The Pros and Cons of Using Oat in a Gluten-Free Diet for Celiac Patients
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31581722
PubMed Central
PMC6835965
DOI
10.3390/nu11102345
PII: nu11102345
Knihovny.cz E-resources
- Keywords
- amylase/trypsin inhibitors, celiac disease, gluten-free diet, gluten-free oat, oat,
- MeSH
- Diet, Gluten-Free * adverse effects MeSH
- Celiac Disease diagnosis diet therapy immunology MeSH
- Gliadin adverse effects immunology MeSH
- Risk Assessment MeSH
- Edible Grain * adverse effects classification immunology MeSH
- Clinical Decision-Making MeSH
- Food Contamination MeSH
- Humans MeSH
- Nutritive Value MeSH
- Avena * adverse effects classification immunology MeSH
- Patient Selection MeSH
- Recommended Dietary Allowances MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Gliadin MeSH
A therapeutic gluten-free diet often has nutritional limitations. Nutritional qualities such as high protein content, the presence of biologically active and beneficial substances (fiber, beta-glucans, polyunsaturated fatty acids, essential amino acids, antioxidants, vitamins, and minerals), and tolerance by the majority of celiac patients make oat popular for use in gluten-free diet. The health risk of long-time consumption of oat by celiac patients is a matter of debate. The introduction of oat into the diet is only recommended for celiac patients in remission. Furthermore, not every variety of oat is also appropriate for a gluten-free diet. The risk of sensitization and an adverse immunologically mediated reaction is a real threat in some celiac patients. Several unsolved issues still exist which include the following: (1) determination of the susceptibility markers for the subgroup of celiac patients who are at risk because they do not tolerate dietary oat, (2) identification of suitable varieties of oat and estimating the safe dose of oat for the diet, and (3) optimization of methods for detecting the gliadin contamination in raw oat used in a gluten-free diet.
See more in PubMed
Smulders M.J.M., van de Wiel C.C.M., van den Broeck H.C., van der Meer I.M., Israel-Hoevelaken T.P.M., Timmer R.D., van Dinter B.J., Braun S., Gilissen L.J.W.J. Oats in healthy gluten-free and regular diets: A perspective. Food Res. Int. 2018;110:3–10. doi: 10.1016/j.foodres.2017.11.031. PubMed DOI
Pinto-Sánchez M.I., Causada-Calo N., Bercik P., Ford A.C., Murray J.A., Armstrong D., Semrad C., Kupfer S.S., Alaedini A., Moayyedi P., et al. Safety of adding oats to a gluten-free diet for patients with celiac disease: Systematic review and meta-analysis of clinical and observational studies. Gastroenterology. 2017;153:395–409.e3. doi: 10.1053/j.gastro.2017.04.009. PubMed DOI
Sapone A., Bai J.C., Ciacci C., Dolinsek J., Green P.H., Hadjivassiliou M., Kaukinen K., Rostami K., Sanders D.S., Schumann M., et al. Spectrum of gluten-related disorders: Consensus on new nomenclature and classification. BMC Med. 2012;10:13. doi: 10.1186/1741-7015-10-13. PubMed DOI PMC
Boettcher E., Crowe S.E. Dietary proteins and functional gastrointestinal disorders. Am. J. Gastroenterol. 2013;108:728–736. doi: 10.1038/ajg.2013.97. PubMed DOI
El-Salhy M., Hatlebakk J.G., Gilja O.H., Hausken T. The relation between celiac disease, nonceliac gluten sensitivity and irritable bowel syndrome. Nutr. J. 2015;14:92. doi: 10.1186/s12937-015-0080-6. PubMed DOI PMC
Hoffmanová I., Sánchez D., Tučková L., Tlaskalová-Hogenová H. Celiac disease and liver disorders: From putative pathogenesis to clinical implications. Nutrients. 2018;10:892. doi: 10.3390/nu10070892. PubMed DOI PMC
Elli L., Marinoni B. Gluten rhapsody. Nutrients. 2019;11:589. doi: 10.3390/nu11030589. PubMed DOI PMC
Sanders D.S., Patel D., Stephenson T.J., Ward A.M., McCloskey E.V., Hadjivassiliou M., Lobo A.J. A primary care cross-sectional study of undiagnosed adult coeliac disease. Eur. J. Gastoenterol. Hepatol. 2003;15:407–413. doi: 10.1097/00042737-200304000-00012. PubMed DOI
Dubé C., Rostom A., Sy R., Cranney A., Saloojee N., Garritty C., Sampson M., Zhang L., Yazdi F., Mamaladze V., et al. The prevalence of celiac disease in average-risk and at-risk Western European populations: A systematic review. Gastroenterology. 2005;128(Suppl. 1):S57–S67. doi: 10.1053/j.gastro.2005.02.014. PubMed DOI
Lohi S., Mustalahti K., Kaukinen K., Laurila K., Collin P., Rissanen H., Lohi O., Bravi E., Gasparin M., Reunanen A., et al. Increasing prevalence of coeliac disease over time. Aliment. Pharmacol. Ther. 2007;26:1217–1225. doi: 10.1111/j.1365-2036.2007.03502.x. PubMed DOI
Catassi C., Kryszak D., Bhatti B., Sturgeon C., Helzlsouer K., Clipp S.L., Gelfond D., Puppa E., Sferruzza A., Fasano A. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Ann. Med. 2010;42:530–538. doi: 10.3109/07853890.2010.514285. PubMed DOI
Rubio-Tapia A., Ludvigsson J.F., Brantner T.L., Murray J.A., Everhart J.E. The prevalence of celiac disease in the United States. Am. J. Gastroenterol. 2012;107:1538–1544. doi: 10.1038/ajg.2012.219. PubMed DOI
Ludvigsson J.F., Rubio-Tapia A., van Dyke C.T., Melton L.J., 3rd, Zinsmeister A.R., Lahr B.D., Murray J.A. Increasing incidence of celiac disease in a North American population. Am. J. Gastroenterol. 2013;108:818–824. doi: 10.1038/ajg.2013.60. PubMed DOI PMC
Catassi C., Fasano A. Celiac disease diagnosis: Simple rules are better than complicated algorithms. Am. J. Med. 2010;123:691–693. doi: 10.1016/j.amjmed.2010.02.019. PubMed DOI
Husby S., Koletzko S., Korponay-Szabó I.R., Mearin M.L., Phillips A., Shamir R., Troncone R., Giersiepen K., Branski D., Catassi C., et al. ESPGHAN Working Group on Coeliac Disease Diagnosis, ESPGHAN Gastroenterology Committee, European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2012;54:136–160. PubMed
Nevoral J., Kotalova R., Hradsky O., Valtrova V., Zarubova K., Lastovicka J., Neubertova E., Trnkova M., Bronsky J. Symptom positivity is essential for omitting biopsy in children with suspected celiac disease according to the new ESPGHAN guidelines. Eur. J. Pediatr. 2014;173:497–502. doi: 10.1007/s00431-013-2215-0. PubMed DOI
Björck S., Lindehammer S.R., Fex M., Agardh D. Serum cytokine pattern in young children with screening detected coeliac disease. Clin. Exp. Immunol. 2015;179:230–235. doi: 10.1111/cei.12454. PubMed DOI PMC
Balakireva A.V., Zamyatnin A.A. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients. 2016;8:644. doi: 10.3390/nu8100644. PubMed DOI PMC
Wolf J., Petroff D., Richter T., Auth M.K.H., Uhlig H.H., Laass M.W., Lauenstein P., Krahl A., Händel N., de Laffolie J., et al. Validation of antibody-based strategies for diagnosis of pediatric celiac disease without biopsy. Gastroenterology. 2017;153:410–419.e17. doi: 10.1053/j.gastro.2017.04.023. PubMed DOI
Shewry P.R. Wheat. J. Exp. Bot. 2009;60:1537–1553. doi: 10.1093/jxb/erp058. PubMed DOI
Peterson D.M. Composition and Nutritional Characteristics of Oat Grain and Products. In: Marshall H.G., Sorrels M.E., editors. Oat Science and Technology. American Society of Agronomy and Crop Science Society of America; Madison, WI, USA: 1992. pp. 265–292.
Peterson D.M. Oat antioxidants. J. Cereal Sci. 2001;33:115–129. doi: 10.1006/jcrs.2000.0349. DOI
Meydani M. Potential health benefits of avenanthramides of oats. Nutr. Rev. 2009;67:731–735. doi: 10.1111/j.1753-4887.2009.00256.x. PubMed DOI
Aborus N.E., Šaponjac V.T., Čanadanović-Brunet J., Ćetković G., Hidalgo A., Vulić J., Šeregelj V. Sprouted and freeze-dried wheat and oat seeds—Phytochemical profile and in vitro biological activities. Chem. Biodivers. 2018;15:e1800119. doi: 10.1002/cbdv.201800119. PubMed DOI
Singh R., De S., Belkheir A. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: An overview. Crit. Rev. Food. Sci. Nutr. 2013;53:126–144. doi: 10.1080/10408398.2010.526725. PubMed DOI
Wong R.H., Wong R.H., Howe P.R., Coates A.M., Buckley J.D., Berry N.M. Chronic consumption of a wild green oat extract (Neuravena) improves brachial flow-mediated dilatation and cerebrovascular responsiveness in older adults. J. Hypertens. 2013;31:192–200. doi: 10.1097/HJH.0b013e32835b04d4. PubMed DOI
Wani S.A., Shah T.R., Bazaria B., Nayik G.A., Gull A., Muzaffar K., Kumar P. Oats as a functional food: A review. Univers. J. Pharm. 2014;3:14–20.
Esfandi R., Willmore W.G., Tsopmo A. Peptidomic analysis of hydrolyzed oat bran proteins, and their in vitro antioxidant and metal chelating properties. Food Chem. 2019;279:49–57. doi: 10.1016/j.foodchem.2018.11.110. PubMed DOI
Comino I., Bernardo D., Bancel E., de Lourdes Moreno M., Sánchez B., Barro F., Šuligoj T., Ciclitira P.J., Cebolla Á., Knight S.C., et al. Identification and molecular characterization of oat peptides implicated on coeliac immune response. Food Nutr. Res. 2016;60:30324. doi: 10.3402/fnr.v60.30324. PubMed DOI PMC
Gilissen L.J.W.J., van der Meer I.M., Smulders M.J.M. Why oats are safe and healthy for celiac disease patients. Med. Sci. (Basel) 2016;4:21. doi: 10.3390/medsci4040021. PubMed DOI PMC
Hardy M.Y., Tye-Din J.A., Stewart J.A., Schmitz F., Dudek N.L., Hanchapola I., Purcell A.W., Anderson R.P. Ingestion of oats and barley in patients with celiac disease mobilizes cross-reactive T cells activated by avenin peptides and immuno-dominant hordein peptides. J. Autoimmun. 2015;56:56–65. doi: 10.1016/j.jaut.2014.10.003. PubMed DOI
Lionetti E., Gatti S., Galeazzi T., Caporelli N., Francavilla R., Cucchiara S., Roggero P., Malamisura B., Iacono G., Tomarchio S., et al. Safety of oats in children with celiac disease: A double-blind, randomized, placebo-controlled trial. J. Pediatr. 2018;194:116–122.e2. doi: 10.1016/j.jpeds.2017.10.062. PubMed DOI
Tuire I., Marja-Leena L., Teea S., Katri H., Jukka P., Päivi S., Heini H., Markku M., Pekka C., Katri K. Persistent duodenal intraepithelial lymphocytosis despite a long-term strict gluten-free diet in celiac disease. Am. J. Gastroenterol. 2012;107:1563–1569. doi: 10.1038/ajg.2012.220. PubMed DOI
Lundin K.E.A., Nilsen E.M., Scott H.G., Løberg E.M., Gjøen A., Bratlie J., Skar V., Mendez E., Løvik A., Kett K. Oats induced villous atrophy in coeliac disease. Gut. 2003;52:1649–1652. doi: 10.1136/gut.52.11.1649. PubMed DOI PMC
Arentz-Hansen H., Fleckenstein B., Molberg O., Scott H., Koning F., Jung G., Roepstorff P., Lundin K.E.A., Sollid L.M. The molecular basis for oat intolerance in patients with celiac disease. PLoS Med. 2004;1:e1. doi: 10.1371/journal.pmed.0010001. PubMed DOI PMC
Silano M., Pozo E.P., Uberti F., Manferdelli S., Del Pinto T., Felli C., Budelli A., Vincentini O., Restani P. Diversity of oat varieties in eliciting the early inflammatory events in celiac disease. Eur. J. Nutr. 2014;53:1177–1186. doi: 10.1007/s00394-013-0617-4. PubMed DOI PMC
Comino I., Moreno Mde L., Sousa C. Role of oats in celiac disease. World J. Gastroenterol. 2015;21:11825–11831. doi: 10.3748/wjg.v21.i41.11825. PubMed DOI PMC
Poley J.R. The gluten-free diet: Can oats and wheat starch be part of it? J. Am. Coll. Nutr. 2017;36:1–8. doi: 10.1080/07315724.2015.1085815. PubMed DOI
La Vieille S., Pulido O.M., Abbott M., Koerner T.B., Godefroy S. Celiac disease and gluten-free oats: A Canadian position based on a literature review. Can. J. Gastroenterol. Hepatol. 2016;2016:1870305. doi: 10.1155/2016/1870305. PubMed DOI PMC
Frič P., Gabrovská D., Nevoral J. Celiac disease, gluten-free diet, and oats. Nutr. Rev. 2011;69:107–115. doi: 10.1111/j.1753-4887.2010.00368.x. PubMed DOI
Mickowska B., Litwinek D., Gambuś H. Oat raw materials and bakery products—Amino acid composition and celiac immunoreactivity. Acta. Sci. Pol. Technol. Aliment. 2016;15:89–97. doi: 10.17306/J.AFS.2016.1.9. PubMed DOI
Codex Alimentarius International Food Standards. Standard for Foods for Special Dietary Use for Persons Intolerant to Gluten. CODEX STAN 118-1979. [(accessed on 16 August 2019)]; Available online: http://www.fao.org/fao-who-codexalimentarius/codex-texts/list-standards/en/
Sharma G.M., Rallabhandi P., Williams K.M., Pahlavan A. Characterization of Antibodies for Grain-Specific Gluten Detection. J. Food Sci. 2016;81:T810–T816. doi: 10.1111/1750-3841.13241. PubMed DOI
Panda R., Boyer M., Garber E.A.E. A multiplex competitive ELISA for the detection and characterization of gluten in fermented-hydrolyzed foods. Anal. Bioanal. Chem. 2017;409:6959–6973. doi: 10.1007/s00216-017-0677-z. PubMed DOI
Lexhaller B., Tompos C., Scherf K.A. Fundamental study on reactivities of gluten protein types from wheat, rye and barley with five sandwich ELISA test kits. Food Chem. 2017;237:320–330. doi: 10.1016/j.foodchem.2017.05.121. PubMed DOI
Scherf K.A., Wiesser H., Koehler P. Improved Quantitation of Gluten in Wheat Starch for Celiac Disease Patients by Gel-Permeation High-Performance Liquid Chromatography with Fluorescence Detection (GP-HPLC-FLD) J. Agric. Food Chem. 2016;64:7622–7631. doi: 10.1021/acs.jafc.6b02512. PubMed DOI
Lacorn M., Weiss T., Klass N., Bird P., Benzinger M.J., Agin J., Goins D. The Validation of the RIDA®QUICK Gliadin for AOAC Research Institute. J. AOAC Int. 2018;101:1548–1557. doi: 10.5740/jaoacint.17-0467. PubMed DOI
Funari R., Terracciano I., Della Ventura B., Ricci S., Cardi T., D´Agostino N., Velotta R. Label-Free Detection of Gliadin in Food by Quartz Crystal Microbalance-Based Immunosensor. J. Agric. Food Chem. 2017;65:1281–1289. doi: 10.1021/acs.jafc.6b04830. PubMed DOI
Manfredi A., Giannetto M., Mattarozzi M., Costantini M., Mucchino C., Careri M. Competitive immunosensor based on gliadin immobilization on disposable carbon-nanogold screen-printed electrodes for rapid determination of celiotoxic prolamins. Anal. Bioanal. Chem. 2016;408:7289–7298. doi: 10.1007/s00216-016-9494-z. PubMed DOI
Ng E., Nadeau K.C., Wang S.X. Giant magnetoresistive sensor array for sensitive and specific multiplexed food allergen detection. Biosens. Bioelectron. 2016;80:359–365. doi: 10.1016/j.bios.2016.02.002. PubMed DOI
Schalk K., Lang C., Wieser H., Koehler P., Scherf K.A. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry. Sci. Rep. 2017;7:45092. doi: 10.1038/srep45092. PubMed DOI PMC
Vatansever B., Muñoz A., Klein C.L., Reinert K. Development and optimisation of a generic micro LC-ESI-MS method for the qualitative and quantitative determination of 30-mer toxic gliadin peptides in wheat flour for food analysis. Anal. Bioanal. Chem. 2017;409:989–997. doi: 10.1007/s00216-016-0013-z. PubMed DOI
Bromilow S., Gethings L.A., Buckley M., Bromley M., Shewry P.R., Langridge J.I., Clare Mills E.N. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J. Proteomics. 2017;163:67–75. doi: 10.1016/j.jprot.2017.03.026. PubMed DOI PMC
Garrido-Maestu A., Azinheiro S., Fuciños P., Carvalho J., Prado M. Highly sensitive detection of gluten-containing cereals in food samples by real-time Loop-mediated isothermal AMPlification (qLAMP) and real-time polymerase chain reaction (qPCR) Food Chem. 2018;246:156–163. doi: 10.1016/j.foodchem.2017.11.005. PubMed DOI
Kahlenberg F., Sanchez D., Lachmann I., Tuckova L., Tlaskalova H., Méndez E., Mothes T. Monoclonal antibody R5 for detection of putatively coeliac-toxic gliadin peptides. Eur. Food Res. Technol. 2006;222:78–82. doi: 10.1007/s00217-005-0100-4. DOI
Sánchez D., Tučková L., Burkhard M., Plicka J., Mothes T., Hoffmanová I., Tlaskalová-Hogenová H. Specificity analysis of anti-gliadin mouse monoclonal antibodies used for detection of gliadin in food for gluten-free diet. J. Agric. Food Chem. 2007;55:2627–2632. doi: 10.1021/jf0630421. PubMed DOI
Sánchez D., Champier G., Cuvillier A., Cogné M., Pekáriková A., Tlaskalová-Hogenová H., Hoffmanová I., Drastich P., Mothes T., Tučková L. Similarity of fine specificity of IgA anti-gliadin antibodies between patients with celiac disease and humanized α1KI mice. J. Agric. Food Chem. 2011;59:3092–3100. doi: 10.1021/jf1044519. PubMed DOI
Gutierrez C., Sanchez-Monge R., Gomez L., Ruiz-Tapiador M., Castañera P., Salcedo G. α-Amylase activities of agricultural insect pests are specifically affected by different inhibitor preparations from wheat and barley endosperms. Plant Sci. 1990;72:37–44. doi: 10.1016/0168-9452(90)90184-P. DOI
Gutierrez C., Garcia-Casado G., Sanchez-Monge R., Gomez L., Castañera P., Salcedo G. Three inhibitor types from wheat endosperm are differentially active against α-amylases of Lepidoptera pests. Entomol. Exp. Appl. 1993;66:47–52. doi: 10.1111/j.1570-7458.1993.tb00691.x. DOI
Franco O.L., Rigden D.J., Melo F.R., Grossi-de-Sà M.F. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases: Structure, function and potential for crop protection. Eur. J. Biochem. 2002;269:397–412. doi: 10.1046/j.0014-2956.2001.02656.x. PubMed DOI
Gazza L., Taddei F., Conti S., Gazzelloni G., Muccilli V., Janni M., D´Ovidio R., Alfieri M., Redaelli R., Pogna N.E. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Mol. Genet. Genom. 2015;290:39–54. doi: 10.1007/s00438-014-0894-5. PubMed DOI
Gazza L., Gazzelloni G., Taddei F., Latini A., Muccilli V., Alfieri M., Conti S., Redaelli R., Pogna N.E. The starch-bound alpha-amylase/trypsin-inhibitors in Avena. Mol. Genet. Genom. 2016;291:2043–2054. doi: 10.1007/s00438-016-1238-4. PubMed DOI
Altenbach S.B., Vensel W.H., Dupont F.M. The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res. Notes. 2011;4:242. doi: 10.1186/1756-0500-4-242. PubMed DOI PMC
Junker Y., Zeissig S., Kim S.J., Barisani D., Weiser H., Leffler D.A., Zavallos V., Libermann T.A., Dillon S., Freitag T.L., et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J. Exp. Med. 2012;209:2395–2408. doi: 10.1084/jem.20102660. PubMed DOI PMC
Schuppan D., Zevallos V. Wheat amylase trypsin inhibitors as nutritional activators of innate immunity. Dig. Dis. 2015;33:260–263. doi: 10.1159/000371476. PubMed DOI
Zevallos V.F., Raker V., Tenzer S., Jimenez-Calvente C., Ashfaq-Khan M., Rüssel N., Pickert G., Schild H., Steinbrink K., Schuppan D. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology. 2017;152:1100–1113.e12. doi: 10.1053/j.gastro.2016.12.006. PubMed DOI
Sánchez D., Štěpánová Honzová S., Hospodková M., Hoffmanová I., Hábová V., Halada P., Tlaskalová-Hogenová H., Tučková L. Occurrence of serum antibodies against wheat alpha-amylase inhibitor 0.19 in celiac disease. Physiol. Res. 2018;67:613–622. doi: 10.33549/physiolres.933876. PubMed DOI
Huebener S., Tanaka C.K., Uhde M., Zone J.J., Vensel W.H., Kasarda D.D., Beams L., Briani C., Green P.H., Altenbach S.B., et al. Specific nongluten proteins of wheat are novel target antigens in celiac disease humoral response. J. Proteome Res. 2015;14:503–511. doi: 10.1021/pr500809b. PubMed DOI PMC
Wahab P.J., Meijer J.W., Mulder C.J. Histologic follow-up of people with celiac disease on a gluten-free diet: Slow and incomplete recovery. Am. J. Clin. Pathol. 2002;118:459–463. doi: 10.1309/EVXT-851X-WHLC-RLX9. PubMed DOI
Tursi A., Brandimarte G., Giorgetti G.M. Prevalence of antitissue transglutaminase antibodies in different degrees of intestinal damage in celiac disease. J. Clin. Gastroenterol. 2003;36:219–221. doi: 10.1097/00004836-200303000-00007. PubMed DOI
Osman M., Taha B., Al Duboni G. Assessment of the response to gluten-free diet in an Iraqi population with coeliac disease. A histological and serological follow-up study. Arch. Med. Sci. 2014;10:294–299. doi: 10.5114/aoms.2012.31297. PubMed DOI PMC
Pekki H., Kurppa K., Mäki M., Huhtala H., Laurila K., Ilus T., Kaukinen K. Performing routine follow-up biopsy 1 year after diagnosis does not affect long-term outcomes in coeliac disease. Aliment. Pharmacol. Ther. 2017;45:1459–1468. doi: 10.1111/apt.14048. PubMed DOI
Burger J.P.W., de Brouwer B., IntHout J., Wahab P.J., Tummers M., Drenth J.P.H. Systematic review with meta-analysis: Dietary adherence influences normalization of health-related quality of life in coeliac disease. Clin. Nutr. 2017;36:399–406. doi: 10.1016/j.clnu.2016.04.021. PubMed DOI
Biesiekierski J.R., Newnham E.D., Shepherd S.J., Muir J.G., Gibson P.R. Characterization of adults with a self-diagnosis of nonceliac gluten sensitivity. Nutr. Clin. Pract. 2014;29:505–509. doi: 10.1177/0884533614529163. PubMed DOI
Chan T.D., Brink R. Affinity-based selection and the germinal center response. Immunol. Rev. 2012;247:11–23. doi: 10.1111/j.1600-065X.2012.01118.x. PubMed DOI
Gelderman K.A., Drop A.C., Trouw L.A., Bontkes H.J., Bouma G., van Hoogstraten I.M., von Blomberg B.M. Serum autoantibodies directed against transglutaminase-2 have a low avidity compared with alloantibodies against gliadin in coeliac disease. Clin. Exp. Immunol. 2014;177:86–93. doi: 10.1111/cei.12302. PubMed DOI PMC
Stamnaes J., Iversen R., du Pré M.F., Chen X., Sollid L.M. Enhanced B-cell receptor recognition of the autoantigen transglutaminase 2 by efficient catalytic self-multimerization. PLoS ONE. 2015;10:e0134922. doi: 10.1371/journal.pone.0134922. PubMed DOI PMC
Caminero A., McCarville J.L., Zevallos V.F., Pigrau M., Yu X.B., Jury J., Galipeau H.J., Clarizio A.V., Casqueiro J., Murray J.A., et al. Lactobacilli degrade wheat amylase trypsin inhibitors to reduce intestinal dysfunction induced by immunogenic wheat proteins. Gastroenterology. 2019;156:2266–2280. doi: 10.1053/j.gastro.2019.02.028. PubMed DOI
Wu B., Munkhtuya Y., Li J., Hu Y., Zhang Q., Zhang Z. Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Sci. Rep. 2018;8:16248. doi: 10.1038/s41598-018-34505-5. PubMed DOI PMC
Keith B.K., Burns E.E., Bothner B., Carey C.C., Mazurie A.J., Hilmer J.K., Biyiklioglu S., Budak H., Dyer W.E. Intensive herbicide use has selected for constitutively elevated levels of stress-responsive mRNAs and proteins in multiple herbicide-resistant Avena fatua L. Pest. Manag. Sci. 2017;73:2267–2281. doi: 10.1002/ps.4605. PubMed DOI
Takahashi D., Kawamura Y., Uemura M. Changes of detergent-resistant plasma membrane proteins in oat and rye during cold acclimation: Association with differential freezing tolerance. J. Proteom. Res. 2013;12:4998–5011. doi: 10.1021/pr400750g. PubMed DOI
Chen L., Chen Q., Kong L., Xia F., Yan H., Zhu Y., Mao P. Proteomic and physiological analysis of the response of oat (Avena sativa) seeds to heat stress under different moisture conditions. Front Plant Sci. 2016;7:896. doi: 10.3389/fpls.2016.00896. PubMed DOI PMC
Zhu F. Structures, properties, modifications, and uses of oat starch. Food Chem. 2017;229:329–340. doi: 10.1016/j.foodchem.2017.02.064. PubMed DOI