department of Surgery Sahlgrenska Cancer Center Gothenburg Sweden

University of Gothenburg Institute of Medicine at Sahlgrenska Academy Krefting Research Centre Gothenburg Sweden

University of Gothenburg Sahlgrenska Academy Department of Rheumatology and Inflammation Research Gothenburg Sweden

University of Gothenburg The Sahlgrenska Academy Institute of Neuroscience and Physiology Department of Psychiatry and Neurochemistry Mölndal Sweden

University of Helsinki EV Core Facility Helsinki Finland

University of Helsinki Faculty of Biological and Environmental Sciences Molecular and Integrative Biosciences Research Programme EV group Helsinki Finland

University of Hertfordshire School of Life and Medical Sciences Biosciences Research Group Hatfield UK

University of Kentucky College of Medicine Department of Physiology Lexington KY USA

University of L'Aquila Department of Life Health and Environmental Sciences L'Aquila Italy

University of Liège GIGA R PSI Laboratory Liège Belgium

University of Ljubljana Faculty of Medicine Institute of Biochemistry Ljubljana Slovenia

University of Lyon INRA EPHE UMR754 Viral Infections and Comparative Pathology Lyon France

University of Lyon Lyon Sud Faculty of Medicine CarMeN Laboratory Pierre Bénite France

University of Mainz Institute of Developmental Biology and Neurobiology Mainz Germany

University of Malta Department of Pathology Msida Malta

University of Manchester Division of Cancer Sciences Manchester Cancer Research Centre Manchester UK

University of Manchester Manchester UK

University of Maryland Fischell Department of Bioengineering College Park MD USA

University of Massachusetts Medical School RNA Therapeutics Institute Worcester MA USA

University of Michigan Biointerfaces Institute Ann Arbor MI USA

University of Michigan Department of Biomedical Engineering Ann Arbor MI USA

University of Michigan Department of Internal Medicine Hematology Oncology Division Ann Arbor MI USA

University of Michigan Department of Medicine Ann Arbor MI USA

University of Michigan Department of Urology Ann Arbor MI USA

University of Michigan Medical School Ann Arbor MI USA

University of Minnesota Medical School Institute on the Biology of Aging and Metabolism Department of Biochemistry Molecular Biology and Biophysics Minneapolis MN USA

University of Modena and Reggio Emilia Division of Oncology Modena Italy

University of Nebraska Medical Center Department of Pharmacology and Experimental Neuroscience Omaha NE USA

University of Notre Dame Department of Biological Sciences Notre Dame IN USA

University of Oslo Institute of Clinical Medicine Oslo Norway

University of Ottawa Ottawa Canada

University of Oulu Faculty of Medicine Cancer and Translational Medicine Research Unit Oulu Finland

University of Oxford Department of Physiology Anatomy and Genetics Oxford UK

University of Oxford Radcliffe Department of Medicine Acute Stroke Programme Investigative Medicine Oxford UK

University of Padova Department of Comparative Biomedicine and Food Science Padova Italy

University of Padova Department of Women's and Children's Health Padova Italy

University of Palermo Department of Biopathology and Medical Biotechnologies Palermo Italy

University of Perugia Department of Chemistry Biology and Biotechnology Perugia Italy

University of Pisa Centro Dipartimentale di Biologia Cellulare Cardio Respiratoria Pisa Italy

University of Porto Faculty of Pharmacy IBMC I3S Porto Portugal

University of Porto Faculty of Pharmacy Porto Portugal

University of Porto i3S Instituto de Investigação e Inovação em Saúde Porto Portugal

University of Porto ICBAS Instituto de Ciências Biomédicas Abel Salazar Porto Portugal

University of Rochester Rochester NY USA

University of São Paulo Ribeirão Preto Medical School Department of Pathology and Forensic Medicine Ribeirão Preto Brazil

University of São Paulo Ribeirão Preto Medical School Ribeirão Preto Brazil

University of Science and Culture ACECR Department of Developmental Biology Tehran Iran

University of South Alabama Department of Pharmacology Center for Lung Biology Mobile AL USA

University of Southern California Keck School of Medicine Los Angeles CA USA

University of Southern California Los Angeles CA USA

University of Technology Sydney Discipline of Pharmacy Graduate School of Health Sydney Australia

University of Texas MD Anderson Cancer Center Department of Cancer Biology Metastasis Research Center Houston TX USA

University of Torino Department of Medical Sciences Torino Italy

University of Torino Department of Molecular Biotechnology and Health Sciences Torino Italy

University of Toronto Department of Anesthesia Toronto Canada

University of Toronto Department of Laboratory Medicine and Pathobiology Toronto Canada

University of Toronto Department of Medical Biophysics Toronto Canada

University of Toronto Department of Medicine Division of Neurology Toronto Canada

University of Tsukuba Tsukuba Japan

University of Virginia Flow Cytometry Core School of Medicine Charlottesville VA USA

University of Virginia Health System Department of Medicine Division of Nephrology Charlottesville VA USA

University of Würzburg Rudolf Virchow Center Würzburg Germany

Utrecht University Faculty of Veterinary Medicine Department of Biochemistry and Cell Biology Utrecht The Netherlands

Utrecht University University Medical Center Utrecht Center for Molecular Medicine and Regenerative Medicine Center Utrecht The Netherlands

Utrecht University University Medical Center Utrecht Department of Neurosurgery Brain Center Rudolf Magnus Institute of Neurosciences Utrecht The Netherlands

Utrecht University University Medical Center Utrecht Department of Pathology Utrecht The Netherlands

Vanderbilt University Medical Center Epithelial Biology Center Department of Medicine Nashville TN USA

Vanderbilt University School of Medicine Department of Cell and Developmental Biology Nashville TN USA

Veterans Affairs Medical Center San Francisco CA USA

Vilnius University Institute of Biomedical Sciences Department of Physiology Biochemistry Microbiology and Laboratory Medicine Vilnius Lithuania

Vlaamse Instelling voor Technologisch Onderzoek Mol Belgium

Washington University Saint Louis MO USA

Weill Cornell Medicine Department of Medicine New York City NY USA

Weizmann Institute of Science Department of Biomolecular Sciences Rehovot Israel

West Virginia University Department of Chemical and Biomedical Engineering and WVU Cancer Institute Morgantown WV USA

West Virginia University Department of Microbiology Immunology and Cell Biology Morgantown WV USA

West Virginia University Morgantown WV USA

Xiamen University Department of Chemical Biology Xiamen China

Zobrazit více v PubMed

References, especially those provided to illustrate methods and approaches, are representative only, and are not meant to be a comprehensive review of the literature. Most references were derived from suggestions provided in the MISEV2018 Survey results. Each reference was checked by multiple authors. Citation implies deemed relevance of scientific content and not an endorsement by the authors or ISEV of any particular journal or editorial practice.

Lotvall J, Hill AF, Hochberg F, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the international society for extracellular vesicles. J Extracell Vesicles. 2014;3:26913 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25536934 PubMed PMC

Witwer KW, Soekmadji C, Hill AF, et al. Updating the MISEV minimal requirements for extracellular vesicle studies: building bridges to reproducibility. J Extracell Vesicles. 2017;6(1):1396823 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1396823 PubMed DOI PMC

Stein JM, Luzio JP. Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem J. 1991;274 (Pt 2):381–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1848755 PubMed PMC

Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–372. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25683921 PubMed

Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles. 2013;2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009890 PubMed PMC

Gardiner C, Di Vizio D, Sahoo S, et al. Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. J Extracell Vesicles. 2016;5:32945 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27802845 PubMed PMC

Rojas A.The imperative authentication of cell lines. Antimicrob Agents Chemother. 2017;61(11):e01823–17. Available from: http://aac.asm.org/lookup/doi/10.1128/AAC.01823-17 PubMed DOI PMC

Reid Y, Storts D, Riss T, et al. Authentication of human cell lines by STR DNA profiling analysis [Internet]. Assay Guidance Manual. 2004. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23805434

Chen TS, Arslan F, Yin Y, et al. Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs. J Transl Med. 2011;9(1):47 Available from: http://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-9-47 PubMed DOI PMC

Lima LG, Chammas R, Monteiro RQ, et al. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 2009;283(2):168–175. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304383509002420 PubMed

Frey B, Gaipl US. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin Immunopathol. 2011;33(5):497–516. Available from: http://link.springer.com/10.1007/s00281-010-0228-6 PubMed DOI

Roseblade A, Luk F, Ung A, et al. Targeting microparticle biogenesis: a novel approach to the circumvention of cancer multidrug resistance. Curr Cancer Drug Targets. 2015;15(3):205–214. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25714701 PubMed

Takasugi M.Emerging roles of extracellular vesicles in cellular senescence and aging. Aging Cell. 2018;17(2):e12734. PubMed PMC

Patel DB, Gray KM, Santharam Y, et al. Impact of cell culture parameters on production and vascularization bioactivity of mesenchymal stem cell-derived extracellular vesicles. Bioeng Transl Med. 2017;2(2):170–179. PubMed PMC

Dang VD, Jella KK, Ragheb RRT, et al. Lipidomic and proteomic analysis of exosomes from mouse cortical collecting duct cells. FASEB J. 2017;31(12):5399–5408. Available from: http://www.fasebj.org/doi/10.1096/fj.201700417R PubMed DOI PMC

Klingeborn M, Dismuke WM, Skiba NP, et al. Directional exosome proteomes reflect polarity-specific functions in retinal pigmented epithelium monolayers. Sci Rep. 2017;7(1):4901 Available from: http://www.nature.com/articles/s41598-017-05102-9 PubMed PMC

Mittelbrunn M, Vicente-Manzanares M, Sánchez-Madrid F. Organizing polarized delivery of exosomes at synapses. Traffic. 2015;16(4):327–337. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25614958 PubMed PMC

van Niel G, Raposo G, Candalh C, et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology. 2001;121(2):337–349. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11487543 PubMed

Tauro BJ, Greening DW, Mathias RA, et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol Cell Proteomics. 2013;12(3):587–598. Available from: http://www.mcponline.org/lookup/doi/10.1074/mcp.M112.021303 PubMed DOI PMC

Yan IK, Shukla N, Borrelli DA, et al. Use of a hollow fiber bioreactor to collect extracellular vesicles from cells in culture. Methods Mol Biol. 2018;1740:35–41. Available from: http://link.springer.com/10.1007/978-1-4939-7652-2_4 PubMed DOI

Watson DC, Yung BC, Bergamaschi C, et al. Scalable, cGMP-compatible purification of extracellular vesicles carrying bioactive human heterodimeric IL-15/lactadherin complexes. J Extracell Vesicles. 2018;7(1):1442088 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29535850 PubMed PMC

Lowry MC, O’Driscoll L. Can hi-jacking hypoxia inhibit extracellular vesicles in cancer? Drug Discov Today. 2018;23(6):1267–1273. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644617303252 PubMed

Mitchell MD, Peiris HN, Kobayashi M, et al. Placental exosomes in normal and complicated pregnancy. Am J Obstet Gynecol. 2015;213(4Suppl): S173–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002937815007176 PubMed

de Jong OG, Verhaar MC, Chen Y, et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1(1):18396 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.18396 PubMed DOI PMC

Stratton D, Moore C, Antwi-Baffour S, et al. Microvesicles released constitutively from prostate cancer cells differ biochemically and functionally to stimulated microvesicles released through sublytic C5b-9. Biochem Biophys Res Commun. 2015;460(3):589–595. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X15005203 PubMed

Dozio V, Sanchez J-C. Characterisation of extracellular vesicle-subsets derived from brain endothelial cells and analysis of their protein cargo modulation after TNF exposure. J Extracell Vesicles. 2017;6(1):1302705 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1302705 PubMed DOI PMC

Taylor J, Jaiswal R, Bebawy M. Calcium-calpain dependent pathways regulate vesiculation in malignant breast cells. Curr Cancer Drug Targets. 2017;17(5):486–494. Available from: http://www.eurekaselect.com/node/146745/article PubMed

Mostefai HA, Agouni A, Carusio N, et al. Phosphatidylinositol 3-kinase and xanthine oxidase regulate nitric oxide and reactive oxygen species productions by apoptotic lymphocyte microparticles in endothelial cells. J Immunol. 2008;180(7):5028–5035. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18354228 PubMed

Agouni A, Mostefai HA, Porro C, et al. Sonic hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J. 2007;21(11):2735–2741. Available from: http://www.fasebj.org/doi/10.1096/fj.07-8079com PubMed DOI

Soekmadji C, Riches JD, Russell PJ, et al. Modulation of paracrine signaling by CD9 positive small extracellular vesicles mediates cellular growth of androgen deprived prostate cancer. Oncotarget. 2017;8(32):52237–52255. Available from: http://www.oncotarget.com/fulltext/11111 PubMed PMC

Saari H, Lázaro-Ibáñez E, Viitala T, et al. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of paclitaxel in autologous prostate cancer cells. J Control Release. 2015;220(PtB):727–737. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365915301322 PubMed

Lázaro-Ibáñez E, Neuvonen M, Takatalo M, et al. Metastatic state of parent cells influences the uptake and functionality of prostate cancer cell-derived extracellular vesicles. J Extracell Vesicles. 2017;6(1):1354645 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1354645 PubMed DOI PMC

Chernov VM, Mouzykantov AA, Baranova NB, et al. Extracellular membrane vesicles secreted by mycoplasma acholeplasma laidlawii PG8 are enriched in virulence proteins. J Proteomics. 2014;110:117–128. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1874391914003819 PubMed

Corral-Vázquez C, Aguilar-quesada R, Catalina P, et al. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking. Cell Tissue Bank. 2017;18(2):271–280. Available from: http://link.springer.com/10.1007/s10561-017-9617-6 PubMed DOI PMC

Yang C, Chalasani G, Ng Y-H, et al. Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One. 2012;7(4):e36138 Available from: http://dx.plos.org/10.1371/journal.pone.0036138 PubMed DOI PMC

Quah BJC, O’Neill HC. Mycoplasma contaminants present in exosome preparations induce polyclonal B cell responses. J Leukoc Biol. 2007;82(5):1070–1082. PubMed

Mathivanan S, Lim JW, Tauro BJ, et al. Proteomics analysis of A33 immunoaffinity-purified exosomes released from the human colon tumor cell line LIM1215 reveals a tissue-specific protein signature. Mol Cell Proteomics. 2010;9(2):197–208. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19837982 PubMed PMC

Burger D, Turner M, Xiao F, et al. High glucose increases the formation and pro-oxidative activity of endothelial microparticles. Diabetologia. 2017;60(9):1791–1800. Available from: http://link.springer.com/10.1007/s00125-017-4331-2 PubMed DOI

Thom SR, Bhopale VM, Yu K, et al. Neutrophil microparticle production and inflammasome activation by hyperglycemia due to cytoskeletal instability. J Biol Chem. 2017;292(44):18312–18324. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M117.802629 PubMed DOI PMC

Rice GE, Scholz-Romero K, Sweeney E, et al. The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab. 2015;100(10):E1280–8. Available from: https://academic.oup.com/jcem/article-lookup/doi/10.1210/jc.2015-2270 PubMed DOI

Németh A, Orgovan N, Sódar BW, et al. Antibiotic-induced release of small extracellular vesicles (exosomes) with surface-associated DNA. Sci Rep. 2017;7(1):8202 Available from: http://www.nature.com/articles/s41598-017-08392-1 PubMed PMC

Zhou X, Zhang W, Yao Q, et al. Exosome production and its regulation of EGFR during wound healing in renal tubular cells. Am J Physiol Renal Physiol. 2017;312(6):F963–70. Available from: http://www.physiology.org/doi/10.1152/ajprenal.00078.2017 PubMed DOI PMC

Pachler K, Lener T, Streif D, et al. A good manufacturing practice-grade standard protocol for exclusively human mesenchymal stromal cell-derived extracellular vesicles. Cytotherapy. 2017;19(4):458–472. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1465324917300038 PubMed

Saury C, Lardenois A, Schleder C, et al. Human serum and platelet lysate are appropriate xeno-free alternatives for clinical-grade production of human MuStem cell batches. Stem Cell Res Ther. 2018;9(1):128 Available from: https://stemcellres.biomedcentral.com/articles/10.1186/s13287-018-0852-y PubMed DOI PMC

Li J, Lee Y, Johansson HJ, et al. Serum-free culture alters the quantity and protein composition of neuroblastoma-derived extracellular vesicles. J Extracell Vesicles. 2015;4(1):26883 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26883 PubMed DOI PMC

Beninson LA, Fleshner M. Exosomes in fetal bovine serum dampen primary macrophage IL-1β response to lipopolysaccharide (LPS) challenge. Immunol Lett. 2015;163(2):187–192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25455591 PubMed

Eitan E, Zhang S, Witwer KW, et al. Extracellular vesicle-depleted fetal bovine and human sera have reduced capacity to support cell growth. J Extracell Vesicles. 2015;4:26373 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25819213 PubMed PMC

Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids In: Current protocols in cell biology. Hoboken, NJ, USA: John Wiley & Sons, Inc; 2006. p. Unit 3.22 Available from: http://www.ncbi.nlm.nih.gov/pubmed/18228490 PubMed

van Balkom BWM, de Jong OG, Smits M, et al. Endothelial cells require miR-214 to secrete exosomes that suppress senescence and induce angiogenesis in human and mouse endothelial cells. Blood. 2013;121(19):3997–4006. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23532734 PubMed

Kornilov R, Puhka M, Mannerström B, et al. Efficient ultrafiltration-based protocol to deplete extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2018;7(1):1422674 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1422674 PubMed DOI PMC

Wei Z, Batagov AO, Carter DRF, et al. Fetal bovine serum RNA interferes with the cell culture derived extracellular RNA. Sci Rep. 2016;6:31175 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27503761 PubMed PMC

Shelke GV, Lässer C, Gho YS, et al. Importance of exosome depletion protocols to eliminate functional and RNA-containing extracellular vesicles from fetal bovine serum. J Extracell Vesicles. 2014;3:24783 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317276 PubMed PMC

Tosar JP, Cayota A, Eitan E, et al. Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components? J Extracell Vesicles. 2017;6(1):1272832 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28326168 PubMed PMC

Kaur S, Singh SP, Elkahloun AG, et al. CD47-dependent immunomodulatory and angiogenic activities of extracellular vesicles produced by T cells. Matrix Biol. 2014;37:49–59. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X14000924 PubMed PMC

Witwer KW, Buzas EI, Bemis LT, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research: an ISEV position paper. J Extracell Vesicles. 2013;2:20360. PubMed PMC

Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzàs EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA- An ISEV Position Paper. J Extracell Vesicles. 2017;6:1286095. PubMed PMC

Bæk R, Søndergaard EKL, Varming K, et al. The impact of various preanalytical treatments on the phenotype of small extracellular vesicles in blood analyzed by protein microarray. J Immunol Meth. 2016;438:11–20. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175916301624 PubMed

Barteneva NS, Fasler-Kan E, Bernimoulin M, et al. Circulating microparticles: square the circle. BMC Cell Biol. 2013;14(1):23 Available from: http://bmccellbiol.biomedcentral.com/articles/10.1186/1471-2121-14-23 PubMed DOI PMC

Mullier F, Bailly N, Chatelain C, et al. Pre-analytical issues in the measurement of circulating microparticles: current recommendations and pending questions. J Thromb Haemost. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23410207 PubMed

Lacroix R, Judicone C, Poncelet P, et al. Impact of pre-analytical parameters on the measurement of circulating microparticles: towards standardization of protocol. J Thromb Haemost. 2012;10(3):437–446. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22212198 PubMed

Coumans FAW, Brisson AR, Buzas EI, et al. Methodological guidelines to study extracellular vesicles. Circ Res. 2017;120(10):1632–1648. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.309417 PubMed DOI

Yuana Y, Bertina RM, Osanto S. Pre-analytical and analytical issues in the analysis of blood microparticles. Thromb Haemost. 2011;105(3):396–408. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21174005 PubMed

Yuana Y, Böing AN, Grootemaat AE, et al. Handling and storage of human body fluids for analysis of extracellular vesicles. J Extracell Vesicles. 2015;4:29260. PubMed PMC

Robbins PD.Extracellular vesicles and aging. Stem Cell Investig. 2017;4(12):98 Available from: http://sci.amegroups.com/article/view/17758/18069 PubMed PMC

Danielson KM, Estanislau J, Tigges J, et al. Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One. 2016;11(1):e0144678 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26745887 PubMed PMC

Fendl B, Weiss R, Fischer MB, et al. Characterization of extracellular vesicles in whole blood: influence of pre-analytical parameters and visualization of vesicle-cell interactions using imaging flow cytometry. Biochem Biophys Res Commun. 2016;478(1):168–173. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X16311950 PubMed

Wisgrill L, Lamm C, Hartmann J, et al. Peripheral blood microvesicles secretion is influenced by storage time, temperature, and anticoagulants. Cytometry A. 2016;89(7):663–672. PubMed

György B, Pálóczi K, Kovács A, et al. Improved circulating microparticle analysis in acid-citrate dextrose (ACD) anticoagulant tube. Thromb Res. 2014;133(2):285–292. Available from: http://linkinghub.elsevier.com/retrieve/pii/S004938481300546X PubMed

Mitchell AJ, Gray WD, Hayek SS, et al. Platelets confound the measurement of extracellular miRNA in archived plasma. Sci Rep. 2016;6(1):32651 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27623086 PubMed PMC

Cheng HH, Yi HS, Kim Y, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23762257 PubMed PMC

Muller L, Hong C-S, Stolz DB, et al. Isolation of biologically-active exosomes from human plasma. J Immunol Meth. 2014;411:55–65. PubMed PMC

Ayers L, Kohler M, Harrison P, et al. Measurement of circulating cell-derived microparticles by flow cytometry: sources of variability within the assay. Thromb Res. 2011;127(4):370–377. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21257195 PubMed

Heijnen HF, Schiel AE, Fijnheer R, et al. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood. 1999;94(11):3791–3799. PubMed

Mincheva-Nilsson L, Baranov V, Nagaeva O, et al. Isolation and characterization of exosomes from cultures of tissue explants and cell lines. Curr Protoc Immunol. 2016;115:14.42.1–14.42.21. PubMed

Lunavat TR, Cheng L, Einarsdottir BO, et al. BRAFV600 inhibition alters the microRNA cargo in the vesicular secretome of malignant melanoma cells. Proc Natl Acad Sci U S A. 2017;114(29):E5930–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1705206114 PubMed DOI PMC

Gupta AK, Rusterholz C, Huppertz B, et al. A comparative study of the effect of three different syncytiotrophoblast micro-particles preparations on endothelial cells. Placenta. 2005;26(1):59–66. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0143400404001080 PubMed

Holder BS, Tower CL, Forbes K, et al. Immune cell activation by trophoblast-derived microvesicles is mediated by syncytin 1. Immunology. 2012;136(2):184–191. PubMed PMC

Perez-Gonzalez R, Gauthier SA, Kumar A, et al. The exosome secretory pathway transports amyloid precursor protein carboxyl-terminal fragments from the cell into the brain extracellular space. J Biol Chem. 2012;287(51):43108–43115. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M112.404467 PubMed DOI PMC

Vella LJ, Scicluna BJ, Cheng L, et al. A rigorous method to enrich for exosomes from brain tissue. J Extracell Vesicles. 2017;6(1):1348885 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28804598 PubMed PMC

Deng ZB, Poliakov A, Hardy RW, et al. Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes. 2009;58(11):2498–2505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19675137 PubMed PMC

Wang GJ, Liu Y, Qin A, et al. Thymus exosomes-like particles induce regulatory T cells. J Immunol. 2008;181(8):5242–5248. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18832678 PubMed PMC

Kranendonk MEG, Visseren FLJ, van Balkom BWM, et al. Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity (Silver Spring). 2014;22(5):1296–1308. PubMed

Loyer X, Zlatanova I, Devue C, et al. Intra-cardiac release of extracellular vesicles shapes inflammation following myocardial infarction. Circ Res. 2018;123(1):100–106. Available from: http://circres.ahajournals.org/lookup/doi/10.1161/CIRCRESAHA.117.311326 PubMed DOI PMC

Leroyer AS, Ebrahimian TG, Cochain C, et al. Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation. 2009;119(21):2808–2817. Available from: http://circ.ahajournals.org/cgi/doi/10.1161/CIRCULATIONAHA.108.816710 PubMed DOI

Michaelis ML, Jiang L, Michaelis EK. Isolation of synaptosomes, synaptic plasma membranes, and synaptic junctional complexes In: Methods in molecular biology. Clifton, NJ: 2017. p. 107–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27943187 PubMed

Zhou H, Yuen PS, Pisitkun T, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69(8):1471–1476. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16501490 PubMed PMC

Vila-Liante V, Sánchez-López V, Martínez-Sales V, et al. Impact of sample processing on the measurement of circulating microparticles: storage and centrifugation parameters. Clin Chem Lab Med. 2016;54(11):1759–1767. Available from: https://www.degruyter.com/view/j/cclm.2016.54.issue-11/cclm-2016-0036/cclm-2016-0036.xml PubMed

Kriebardis AG, Antonelou MH, Georgatzakou HT, et al. Microparticles variability in fresh frozen plasma: preparation protocol and storage time effects. Blood Transfus. 2016;14(2):228–237. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27136430 PubMed PMC

Lőrincz ÁM, Timár CI, Marosvári KA, et al. Effect of storage on physical and functional properties of extracellular vesicles derived from neutrophilic granulocytes. J Extracell Vesicles. 2014;3(1):25465 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.25465 PubMed DOI PMC

Bosch S, de Beaurepaire L, Allard M, et al. Trehalose prevents aggregation of exosomes and cryodamage. Sci Rep. 2016;6(1):36162 Available from: http://www.nature.com/articles/srep36162 PubMed PMC

Maroto R, Zhao Y, Jamaluddin M, et al. Effects of storage temperature on airway exosome integrity for diagnostic and functional analyses. J Extracell Vesicles. 2017;6(1):1359478 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359478 PubMed DOI PMC

Jin Y, Chen K, Wang Z, et al. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer. 2016;16(1):753 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27662833 PubMed PMC

Jeyaram A, Jay SM.. Preservation and storage stability of extracellular vesicles for therapeutic applications. Aaps J. 2017;20(1):1 Available from: http://link.springer.com/10.1208/s12248-017-0160-y PubMed DOI PMC

Trummer A, De Rop C, Tiede A, et al. Recovery and composition of microparticles after snap-freezing depends on thawing temperature. Blood Coagul Fibrinolysis. 2009;20(1):52–56. Available from: https://insights.ovid.com/crossref?an=00001721-200901000-00010 PubMed

Lener T, Gimona M, Aigner L, et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J Extracell Vesicles. 2015;4:30087 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4698466&tool=pmcentrez&rendertype=abstract PubMed PMC

Reiner AT, Witwer KW, Van Balkom BWM, et al. Concise review: developing best-practice models for the therapeutic use of extracellular vesicles. Stem Cells Transl Med. 2017;6(8). PubMed PMC

Clayton A, Buschmann D, Byrd JB, et al. Summary of the ISEV workshop on extracellular vesicles as disease biomarkers, held in Birmingham, UK, during December 2017. J Extracell Vesicles. 2018;7(1):1473707 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1473707 PubMed DOI PMC

Montis C, Zendrini A, Valle F, et al. Size distribution of extracellular vesicles by optical correlation techniques. Colloids Surf B Biointerfaces. 2017;158:331–338. Available from: http://linkinghub.elsevier.com/retrieve/pii/S092777651730406X PubMed

Morales-Kastresana A, Telford B, Musich TA, et al. Labeling extracellular vesicles for nanoscale flow cytometry. Sci Rep. 2017;7(1):1878 Available from: http://www.nature.com/articles/s41598-017-01731-2 PubMed PMC

Corso G, Mäger I, Lee Y, et al. Reproducible and scalable purification of extracellular vesicles using combined bind-elute and size exclusion chromatography. Sci Rep. 2017;7(1):11561 Available from: http://www.nature.com/articles/s41598-017-10646-x PubMed PMC

Welton JL, Webber JP, Botos L-A, et al. Ready-made chromatography columns for extracellular vesicle isolation from plasma. J Extracell Vesicles. 2015;4:27269 Available from: http://www.tandfonline.com/doi/full/10.3402/jev.v4.27269 PubMed DOI PMC

Vergauwen G, Dhondt B, Van Deun J, et al. Confounding factors of ultrafiltration and protein analysis in extracellular vesicle research. Sci Rep. 2017;7(1):2704 Available from: http://www.nature.com/articles/s41598-017-02599-y PubMed PMC

Lobb RJ, Becker M, Wen SW, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. 2015;4:27031 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.27031 PubMed DOI PMC

Tan CY, Lai RC, Wong W, et al. Mesenchymal stem cell-derived exosomes promote hepatic regeneration in drug-induced liver injury models. Stem Cell Res Ther. 2014;5(3):76 Available from: http://stemcellres.com/content/5/3/76 PubMed PMC

Jong AY, Wu C-H, Li J, et al. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J Extracell Vesicles. 2017;6(1):1294368 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1294368 PubMed DOI PMC

Heinemann ML, Ilmer M, Silva LP, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. J Chromatogr A. 2014;1371:125–135. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314015908 PubMed

Heinemann ML, Vykoukal J. Sequential filtration: A gentle method for the isolation of functional extracellular vesicles In: Methods in molecular biology. Clifton, NJ: 2017. p. 33–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28828646 PubMed

Wei Z, Batagov AO, Schinelli S, et al. Coding and noncoding landscape of extracellular RNA released by human glioma stem cells. Nat Commun. 2017;8(1):1145 Available from: http://www.nature.com/articles/s41467-017-01196-x PubMed PMC

Lamparski HG, Metha-Damani A, Yao JY, et al. Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Meth. 2002;270(2):211–226. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12379326 PubMed

Escudier B, Dorval T, Chaput N, et al. Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. J Transl Med. 2005;3(1):10 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15740633 PubMed PMC

Roda B, Zattoni A, Reschiglian P, et al. Field-flow fractionation in bioanalysis: A review of recent trends. Anal Chim Acta. 2009;635(2):132–143. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0003267009000865 PubMed

Zhang H, Freitas D, Kim HS, et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 2018;20(3):332–343. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29459780 PubMed PMC

Yang JS, Lee JC, Byeon SK, et al. Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89(4):2488–2496. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.6b04634 PubMed DOI

Agarwal K, Saji M, Lazaroff SM, et al. Analysis of exosome release as a cellular response to MAPK pathway inhibition. Langmuir. 2015;31(19):5440–5448. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25915504 PubMed PMC

Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano. 2017;11(7):6968–6976. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b02277 PubMed DOI

Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano. 2017;11(7):6641–6651. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b00549 PubMed DOI

Lewis JM, Vyas AD, Qiu Y, et al. Integrated analysis of exosomal protein biomarkers on alternating current electrokinetic chips enables rapid detection of pancreatic cancer in patient blood. ACS Nano. 2018;12(4):3311–3320. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b08199 PubMed DOI

Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano. 2015;9(3):2321–2327. Available from: http://pubs.acs.org/doi/10.1021/nn506538f PubMed DOI PMC

Satzer P, Wellhoefer M, Jungbauer A. Continuous separation of protein loaded nanoparticles by simulated moving bed chromatography. J Chromatogr A. 2014;1349:44–49. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0021967314006979 PubMed PMC

Mol EA, Goumans M-J, Doevendans PA, et al. Higher functionality of extracellular vesicles isolated using size-exclusion chromatography compared to ultracentrifugation. Nanomedicine. 2017;13(6):2061–2065. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963417300540 PubMed

de Menezes-Neto A, Sáez MJF, Lozano-Ramos I, et al. Size-exclusion chromatography as a stand-alone methodology identifies novel markers in mass spectrometry analyses of plasma-derived vesicles from healthy individuals. J Extracell Vesicles. 2015;4:27378 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26154623 PubMed PMC

Kosanović M, Milutinović B, Goč S, et al. Ion-exchange chromatography purification of extracellular vesicles. Biotechniques. 2017;63(2):65–71. Available from: https://www.future-science.com/doi/10.2144/000114575 PubMed DOI

Heath N, Grant L, De Oliveira TM, et al. Rapid isolation and enrichment of extracellular vesicle preparations using anion exchange chromatography. Sci Rep. 2018;8(1):5730 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29636530 PubMed PMC

Kim D, Nishida H, An SY, et al. Chromatographically isolated CD63 + CD81 + extracellular vesicles from mesenchymal stromal cells rescue cognitive impairments after TBI. Proc Natl Acad Sci. 2016;113(1):170–175. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26699510 PubMed PMC

Merchant ML, Powell DW, Wilkey DW, et al. Microfiltration isolation of human urinary exosomes for characterization by MS. PROTEOMICS - Clin Appl. 2010;4(1):84–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21137018 PubMed

Higginbotham JN, Zhang Q, Jeppesen DK, et al. Identification and characterization of EGF receptor in individual exosomes by fluorescence-activated vesicle sorting. J Extracell Vesicles. 2016;5:29254 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27345057 PubMed PMC

Groot Kormelink T, Arkesteijn GJA, Nauwelaers FA, et al. Prerequisites for the analysis and sorting of extracellular vesicle subpopulations by high-resolution flow cytometry. Cytometry A. 2016;89(2):135–147. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25688721 PubMed

Atkin-Smith GK, Paone S, Zanker DJ, et al. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting. Sci Rep. 2017;7:39846 Available from: http://www.nature.com/articles/srep39846 PubMed PMC

Minciacchi VR, Spinelli C, Reis-Sobreiro M, et al. MYC mediates large oncosome-induced fibroblast reprogramming in prostate cancer. Cancer Res. 2017;77(9):2306–2317. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-16-2942 PubMed DOI

Wunsch BH, Smith JT, Gifford SM, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nat Nanotechnol. 2016;11(11):936–940. Available from: http://www.nature.com/articles/nnano.2016.134 PubMed

Echevarria J, Royo F, Pazos R, et al. Microarray-based identification of lectins for the purification of human urinary extracellular vesicles directly from urine samples. Chembiochem. 2014;15(11):1621–1626. PubMed

Ghosh A, Davey M, Chute IC, et al. Rapid isolation of extracellular vesicles from cell culture and biological fluids using a synthetic peptide with specific affinity for heat shock proteins. PLoS One. 2014;9(10):e110443 Available from: http://dx.plos.org/10.1371/journal.pone.0110443 PubMed DOI PMC

Balaj L, Atai NA, Chen W, et al. Heparin affinity purification of extracellular vesicles. Sci Rep. 2015;5:10266 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25988257 PubMed PMC

Fang X, Duan Y, Adkins GB, et al. Highly efficient exosome isolation and protein analysis by an integrated nanomaterial-based platform. Anal Chem. 2018;90(4):2787–2795. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b04861 PubMed DOI PMC

Sharma P, Ludwig S, Muller L, et al. Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. 2018;7(1):1435138 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1435138 PubMed DOI PMC

Brett SI, Lucien F, Guo C, et al. Immunoaffinity based methods are superior to kits for purification of prostate derived extracellular vesicles from plasma samples. Prostate. 2017;77(13):1335–1343. PubMed

Nakai W, Yoshida T, Diez D, et al. A novel affinity-based method for the isolation of highly purified extracellular vesicles. Sci Rep. 2016;6(1):33935 Available from: http://www.nature.com/articles/srep33935 PubMed PMC

Welton JL, Loveless S, Stone T, et al. Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis. J Extracell Vesicles. 2017;6(1):1369805 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1369805 PubMed DOI PMC

Lai RC, Tan SS, Yeo RWY, et al. MSC secretes at least 3 EV types each with a unique permutation of membrane lipid, protein and RNA. J Extracell Vesicles. 2016;5(1):29828 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.29828 PubMed DOI PMC

Gallart-Palau X, Serra A, Wong ASW, et al. Extracellular vesicles are rapidly purified from human plasma by PRotein Organic Solvent PRecipitation (PROSPR). Sci Rep. 2015;5(1):14664 Available from: http://www.nature.com/articles/srep14664 PubMed PMC

Shin H, Han C, Labuz JM, et al. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep. 2015;5(1):13103 Available from: http://www.nature.com/articles/srep13103 PubMed PMC

Hurwitz SN, Nkosi D, Conlon MM, et al. CD63 regulates epstein-barr virus LMP1 exosomal packaging, enhancement of vesicle production, and noncanonical NF-κB signaling. J Virol. 2017;91(5):e02251–16. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.02251-16 PubMed DOI PMC

Musante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Sci Rep. 2014;4(1):7532 Available from: http://www.nature.com/articles/srep07532 PubMed PMC

Sedykh SE, Purvinish LV, Monogarov AS, et al. Purified horse milk exosomes contain an unpredictable small number of major proteins. Biochim Open. 2017;4:61–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2214008517300056 PubMed PMC

Contreras-Naranjo JC, Wu H-J, Ugaz VM. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip. 2017;17(21):3558–3577. PubMed PMC

Wu M, Ouyang Y, Wang Z, et al. Isolation of exosomes from whole blood by integrating acoustics and microfluidics. Proc Natl Acad Sci U S A. 2017;114(40):10584–10589. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1709210114 PubMed DOI PMC

Chen C, Skog J, Hsu CH, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip. 2010/02/04 2010;10(4):505–511. PubMed PMC

Liang L-G, Kong M-Q, Zhou S, et al. An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep. 2017;7:46224 Available from: http://www.nature.com/articles/srep46224 PubMed PMC

Shin S, Han D, Park MC, et al. Separation of extracellular nanovesicles and apoptotic bodies from cancer cell culture broth using tunable microfluidic systems. Sci Rep. 2017;7(1):9907 Available from: http://www.nature.com/articles/s41598-017-08826-w PubMed PMC

Yasui T, Yanagida T, Ito S, et al. Unveiling massive numbers of cancer-related urinary-microRNA candidates via nanowires. Sci Adv. 2017;3(12):e1701133 Available from: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1701133 PubMed DOI PMC

Zhao Z, Yang Y, Zeng Y, et al. A microfluidic exosearch chip for multiplexed exosome detection towards blood-based ovarian cancer diagnosis. Lab Chip. 2016;16(3):489–496. PubMed PMC

Wang Z, Wu H, Fine D, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab Chip. 2013;13(15):2879–2882. PubMed PMC

Reátegui E, van der Vos KE, Lai CP, et al. Engineered nanointerfaces for microfluidic isolation and molecular profiling of tumor-specific extracellular vesicles. Nat Commun. 2018;9(1):175 Available from: http://www.nature.com/articles/s41467-017-02261-1 PubMed PMC

Böing AN, van der Pol E, Grootemaat AE, et al. Single-step isolation of extracellular vesicles by size-exclusion chromatography. J Extracell Vesicles. 2014;3:23430 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.23430 PubMed DOI PMC

Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. J Transl Med. 2018;16(1):1 Available from: https://translational-medicine.biomedcentral.com/articles/10.1186/s12967-017-1374-6 PubMed DOI PMC

Enderle D, Spiel A, Coticchia CM, et al. Characterization of RNA from exosomes and other extracellular vesicles isolated by a novel spin column-based method. PLoS One. 2015;10(8):e0136133 Available from: http://dx.plos.org/10.1371/journal.pone.0136133 PubMed DOI PMC

Jeppesen DK, Hvam ML, Primdahl-Bengtson B, et al. Comparative analysis of discrete exosome fractions obtained by differential centrifugation. J Extracell Vesicles. 2014;3:25011 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25396408 PubMed PMC

Livshits MA, Khomyakova E, Evtushenko EG, et al. Isolation of exosomes by differential centrifugation: theoretical analysis of a commonly used protocol. Sci Rep. 2015;5(1):17319 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26616523 PubMed PMC

Jang SC, Kim OY, Yoon CM, et al. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013;7(9):7698–7710. Available from: http://pubs.acs.org/doi/10.1021/nn402232g PubMed DOI

Li K, Wong DK, Hong KY, et al. Cushioned-density gradient ultracentrifugation (C-DGUC): a refined and high performance method for the isolation, characterization, and use of exosomes. Methods Mol Biol. 2018;1740:69–83. Available from: http://link.springer.com/10.1007/978-1-4939-7652-2_7 PubMed DOI PMC

Van Deun J, Mestdagh P, Agostinis P, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat Methods. 2017;14(3):228–232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28245209 PubMed

Mitchell JP, Court J, Mason MD, et al. Increased exosome production from tumour cell cultures using the integra celline culture system. J Immunol Meth. 2008;335(1–2):98–105. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022175908000926 PubMed

Ortiz A, Sanchez-Niño MD, Sanz AB. The meaning of urinary creatinine concentration. Kidney Int. 2011;79(7):791 Available from: http://linkinghub.elsevier.com/retrieve/pii/S0085253815548849 PubMed

Cointe S, Judicone C, Robert S, et al. Standardization of microparticle enumeration across different flow cytometry platforms: results of a multicenter collaborative workshop. J Thromb Haemost. 2017;15(1):187–193. PubMed PMC

Krishnan SR, Luk F, Brown RD, et al. Isolation of human CD138(+) microparticles from the plasma of patients with multiple myeloma. Neoplasia. 2016;18(1):25–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558615001566 PubMed PMC

McVey MJ, Spring CM, Semple JW, et al. Microparticles as biomarkers of lung disease: enumeration in biological fluids using lipid bilayer microspheres. Am J Physiol Lung Cell Mol Physiol. 2016;310(9):L802–14. Available from: http://www.physiology.org/doi/10.1152/ajplung.00369.2015 PubMed DOI

Atkin-Smith GK, Tixeira R, Paone S, et al. A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat Commun. 2015;6:7439 Available from: http://www.nature.com/doifinder/10.1038/ncomms8439 PubMed DOI PMC

van der Vlist EJ, Nolte-’T Hoen EN, Stoorvogel W, et al. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 2012/06/23 2012;7(7):1311–1326. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22722367 PubMed

van der Pol E, van Gemert MJ, Sturk A, et al. Single vs. swarm detection of microparticles and exosomes by flow cytometry. J Thromb Haemost. 2012/03/08 2012;10(5):919–930. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22394434 PubMed

Pospichalova V, Svoboda J, Dave Z, et al. Simplified protocol for flow cytometry analysis of fluorescently labeled exosomes and microvesicles using dedicated flow cytometer. J Extracell Vesicles. 2015;4(1):25530 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.25530 PubMed DOI PMC

Tian Y, Ma L, Gong M, et al. Protein profiling and sizing of extracellular vesicles from colorectal cancer patients via flow cytometry. ACS Nano. 2018;12(1):671–680. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07782 PubMed DOI

McVey MJ, Spring CM, Kuebler WM. Improved resolution in extracellular vesicle populations using 405 instead of 488 nm side scatter. J Extracell Vesicles. 2018;7(1):1454776 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2018.1454776 PubMed DOI PMC

Nolan JP, Stoner SA. A trigger channel threshold artifact in nanoparticle analysis. Cytometry A. 2013;83(3):301–305. PubMed PMC

Arraud N, Linares R, Tan S, et al. Extracellular vesicles from blood plasma: determination of their morphology, size, phenotype and concentration. J Thromb Haemost. 2014;12(5):614–627. PubMed

Arraud N, Gounou C, Linares R, et al. A simple flow cytometry method improves the detection of phosphatidylserine-exposing extracellular vesicles. J Thromb Haemost. 2015;13(2):237–247. PubMed PMC

Maas SLN, de Vrij J, van der Vlist EJ, et al. Possibilities and limitations of current technologies for quantification of biological extracellular vesicles and synthetic mimics. J Control Release. 2015;200:87–96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168365914008384 PubMed PMC

de Vrij J, Maas SL, van Nispen M, et al. Quantification of nanosized extracellular membrane vesicles with scanning ion occlusion sensing. Nanomedicine (Lond). 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23384702 PubMed

Obeid S, Ceroi A, Mourey G, et al. Development of a NanoBioAnalytical platform for on-chip qualification and quantification of platelet-derived microparticles. Biosens Bioelectron. 2017;93:250–259. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0956566316308569 PubMed

Libregts SFWM, Arkesteijn GJA, Németh A, et al. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J Thromb Haemost. 2018;16(7):1423–1436. PubMed

van der Pol E, Hoekstra AG, Sturk A, et al. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost. 2010;8(12):2596–2607. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20880256 PubMed

Carnell-Morris P, Tannetta D, Siupa A, et al. Analysis of extracellular vesicles using fluorescence nanoparticle tracking analysis. Methods Mol Biol. 2017;1660:153–173. Available from: http://link.springer.com/10.1007/978-1-4939-7253-1_13 PubMed DOI

Takov K, Yellon DM, Davidson SM. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J Extracell Vesicles. 2017;6(1):1388731 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29184625 PubMed PMC

van der Pol E, Coumans FAW, Grootemaat AE, et al. Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. 2014;12(7):1182–1192. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24818656 PubMed

Dragovic RA, Gardiner C, Brooks AS, et al. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine. 2011;7(6):780–788. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21601655 PubMed PMC

Gardiner C, Ferreira YJ, Dragovic RA, et al. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2013;2:19671 Available from: PubMed PMC

Osteikoetxea X, Balogh A, Szabó-Taylor K, et al. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties. PLoS One. 2015;10(3):e0121184 Available from: http://dx.plos.org/10.1371/journal.pone.0121184 PubMed DOI PMC

Benmoussa A, Ly S, Shan ST, et al. A subset of extracellular vesicles carries the bulk of microRNAs in commercial dairy cow’s milk. J Extracell Vesicles. 2017;6(1):1401897 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1401897 PubMed DOI PMC

Mihály J, Deák R, Szigyártó IC, et al. Characterization of extracellular vesicles by IR spectroscopy: fast and simple classification based on amide and CH stretching vibrations. Biochim Biophys Acta. 2017;1859(3):459–466. Available from: http://linkinghub.elsevier.com/retrieve/pii/S000527361630390X PubMed

Turchinovich A, Weiz L, Langheinz A, et al. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011;39(16):7223–7233. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21609964 PubMed PMC

Arroyo JD, Chevillet JR, Kroh EM, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A. 2011;108(12):5003–5008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21383194 PubMed PMC

Vickers KC, Palmisano BT, Shoucri BM, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–433. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21423178 PubMed PMC

Duijvesz D, Versluis CYL, van der Fels CAM, et al. Immuno-based detection of extracellular vesicles in urine as diagnostic marker for prostate cancer. Int J Cancer. 2015;137(12):2869–2878. PubMed

Suárez H, Gámez-Valero A, Reyes R, et al. A bead-assisted flow cytometry method for the semi-quantitative analysis of extracellular vesicles. Sci Rep. 2017;7(1):11271 Available from: http://www.nature.com/articles/s41598-017-11249-2 PubMed PMC

Koliha N, Wiencek Y, Heider U, et al. A novel multiplex bead-based platform highlights the diversity of extracellular vesicles. J Extracell Vesicles. 2016;5:29975 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26901056 PubMed PMC

Xia Y, Liu M, Wang L, et al. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosens Bioelectron. 2017;92:8–15. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0956566317300635 PubMed

Liang K, Liu F, Fan J, et al. Nanoplasmonic quantification of tumor-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat Biomed Eng. 2017;1(4):0021 Available from: http://www.nature.com/articles/s41551-016-0021 PubMed PMC

Rupert DLM, Lässer C, Eldh M, et al. Determination of exosome concentration in solution using surface plasmon resonance spectroscopy. Anal Chem. 2014;86(12):5929–5936. Available from: http://pubs.acs.org/doi/10.1021/ac500931f PubMed DOI

Webber J, Clayton A. How pure are your vesicles? J Extracell Vesicles. 2013;2:19861 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009896 PubMed PMC

Maiolo D, Paolini L, Di Noto G, et al. Colorimetric nanoplasmonic assay to determine purity and titrate extracellular vesicles. Anal Chem. 2015;87(8):4168–4176. Available from: http://pubs.acs.org/doi/abs/10.1021/ac504861d PubMed DOI

Lai RC, Arslan F, Lee MM, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010;4(3):214–222. PubMed

Cvjetkovic A, Lotvall J, Lasser C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3:23111 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24678386 PubMed PMC

Valkonen S, van der Pol E, Böing A, et al. Biological reference materials for extracellular vesicle studies. Eur J Pharm Sci. 2017;98:4–16. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0928098716303578 PubMed

Minciacchi VR, You S, Spinelli C, et al. Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget. 2015;6(13):11327–11341. Available from: http://www.oncotarget.com/fulltext/3598 PubMed PMC

Keerthikumar S, Gangoda L, Liem M, et al. Proteogenomic analysis reveals exosomes are more oncogenic than ectosomes. Oncotarget. 2015;6(17):15375–15396. Available from: http://www.oncotarget.com/fulltext/3801 PubMed PMC

Haraszti RA, Didiot M-C, Sapp E, et al. High-resolution proteomic and lipidomic analysis of exosomes and microvesicles from different cell sources. J Extracell Vesicles. 2016;5(1):32570 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v5.32570 PubMed DOI PMC

Clark DJ, Fondrie WE, Liao Z, et al. Redefining the breast cancer exosome proteome by tandem mass tag quantitative proteomics and multivariate cluster analysis. Anal Chem. 2015;87(20):10462–10469. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b02586 PubMed DOI PMC

Durcin M, Fleury A, Taillebois E, et al. Characterisation of adipocyte-derived extracellular vesicle subtypes identifies distinct protein and lipid signatures for large and small extracellular vesicles. J Extracell Vesicles. 2017;6(1):1305677 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1305677 PubMed DOI PMC

Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci. 2016;113(8):E968–77. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1521230113 PubMed DOI PMC

Xu R, Greening DW, Rai A, et al. Highly-purified exosomes and shed microvesicles isolated from the human colon cancer cell line LIM1863 by sequential centrifugal ultrafiltration are biochemically and functionally distinct. Methods. 2015;87:11–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1046202315001541 PubMed

Willms E, Johansson HJ, Mäger I, et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci Rep. 2016;6(1):22519 Available from: http://www.nature.com/articles/srep22519 PubMed PMC

Meehan B, Rak J, Di Vizio D. Oncosomes - large and small: what are they, where they came from? J Extracell Vesicles. 2016;5:33109 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27680302 PubMed PMC

Sódar BW, Kittel Á, Pálóczi K, et al. Low-density lipoprotein mimics blood plasma-derived exosomes and microvesicles during isolation and detection. Sci Rep. 2016;6:24316 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087061 PubMed PMC

Karimi N, Cvjetkovic A, Jang SC, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75(15):2873–2886. Available from: http://link.springer.com/10.1007/s00018-018-2773-4 PubMed DOI PMC

Østergaard O, Nielsen CT, Iversen LV, et al. Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res. 2012;11(4):2154–2163. Available from: http://pubs.acs.org/doi/10.1021/pr200901p PubMed DOI

Musante L, Saraswat M, Duriez E, et al. Biochemical and physical characterisation of urinary nanovesicles following CHAPS treatment. PLoS One. 2012;7(7):e37279 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22808001 PubMed PMC

Van Deun J, Mestdagh P, Sormunen R, et al. The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. J Extracell Vesicles. 2014;3 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25317274 PubMed PMC

McKenzie AJ, Hoshino D, Hong NH, et al. KRAS-MEK Signaling Controls Ago2 Sorting into Exosomes. Cell Rep. 2016;15(5):978–987. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27117408 PubMed PMC

Melo SAA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell. 2014;26(5):707–721. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25446899 PubMed PMC

Buck AH, Coakley G, Simbari F, et al. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun. 2014;5(1):5488 Available from: http://www.nature.com/articles/ncomms6488 PubMed PMC

Tkach M, Kowal J, Zucchetti AE, et al. Qualitative differences in T-cell activation by dendritic cell-derived extracellular vesicle subtypes. Embo J. 2017;36(20):3012–3028. Available from: http://emboj.embopress.org/lookup/doi/10.15252/embj.201696003 PubMed DOI PMC

Jorgensen MM, Baek R, Varming K. Potentials and capabilities of the Extracellular Vesicle (EV) Array. J Extracell Vesicles. 2015;4:26048 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25862471 PubMed PMC

Gool EL, Stojanovic I, Schasfoort RBM, et al. Surface plasmon resonance is an analytically sensitive method for antigen profiling of extracellular vesicles. Clin Chem. 2017;63(10):1633–1641. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2016.271049 PubMed DOI

Zhu L, Wang K, Cui J, et al. Label-free quantitative detection of tumor-derived exosomes through surface plasmon resonance imaging. Anal Chem. 2014;86(17):8857–8864. Available from: http://pubs.acs.org/doi/10.1021/ac5023056 PubMed DOI PMC

Shao H, Im H, Castro CM, et al. New technologies for analysis of extracellular vesicles. Chem Rev. 2018;118(4):1917–1950. Available from: http://pubs.acs.org/doi/10.1021/acs.chemrev.7b00534 PubMed DOI PMC

Skotland T, Sandvig K, Llorente A. Lipids in exosomes: current knowledge and the way forward. Prog Lipid Res. 2017;66:30–41. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0163782716300492 PubMed

Record M, Carayon K, Poirot M, et al. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta. 2014;1841(1):108–120. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1388198113002199 PubMed

Nielsen MH, Beck-Nielsen H, Andersen MN, et al. A flow cytometric method for characterization of circulating cell-derived microparticles in plasma. J Extracell Vesicles. 2014;3(1):20795 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.20795 PubMed DOI PMC

de Gassart A, Geminard C, Fevrier B, et al. Lipid raft-associated protein sorting in exosomes. Blood. 2003;102(13):4336–4344. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12881314 PubMed

Gualerzi A, Niada S, Giannasi C, et al. Raman spectroscopy uncovers biochemical tissue-related features of extracellular vesicles from mesenchymal stromal cells. Sci Rep. 2017;7(1):9820 Available from: http://www.nature.com/articles/s41598-017-10448-1 PubMed PMC

Neri T, Lombardi S, Faìta F, et al. Pirfenidone inhibits p38-mediated generation of procoagulant microparticles by human alveolar epithelial cells. Pulm Pharmacol Ther. 2016;39:1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27237042 PubMed

de Rond L, van der Pol E, Hau CM, et al. Comparison of generic fluorescent markers for detection of extracellular vesicles by flow cytometry. Clin Chem. 2018;64(4):680–689. Available from: http://www.clinchem.org/lookup/doi/10.1373/clinchem.2017.278978 PubMed DOI

Ullal AJ, Pisetsky DS, Reich CF. Use of SYTO 13, a fluorescent dye binding nucleic acids, for the detection of microparticles in in vitro systems. Cytometry A. 2010;77(3):294–301. PubMed PMC

Sansone P, Savini C, Kurelac I, et al. Packaging and transfer of mitochondrial DNA via exosomes regulate escape from dormancy in hormonal therapy-resistant breast cancer. Proc Natl Acad Sci U S A. 2017;114(43):E9066–75. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1704862114 PubMed DOI PMC

Crescitelli R, Lässer C, Szabó TG, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2(1):20677 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24223256 PubMed PMC

Nolte-’t Hoen EN, Buermans HP, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22821563 PubMed PMC

Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 2013;4:2980 [2013/12/21]. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24356509 PubMed PMC

Vojtech L, Woo S, Hughes S, et al. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 2014;42(11):7290–7304. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gku347 PubMed DOI PMC

Tosar JP, Gambaro F, Sanguinetti J, et al. Assessment of small RNA sorting into different extracellular fractions revealed by high-throughput sequencing of breast cell lines. Nucleic Acids Res. 2015;43(11):5601–5616. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25940616 PubMed PMC

van Balkom BWM, Eisele AS, Pegtel DM, et al. Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles. 2015;4(1):26760 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.26760 PubMed DOI PMC

Li K, Rodosthenous RS, Kashanchi F, et al. Advances, challenges, and opportunities in extracellular RNA biology: insights from the NIH exRNA strategic workshop. JCI Insight. 2018;3(7). Available from: https://insight.jci.org/articles/view/98942 PubMed PMC

Chen M, Xu R, Ji H, et al. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep. 2016;6(1):38397 Available from: http://www.nature.com/articles/srep38397 PubMed PMC

Lai CP, Kim EY, Badr CE, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. 2015;6(May):7029. PubMed PMC

Ter-Ovanesyan D, Kowal EJK, Regev A, et al. Imaging of isolated extracellular vesicles using fluorescence microscopy. Methods Mol Biol. 2017;1660:233–241. Available from: http://link.springer.com/10.1007/978-1-4939-7253-1_19 PubMed DOI

Wu Y, Deng W, Klinke DJ. Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst. 2015;140(19):6631–6642. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26332016 PubMed PMC

Linares R, Tan S, Gounou C, et al. High-speed centrifugation induces aggregation of extracellular vesicles. J Extracell Vesicles. 2015;4(0):29509 Available from: http://www.journalofextracellularvesicles.net/index.php/jev/article/view/29509 PubMed PMC

Höög JL, Lötvall J. Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles. 2015;4:28680 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26563734 PubMed PMC

Sharma S, Rasool HI, Palanisamy V, et al. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. 2010;4(4):1921–1926. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20218655 PubMed PMC

Treps L, Perret R, Edmond S, et al. Glioblastoma stem-like cells secrete the pro-angiogenic VEGF-A factor in extracellular vesicles. J Extracell Vesicles. 2017;6(1):1359479 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1359479 PubMed DOI PMC

Chen C, Zong S, Wang Z, et al. Imaging and intracellular tracking of cancer-derived exosomes using single-molecule localization-based super-resolution microscope. ACS Appl Mater Interfaces. 2016;8(39):25825–25833. Available from: http://pubs.acs.org/doi/10.1021/acsami.6b09442 PubMed DOI

Mehdiani A, Maier A, Pinto A, et al. An innovative method for exosome quantification and size measurement. J Vis Exp. 2015;95:50974 Available from: http://www.jove.com/video/50974/an-innovative-method-for-exosome-quantification-and-size-measurement PubMed PMC

Tatischeff I, Larquet E, Falcón-Pérez JM, et al. Fast characterisation of cell-derived extracellular vesicles by nanoparticles tracking analysis, cryo-electron microscopy, and Raman tweezers microspectroscopy. J Extracell Vesicles. 2012;1(1):19179 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v1i0.19179 PubMed DOI PMC

Carney RP, Hazari S, Colquhoun M, et al. Multispectral optical tweezers for biochemical fingerprinting of CD9-positive exosome subpopulations. Anal Chem. 2017;89(10):5357–5363. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.7b00017 PubMed DOI PMC

Smith ZJ, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. J Extracell Vesicles. 2015;4(1):28533 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v4.28533 PubMed DOI PMC

Stoner SA, Duggan E, Condello D, et al. High sensitivity flow cytometry of membrane vesicles. Cytom Part A. 2016;89(2):196–206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26484737 PubMed

Nolan JP, Jones JC. Detection of platelet vesicles by flow cytometry. Platelets. 2017;28(3):256–262. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28277059 PubMed PMC

Sitar S, Kejžar A, Pahovnik D, et al. Size characterization and quantification of exosomes by asymmetrical-flow field-flow fractionation. Anal Chem. 2015;87(18):9225–9233. Available from: http://pubs.acs.org/doi/10.1021/acs.analchem.5b01636 PubMed DOI

Heusermann W, Hean J, Trojer D, et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol. 2016;213(2):173–184. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27114500 PubMed PMC

Wyss R, Grasso L, Wolf C, et al. Molecular and dimensional profiling of highly purified extracellular vesicles by fluorescence fluctuation spectroscopy. Anal Chem. 2014;86(15):7229–7233. Available from: http://pubs.acs.org/doi/10.1021/ac501801m PubMed DOI

Baietti MF, Zhang Z, Mortier E, et al. Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nat Cell Biol. 2012;14(7):677–685. PubMed

Erdbrügger U, Rudy CK, Etter ME, et al. Imaging flow cytometry elucidates limitations of microparticle analysis by conventional flow cytometry. Cytometry A. 2014;85(9):756–770. PubMed

Headland SE, Jones HR, Asv D, et al. Cutting-edge analysis of extracellular microparticles using ImageStream(X) imaging flow cytometry. Sci Rep. 2014;4(1):5237 Available from: http://www.nature.com/articles/srep05237 PubMed PMC

Lee K, Fraser K, Ghaddar B, et al. Multiplexed profiling of single extracellular vesicles. ACS Nano. 2018;12(1):494–503. Available from: http://pubs.acs.org/doi/10.1021/acsnano.7b07060 PubMed DOI PMC

Daaboul GG, Lopez CA, Yurt A, et al. Label-free optical biosensors for virus detection and characterization. IEEE J Sel Top Quantum Electron. 2012;18(4):1422–1433.

Daaboul GG, Freedman DS, Scherr SM, et al. Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses. PLoS One. 2017;12(6):e0179728. PubMed PMC

van der Pol E, Sturk A, van Leeuwen T, et al., ISTH-SSC-VB Working group . Standardization of extracellular vesicle measurements by flow cytometry through vesicle diameter approximation. J Thromb Haemost. 2018;16(6):1236–1245. PubMed

Cvjetkovic A, Jang SC, Konečná B, et al. Detailed analysis of protein topology of extracellular vesicles-evidence of unconventional membrane protein orientation. Sci Rep. 2016;6(1):36338 Available from: http://www.nature.com/articles/srep36338 PubMed PMC

Deregibus MC, Cantaluppi V, Calogero R, et al. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood. 2007;110(7):2440–2448. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2007-03-078709 PubMed DOI

Sharma A, Mariappan M, Appathurai S, et al. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol Biol. 2010;619:339–363. Available from: http://link.springer.com/10.1007/978-1-60327-412-8_20 PubMed DOI PMC

Sung BH, Weaver AM. Exosome secretion promotes chemotaxis of cancer cells. Cell Adh Migr. 2017;11(2):187–195. Available from: https://www.tandfonline.com/doi/full/10.1080/19336918.2016.1273307 PubMed DOI PMC

Osteikoetxea X, Sódar B, Németh A, et al. Differential detergent sensitivity of extracellular vesicle subpopulations. Org Biomol Chem. 2015;13(38):9775–9782. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26264754 PubMed

Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem. 2009;284(49):34211–34222. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M109.041152 PubMed DOI PMC

Franzen CA, Simms PE, Van Huis AF, et al. Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int. 2014;2014:619829 Available from: http://www.hindawi.com/journals/bmri/2014/619829/ PubMed PMC

Christianson HC, Svensson KJ, van Kuppevelt TH, et al. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci U S A. 2013;110(43):17380–17385. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1304266110 PubMed DOI PMC

Mulcahy LA, Pink RC, Carter DRF. Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. 2014;3:24641 Available from: https://www.tandfonline.com/doi/full/10.3402/jev.v3.24641 PubMed DOI PMC

Wahlgren J, Karlson TDL, Glader P, et al. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling. PLoS One. 2012;7(11):e49723 Available from: http://dx.plos.org/10.1371/journal.pone.0049723 PubMed DOI PMC

Szabó GT, Tarr B, Pálóczi K, et al. Critical role of extracellular vesicles in modulating the cellular effects of cytokines. Cell Mol Life Sci. 2014;71(20):4055–4067. Available from: http://link.springer.com/10.1007/s00018-014-1618-z PubMed DOI PMC

Gámez-Valero A, Monguió-Tortajada M, Carreras-Planella L, et al. Size-exclusion chromatography-based isolation minimally alters extracellular vesicles’ characteristics compared to precipitating agents. Sci Rep. 2016;6(1):33641 Available from: http://www.nature.com/articles/srep33641 PubMed PMC

Paolini L, Zendrini A, Di Noto G, et al. Residual matrix from different separation techniques impacts exosome biological activity. Sci Rep. 2016;6(1):23550 Available from: http://www.nature.com/articles/srep23550 PubMed PMC

Gyorgy B, Modos K, Pallinger E, et al. Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood. 2011;117(4):e39–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041717 PubMed

Benedikter BJ, Bouwman FG, Vajen T, et al. Ultrafiltration combined with size exclusion chromatography efficiently isolates extracellular vesicles from cell culture media for compositional and functional studies. Sci Rep. 2017;7(1):15297 Available from: http://www.nature.com/articles/s41598-017-15717-7 PubMed PMC

Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 2008;319(5867):1244–1247. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1153124 PubMed DOI

Figuera-Losada M, Stathis M, Dorskind JM, et al. Cambinol, a novel inhibitor of neutral sphingomyelinase 2 shows neuroprotective properties. PLoS One. 2015;10(5):e0124481 Available from: http://dx.plos.org/10.1371/journal.pone.0124481 PubMed DOI PMC

Dinkins MB, Enasko J, Hernandez C, et al. Neutral sphingomyelinase-2 deficiency ameliorates alzheimer’s disease pathology and improves cognition in the 5XFAD mouse. J Neurosci. 2016;36(33):8653–8667. Available from: http://www.jneurosci.org/lookup/doi/10.1523/JNEUROSCI.1429-16.2016 PubMed DOI PMC

Cruz FF, Borg ZD, Goodwin M, et al. Systemic administration of human bone marrow-derived mesenchymal stromal cell extracellular vesicles ameliorates aspergillus hyphal extract-induced allergic airway inflammation in immunocompetent mice. Stem Cells Transl Med. 2015;4(11):1302–1316. PubMed PMC

Villarroya-Beltri C, Baixauli F, Mittelbrunn M, et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat Commun. 2016;7:13588 Available from: http://www.nature.com/doifinder/10.1038/ncomms13588 PubMed DOI PMC

Savina A, Vidal M, Colombo MI. The exosome pathway in K562 cells is regulated by Rab11. J Cell Sci. 2002;115(Pt 12):2505–2515. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12045221 PubMed

Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(1):13–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19966785 PubMed

Hsu C, Morohashi Y, Yoshimura S-I, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol. 2010;189(2):223–232. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404108 PubMed PMC

Hyenne V, Apaydin A, Rodriguez D, et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J Cell Biol. 2015;211(1):27–37. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201504136 PubMed DOI PMC

Gross JC, Chaudhary V, Bartscherer K, et al. Active Wnt proteins are secreted on exosomes. Nat Cell Biol. 2012;14(10):1036–1045. Available from: http://www.nature.com/articles/ncb2574 PubMed

Imjeti NS, Menck K, Egea-Jimenez AL, et al. Syntenin mediates SRC function in exosomal cell-to-cell communication. Proc Natl Acad Sci U S A. 2017;114(47):12495–12500. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1713433114 PubMed DOI PMC

Sinha S, Hoshino D, Hong NH, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214(2):197–213. Available from: http://www.jcb.org/lookup/doi/10.1083/jcb.201601025 PubMed DOI PMC

Jackson CE, Scruggs BS, Schaffer JE, et al. Effects of inhibiting VPS4 support a general role for ESCRTs in extracellular vesicle biogenesis. Biophys J. 2017;113(6):1342–1352. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006349517305714 PubMed PMC

Chalmin F, Ladoire S, Mignot G, et al. Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 2010;120(2):457–471. Available from: http://www.jci.org/articles/view/40483 PubMed PMC

Montecalvo A, Larregina AT, Shufesky WJ, et al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood. 2012;119(3):756–766. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22031862 PubMed PMC

Savina A, Furlán M, Vidal M, et al. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem. 2003;278(22):20083–20090. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.M301642200 PubMed DOI

Minakaki G, Menges S, Kittel A, et al. Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype. Autophagy. 2018;14(1):98–119. Available from: https://www.tandfonline.com/doi/full/10.1080/15548627.2017.1395992 PubMed DOI PMC

Edgar JR, Manna PT, Nishimura S, et al. Tetherin is an exosomal tether. Elife. 2016;5:17180 Available from: https://elifesciences.org/articles/17180 PubMed PMC

Atai NA, Balaj L, van Veen H, et al. Heparin blocks transfer of extracellular vesicles between donor and recipient cells. J Neurooncol. 2013. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24002181 PubMed PMC

Wang Q, Lu Q. Plasma membrane-derived extracellular microvesicles mediate non-canonical intercellular NOTCH signaling. Nat Commun. 2017;8(1):709 Available from: http://www.nature.com/articles/s41467-017-00767-2 PubMed PMC

Nabhan JF, Hu R, Oh RS, et al. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A. 2012;109(11):4146–4151. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1200448109 PubMed DOI PMC

Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol. 2009;19(22):1875–1885. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982209017722 PubMed PMC

Burger D, Montezano AC, Nishigaki N, et al. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol. 2011;31(8):1898–1907. Available from: http://atvb.ahajournals.org/cgi/doi/10.1161/ATVBAHA.110.222703 PubMed DOI

Gao C, Li R, Liu Y, et al. Rho-kinase-dependent F-actin rearrangement is involved in the release of endothelial microparticles during IFN-α-induced endothelial cell apoptosis. J Trauma Acute Care Surg. 2012;73(5):1152–1160. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=01586154-201211000-00017 PubMed

Yu X, Xu J, Liu W, et al. Bubbles induce endothelial microparticle formation via a calcium-dependent pathway involving flippase inactivation and rho kinase activation. Cell Physiol Biochem. 2018;46(3):965–974. Available from: https://www.karger.com/Article/FullText/488825 PubMed

Di Vizio D, Kim J, Hager MH, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009;69(13):5601–5609. Available from: http://cancerres.aacrjournals.org/cgi/doi/10.1158/0008-5472.CAN-08-3860 PubMed DOI PMC

Schwechheimer C, Kuehn MJ. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat Rev Microbiol 2015;13(10):605–619. Available from: http://www.nature.com/articles/nrmicro3525 PubMed PMC

Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30(1):255–289. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25288114 PubMed

Romancino DP, Paterniti G, Campos Y, et al. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 2013;587(9):1379–1384. PubMed PMC

Booth AM, Fang Y, Fallon JK, et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol. 2006;172(6):923–935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533950 PubMed PMC

Hoang TQ, Rampon C, Freyssinet J-M, et al. A method to assess the migration properties of cell-derived microparticles within a living tissue. Biochim Biophys Acta. 2011;1810(9):863–866. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0304416511001061 PubMed

Menck K, Sönmezer C, Worst TS, et al. Neutral sphingomyelinases control extracellular vesicles budding from the plasma membrane. J Extracell Vesicles. 2017;6(1):1378056 Available from: https://www.tandfonline.com/doi/full/10.1080/20013078.2017.1378056 PubMed DOI PMC

Bobrie A, Colombo M, Krumeich S, et al. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles. 2012;1:18297. PubMed PMC

Peinado H, Alečković M, Lavotshkin S, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–891. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22635005 PubMed PMC

Kim DK, Kang B, Kim OY, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2 Available from: http://www.ncbi.nlm.nih.gov/pubmed/24009897 PubMed PMC

Kim D-K, Lee J, Kim SR, et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics. 2015;31(6):933–939. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25388151 PubMed PMC

Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450. PubMed PMC

Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics. 2009;9(21):4997–5000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19810033 PubMed

Subramanian SL, Kitchen RR, Alexander R, et al. Integration of extracellular RNA profiling data using metadata, biomedical ontologies and linked data technologies. J Extracell Vesicles. 2015;4:27497 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26320941 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

miRNA in blood-brain barrier repair: role of extracellular vesicles in stroke recovery

. 2025 ; 19 () : 1503193. [epub] 20250207

Seasonal influence on miRNA expression dynamics of extracellular vesicles in equine follicular fluid

. 2024 Oct 09 ; 15 (1) : 137. [epub] 20241009

The role of small extracellular vesicles and microRNA as their cargo in the spinal cord injury pathophysiology and therapy

. 2024 ; 18 () : 1400413. [epub] 20240507

Investigation of long non-coding RNAs in extracellular vesicles from low-volume blood serum specimens of colorectal cancer patients

. 2024 Apr 03 ; 24 (1) : 67. [epub] 20240403

Strategies for labelling of exogenous and endogenous extracellular vesicles and their application for in vitro and in vivo functional studies

. 2024 Mar 09 ; 22 (1) : 171. [epub] 20240309

Proteomic analysis of ascitic extracellular vesicles describes tumour microenvironment and predicts patient survival in ovarian cancer

. 2024 Mar ; 13 (3) : e12420.

Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration

. 2024 Feb 13 ; 9 (6) : 6184-6218. [epub] 20240131

Protein cargo in extracellular vesicles as the key mediator in the progression of cancer

. 2024 Jan 10 ; 22 (1) : 25. [epub] 20240110

Cellular and Molecular Connections Between Bone Fracture Healing and Exosomes

. 2023 Nov 28 ; 72 (5) : 565-574.

Circulating exosomal miRNAs as a promising diagnostic biomarker in cancer

. 2023 Oct 27 ; 72 (S3) : S193-S207.

Modified activities of macrophages' deubiquitinating enzymes after Francisella infection

. 2023 ; 14 () : 1252827. [epub] 20230929

Autophagy modulators influence the content of important signalling molecules in PS-positive extracellular vesicles

. 2023 May 24 ; 21 (1) : 120. [epub] 20230524

Special considerations for studies of extracellular vesicles from parasitic helminths: A community-led roadmap to increase rigour and reproducibility

. 2023 Jan ; 12 (1) : e12298.

Dynamic release of neuronal extracellular vesicles containing miR-21a-5p is induced by hypoxia

. 2023 Jan ; 12 (1) : e12297.

Cell-Taxi: Mesenchymal Cells Carry and Transport Clusters of Cancer Cells

. 2022 Dec ; 18 (50) : e2203515. [epub] 20221028

Small-extracellular vesicles and their microRNA cargo from porcine follicular fluids: the potential association with oocyte quality

. 2022 Jun 20 ; 13 (1) : 82. [epub] 20220620

Unveiling the Native Morphology of Extracellular Vesicles from Human Cerebrospinal Fluid by Atomic Force and Cryogenic Electron Microscopy

. 2022 May 27 ; 10 (6) : . [epub] 20220527

Huntingtin Co-Isolates with Small Extracellular Vesicles from Blood Plasma of TgHD and KI-HD Pig Models of Huntington's Disease and Human Blood Plasma

. 2022 May 17 ; 23 (10) : . [epub] 20220517

Flow Cytometry Analysis of Blood Large Extracellular Vesicles in Patients with Multiple Sclerosis Experiencing Relapse of the Disease

. 2022 May 17 ; 11 (10) : . [epub] 20220517

Cord Blood Extracellular Vesicles Analyzed by Flow Cytometry with Thresholding Using 405 nm or 488 nm Laser Leads to Concurrent Results

. 2021 Jul 22 ; 11 (8) : . [epub] 20210722

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...