Tau-Reactive Endogenous Antibodies: Origin, Functionality, and Implications for the Pathophysiology of Alzheimer's Disease
Language English Country Egypt Media electronic-ecollection
Document type Journal Article, Review
PubMed
31687413
PubMed Central
PMC6811779
DOI
10.1155/2019/7406810
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease etiology metabolism pathology therapy MeSH
- Autoantigens immunology MeSH
- Autoantibodies blood immunology MeSH
- Immunotherapy MeSH
- Immunoglobulins, Intravenous therapeutic use MeSH
- Humans MeSH
- Disease Susceptibility * MeSH
- tau Proteins immunology metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Autoantigens MeSH
- Autoantibodies MeSH
- Immunoglobulins, Intravenous MeSH
- tau Proteins MeSH
In Alzheimer's disease (AD), tau pathology manifested by the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a promising therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been documented both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.
See more in PubMed
Jack C. R., Jr., Knopman D. S., Jagust W. J., et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology. 2010;9(1):119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC
Ittner L. M., Götz J. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nature Reviews Neuroscience. 2011;12(2):67–72. doi: 10.1038/nrn2967. PubMed DOI
Ovsepian S. V., O’Leary V. B., Zaborszky L., Ntziachristos V., Dolly J. O. Amyloid Plaques of Alzheimer’s Disease as Hotspots of Glutamatergic Activity. The Neuroscientist. 2018;(article 1073858418791128) doi: 10.1177/1073858418791128. PubMed DOI PMC
Binder L. I., Frankfurter A., Rebhun L. I. The distribution of tau in the mammalian central nervous system. Journal of Cell Biology. 1985;101(4):1371–1378. doi: 10.1083/jcb.101.4.1371. PubMed DOI PMC
Kadavath H., Hofele R. V., Biernat J., et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(24):7501–7506. doi: 10.1073/pnas.1504081112. PubMed DOI PMC
Kempf M., Clement A., Faissner A., Lee G., Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. The Journal of Neuroscience. 1996;16(18):5583–5592. doi: 10.1523/JNEUROSCI.16-18-05583.1996. PubMed DOI PMC
Trinczek B., Ebneth A., Mandelkow E. M., Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. Journal of Cell Science. 1999;112(14):2355–2367. PubMed
Dixit R., Ross J. L., Goldman Y. E., Holzbaur E. L. F. Differential regulation of dynein and kinesin motor proteins by tau. Science. 2008;319(5866):1086–1089. doi: 10.1126/science.1152993. PubMed DOI PMC
Elie A., Prezel E., Guérin C., et al. Tau co-organizes dynamic microtubule and actin networks. Scientific Reports. 2015;5(1, article 9964) doi: 10.1038/srep09964. PubMed DOI PMC
Wisniewski T., Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85(6):1162–1176. doi: 10.1016/j.neuron.2014.12.064. PubMed DOI PMC
Bach J.-P., Dodel R. Naturally Occurring Antibodies (NAbs) New York, NY, USA: Springer; 2012. Naturally occurring autoantibodies against β-amyloid; pp. 91–99. PubMed DOI
Hampel H., Schneider L. S., Giacobini E., et al. Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future. Expert Review of Neurotherapeutics. 2015;15(1):83–105. doi: 10.1586/14737175.2015.995637. PubMed DOI
Folch J., Petrov D., Ettcheto M., et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plasticity. 2016;2016:15. doi: 10.1155/2016/8501693. PubMed DOI PMC
Pedersen J. T., Sigurdsson E. M. Tau immunotherapy for Alzheimer’s disease. Trends in Molecular Medicine. 2015;21(6):394–402. doi: 10.1016/j.molmed.2015.03.003. PubMed DOI
Novak P., Kontsekova E., Zilka N., Novak M. Ten years of tau-targeted immunotherapy: the path walked and the roads ahead. Frontiers in Neuroscience. 2018;12:p. 798. doi: 10.3389/fnins.2018.00798. PubMed DOI PMC
Sigurdsson E. M. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. Journal of Alzheimer's Disease. 2018;66(2):855–856. doi: 10.3233/jad-189010. PubMed DOI
Goedert M., Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. The EMBO Journal. 1990;9(13):4225–4230. doi: 10.1002/j.1460-2075.1990.tb07870.x. PubMed DOI PMC
Martin L., Latypova X., Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochemistry International. 2011;58(4):458–471. doi: 10.1016/j.neuint.2010.12.023. PubMed DOI
Mattsson N., Zetterberg H., Hansson O., et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302(4):385–393. doi: 10.1001/jama.2009.1064. PubMed DOI
Mattsson N., Andreasson U., Persson S., et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer's & Dementia. 2011;7(4):386–395.e6. doi: 10.1016/j.jalz.2011.05.2243. PubMed DOI PMC
Randall J., Mörtberg E., Provuncher G. K., et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013;84(3):351–356. doi: 10.1016/j.resuscitation.2012.07.027. PubMed DOI
Zetterberg H., Wilson D., Andreasson U., et al. Plasma tau levels in Alzheimer’s disease. Alzheimer's Research & Therapy. 2013;5(2):p. 9. doi: 10.1186/alzrt163. PubMed DOI PMC
Chiu M.-J., Fan L.-Y., Chen T.-F., Chen Y.-F., Chieh J.-J., Horng H.-E. Plasma tau levels in cognitively normal middle-aged and older adults. Frontiers in Aging Neuroscience. 2017;9:p. 51. doi: 10.3389/fnagi.2017.00051. PubMed DOI PMC
Dage J. L., Wennberg A. M. V., Airey D. C., et al. Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer's & Dementia. 2016;12(12):1226–1234. doi: 10.1016/j.jalz.2016.06.001. PubMed DOI PMC
Mattsson N., Zetterberg H., Janelidze S., et al. Plasma tau in Alzheimer disease. Neurology. 2016;87(17):1827–1835. doi: 10.1212/WNL.0000000000003246. PubMed DOI PMC
Deters K. D., Risacher S. L., Kim S., et al. Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer's Disease. 2017;58(4):1245–1254. doi: 10.3233/JAD-161114. PubMed DOI PMC
Tatebe H., Kasai T., Ohmichi T., et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Molecular Neurodegeneration. 2017;12(1):p. 63. doi: 10.1186/s13024-017-0206-8. PubMed DOI PMC
Yang C. C., Chiu M. J., Chen T. F., Chang H. L., Liu B. H., Yang S. Y. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. Journal of Alzheimer's Disease. 2018;61(4):1323–1332. doi: 10.3233/JAD-170810. PubMed DOI
Mielke M. M., Hagen C. E., Xu J., et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer's & Dementia. 2018;14(8):989–997. doi: 10.1016/j.jalz.2018.02.013. PubMed DOI PMC
Kolarova M., Sengupta U., Bartos A., Ricny J., Kayed R. Tau oligomers in sera of patients with Alzheimer’s disease and aged controls. Journal of Alzheimer's Disease. 2017;58(2):471–478. doi: 10.3233/JAD-170048. PubMed DOI
Tarasoff-Conway J. M., Carare R. O., Osorio R. S., et al. Clearance systems in the brain—implications for Alzheimer disease. Nature Reviews Neurology. 2015;11(8):457–470. doi: 10.1038/nrneurol.2015.119. PubMed DOI PMC
Chakraborty A., De Wit N. M., Van Der Flier W. M., De Vries H. E. The blood brain barrier in Alzheimer’s disease. Vascular Pharmacology. 2017;89:12–18. doi: 10.1016/j.vph.2016.11.008. PubMed DOI
Marchi N., Bazarian J. J., Puvenna V., et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3, article e56805) doi: 10.1371/journal.pone.0056805. PubMed DOI PMC
Zhang Z., Zoltewicz J. S., Mondello S., et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3, article e92698) doi: 10.1371/journal.pone.0092698. PubMed DOI PMC
Olivera A., Lejbman N., Jeromin A., et al. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurology. 2015;72(10):1109–1116. doi: 10.1001/jamaneurol.2015.1383. PubMed DOI
Alosco M. L., Tripodis Y., Jarnagin J., et al. Repetitive head impact exposure and later-life plasma total tau in former National Football League players. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2017;7:33–40. doi: 10.1016/j.dadm.2016.11.003. PubMed DOI PMC
Bogoslovsky T., Wilson D., Chen Y., et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. Journal of Neurotrauma. 2017;34(1):66–73. doi: 10.1089/neu.2015.4333. PubMed DOI PMC
Rubenstein R., Chang B., Yue J. K., et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurology. 2017;74(9):1063–1072. doi: 10.1001/jamaneurol.2017.0655. PubMed DOI PMC
Foiani M. S., Woollacott I. O., Heller C., et al. Plasma tau is increased in frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(8):804–807. doi: 10.1136/jnnp-2017-317260. PubMed DOI PMC
Kasai T., Tatebe H., Kondo M., et al. Increased levels of plasma total tau in adult Down syndrome. PLoS One. 2017;12(11, article e0188802) doi: 10.1371/journal.pone.0188802. PubMed DOI PMC
Farrall A. J., Wardlaw J. M. Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiology of Aging. 2009;30(3):337–352. doi: 10.1016/j.neurobiolaging.2007.07.015. PubMed DOI
Popescu B. O., Toescu E. C., Popescu L. M., et al. Blood-brain barrier alterations in ageing and dementia. Journal of the Neurological Sciences. 2009;283(1-2):99–106. doi: 10.1016/j.jns.2009.02.321. PubMed DOI
Montagne A., Barnes S. R., Sweeney M. D., et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302. doi: 10.1016/j.neuron.2014.12.032. PubMed DOI PMC
Banks W. A., Kovac A., Majerova P., Bullock K. M., Shi M., Zhang J. Tau proteins cross the blood-brain barrier. Journal of Alzheimer's Disease. 2017;55(1):411–419. doi: 10.3233/JAD-160542. PubMed DOI
Neumann K., Farías G., Slachevsky A., Perez P., Maccioni R. B. Human platelets tau: a potential peripheral marker for Alzheimer’s disease. Journal of Alzheimer's Disease. 2011;25(1):103–109. doi: 10.3233/JAD-2011-101641. PubMed DOI
Farías G., Pérez P., Slachevsky A., Maccioni R. B. Platelet tau pattern correlates with cognitive status in Alzheimer’s disease. Journal of Alzheimer's Disease. 2012;31(1):65–69. doi: 10.3233/JAD-2012-120304. PubMed DOI
Slachevsky A., Guzmán-Martínez L., Delgado C., et al. Tau platelets correlate with regional brain atrophy in patients with Alzheimer’s disease. Journal of Alzheimer's Disease. 2017;55(4):1595–1603. doi: 10.3233/JAD-160652. PubMed DOI
Mukaetova-Ladinska E. B., Abdell-All Z., Andrade J., et al. Platelet tau protein as a potential peripheral biomarker in Alzheimer’s disease: an explorative study. Current Alzheimer Research. 2018;15(9):800–808. doi: 10.2174/1567205015666180404165915. PubMed DOI
Fiandaca M. S., Kapogiannis D., Mapstone M., et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer's & Dementia. 2015;11(6):600–607.e1. doi: 10.1016/j.jalz.2014.06.008. PubMed DOI PMC
Winston C. N., Goetzl E. J., Akers J. C., et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2016;3:63–72. doi: 10.1016/j.dadm.2016.04.001. PubMed DOI PMC
Stern R. A., Tripodis Y., Baugh C. M., et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. Journal of Alzheimer's Disease. 2016;51(4):1099–1109. doi: 10.3233/JAD-151028. PubMed DOI PMC
Mustapic M., Eitan E., Werner J. K., Jr., et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Frontiers in Neuroscience. 2017;11:p. 278. doi: 10.3389/fnins.2017.00278. PubMed DOI PMC
Shi M., Kovac A., Korff A., et al. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimer's & Dementia. 2016;12(11):1125–1131. doi: 10.1016/j.jalz.2016.04.003. PubMed DOI PMC
Rosenmann H., Meiner Z., Geylis V., Abramsky O., Steinitz M. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neuroscience Letters. 2006;410(2):90–93. doi: 10.1016/j.neulet.2006.01.072. PubMed DOI
Fialová L., Bartos A., Švarcová J., Malbohan I. Increased intrathecal high-avidity anti-tau antibodies in patients with multiple sclerosis. PLoS One. 2011;6(11, article e27476) doi: 10.1371/journal.pone.0027476. PubMed DOI PMC
Krestova M., Ricny J., Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer’s disease patients. Journal of Neuroimmunology. 2018;322:1–8. doi: 10.1016/j.jneuroim.2018.05.004. PubMed DOI
Kuhn I., Rogosch T., Schindler T. I., et al. Serum titers of autoantibodies against α-synuclein and tau in child- and adulthood. Journal of Neuroimmunology. 2018;315:33–39. doi: 10.1016/j.jneuroim.2017.12.003. PubMed DOI
Bouras C., Riederer B. M., Kövari E., Hof P. R., Giannakopoulos P. Humoral immunity in brain aging and Alzheimer’s disease. Brain Research Reviews. 2005;48(3):477–487. doi: 10.1016/j.brainresrev.2004.09.009. PubMed DOI
Levin E. C., Acharya N. K., Han M., et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood–brain barrier breakdown. Brain Research. 2010;1345:221–232. doi: 10.1016/j.brainres.2010.05.038. PubMed DOI
Bartos A., Fialova L., Svarcova J. Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s disease. Journal of Alzheimer's Disease. 2018;64(3):751–760. doi: 10.3233/JAD-180039. PubMed DOI
Bartos A., Fialová L., Švarcová J., Ripova D. Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. Journal of Neuroimmunology. 2012;252(1-2):100–105. doi: 10.1016/j.jneuroim.2012.08.001. PubMed DOI
Klaver A. C., Coffey M. P., Bennett D. A., Loeffler D. A. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer’s disease subjects: an exploratory study. Translational Neurodegeneration. 2017;6(1):p. 32. doi: 10.1186/s40035-017-0100-x. PubMed DOI PMC
Terryberry J. W., Thor G., Peter J. B. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiology of Aging. 1998;19(3):205–216. doi: 10.1016/S0197-4580(98)00049-9. PubMed DOI
Krestova M., Hromadkova L., Bilkova Z., Bartos A., Ricny J. Characterization of isolated tau-reactive antibodies from the IVIG product, plasma of patients with Alzheimer’s disease and cognitively normal individuals. Journal of Neuroimmunology. 2017;313:16–24. doi: 10.1016/j.jneuroim.2017.09.011. PubMed DOI
Smith L. M., Coffey M. P., Klaver A. C., Loeffler D. A. Intravenous immunoglobulin products contain specific antibodies to recombinant human tau protein. International Immunopharmacology. 2013;16(4):424–428. doi: 10.1016/j.intimp.2013.04.034. PubMed DOI
Smith L. M., Coffey M. P., Loeffler D. A. Specific binding of intravenous immunoglobulin products to tau peptide fragments. International Immunopharmacology. 2014;21(2):279–282. doi: 10.1016/j.intimp.2014.05.009. PubMed DOI
Hromadkova L., Kolarova M., Jankovicova B., et al. Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. Journal of Neuroimmunology. 2015;289:121–129. doi: 10.1016/j.jneuroim.2015.10.017. PubMed DOI
Loeffler D. A., Klaver A. C., Coffey M. P. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products. International Immunopharmacology. 2015;28(2):1108–1112. doi: 10.1016/j.intimp.2015.08.022. PubMed DOI
Schroeder S. K., Joly-Amado A., Gordon M. N., Morgan D. Tau-directed immunotherapy: a promising strategy for treating Alzheimer’s disease and other tauopathies. Journal of Neuroimmune Pharmacology. 2016;11(1):9–25. doi: 10.1007/s11481-015-9637-6. PubMed DOI PMC
Loeffler D. A. Should development of Alzheimer’s disease-specific intravenous immunoglobulin be considered? Journal of Neuroinflammation. 2014;11(1):p. 198. doi: 10.1186/s12974-014-0198-z. PubMed DOI PMC
Sedykh M. A., Buneva V. N., Nevinsky G. A. Polyreactivity of natural antibodies: exchange by HL-fragments. Biochemistry (Moscow) 2013;78(12):1305–1320. doi: 10.1134/s0006297913120018. PubMed DOI
Willis J. R., Briney B. S., DeLuca S. L., Crowe J. E., Meiler J. Human germline antibody gene segments encode polyspecific antibodies. PLoS Computational Biology. 2013;9(4, article e1003045) doi: 10.1371/journal.pcbi.1003045. PubMed DOI PMC
Avrameas S., Ternynck T. The natural autoantibodies system: between hypotheses and facts. Molecular Immunology. 1993;30(12):1133–1142. doi: 10.1016/0161-5890(93)90160-D. PubMed DOI
Ochsenbein A. F., Zinkernagel R. M. Natural antibodies and complement link innate and acquired immunity. Immunology Today. 2000;21(12):624–630. doi: 10.1016/S0167-5699(00)01754-0. PubMed DOI
Rossi F., Dietrich G., Kazatchkine M. D. Anti-idiotypes against autoantibodies in normal immunoglobulins: evidence for network regulation of human autoimmune responses. Immunological Reviews. 1989;110(1):135–149. doi: 10.1111/j.1600-065X.1989.tb00031.x. PubMed DOI
Kieber-Emmons T., Monzavi-Karbassi B., Pashov A., Saha S., Murali R., Kohler H. The promise of the anti-idiotype concept. Frontiers in Oncology. 2012;2:p. 196. doi: 10.3389/fonc.2012.00196. PubMed DOI PMC
Scofield R. H. Autoantibodies as predictors of disease. The Lancet. 2004;363(9420):1544–1546. doi: 10.1016/S0140-6736(04)16154-0. PubMed DOI
Lleo A., Invernizzi P., Gao B., Podda M., Gershwin M. E. Definition of human autoimmunity—autoantibodies versus autoimmune disease. Autoimmunity Reviews. 2010;9(5):A259–A266. doi: 10.1016/j.autrev.2009.12.002. PubMed DOI
Bayersdorf R., Fruscalzo A., Catania F. Linking autoimmunity to the origin of the adaptive immune system. Evolution, Medicine, and Public Health. 2018;2018(1):2–12. doi: 10.1093/emph/eoy001. PubMed DOI PMC
Atassi M. Z., Casali P., Atassi M. Z., Casali P. Molecular mechanisms of autoimmunity. Autoimmunity. 2009;41(2):123–132. doi: 10.1080/08916930801929021. PubMed DOI
D’Andrea M. R. Add Alzheimer’s disease to the list of autoimmune diseases. Medical Hypotheses. 2005;64(3):458–463. doi: 10.1016/j.mehy.2004.08.024. PubMed DOI
D’Andrea M. R. Evidence linking neuronal cell death to autoimmunity in Alzheimer’s disease. Brain Research. 2003;982(1):19–30. doi: 10.1016/S0006-8993(03)02881-6. PubMed DOI
Blennow K., Wallin A., Pam F., Carl-Gerhard G., Karlsson I., Svennerholm L. Intrathecal synthesis of immunoglobulins in patients with Alzheimer’s disease. European Neuropsychopharmacology. 1990;1(1):79–81. doi: 10.1016/0924-977X(90)90017-5. PubMed DOI
Abraha A., Ghoshal N., Gamblin T. C., et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. Journal of Cell Science. 2000;113(21):3737–3745. PubMed
Augustinack J. C., Schneider A., Mandelkow E. M., Hyman B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathologica. 2002;103(1):26–35. doi: 10.1007/s004010100423. PubMed DOI
Berry R. W., Abraha A., Lagalwar S., et al. Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry. 2003;42(27):8325–8331. doi: 10.1021/bi027348m. PubMed DOI
García-Sierra F., Ghoshal N., Quinn B., Berry R. W., Binder L. I. Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. Journal of Alzheimer's Disease. 2003;5(2):65–77. doi: 10.3233/JAD-2003-5201. PubMed DOI
Binder L. I., Guillozet-Bongaarts A. L., Garcia-Sierra F., Berry R. W. Tau, tangles, and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2005;1739(2-3):216–223. doi: 10.1016/j.bbadis.2004.08.014. PubMed DOI
Guerrero-Muñoz M. J., Gerson J., Castillo-Carranza D. L. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Frontiers in Cellular Neuroscience. 2015;9:p. 464. doi: 10.3389/fncel.2015.00464. PubMed DOI PMC
Wang J., Jin W. S., Bu X. L., et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathologica. 2018;136(4):525–536. doi: 10.1007/s00401-018-1891-2. PubMed DOI
Durandy A., Kaveri S. V., Kuijpers T. W., et al. Intravenous immunoglobulins–understanding properties and mechanisms. Clinical & Experimental Immunology. 2009;158:2–13. doi: 10.1111/j.1365-2249.2009.04022.x. PubMed DOI PMC
Zivkovic S. Intravenous immunoglobulin in the treatment of neurologic disorders. Acta Neurologica Scandinavica. 2016;133(2):84–96. doi: 10.1111/ane.12444. PubMed DOI
Dalakas M. C. Antibody Therapy. Springer, Cham; 2018. Use of intravenous immunoglobulin in neurology; pp. 101–109. DOI
Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. Journal of Clinical Immunology. 2014;34(S1):74–79. doi: 10.1007/s10875-014-0041-4. PubMed DOI
Relkin N. R., Thomas R. G., Rissman R. A., et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology. 2017;88(18):1768–1775. doi: 10.1212/WNL.0000000000003904. PubMed DOI PMC
Okuya M., Matsunaga S., Ikuta T., Kishi T., Iwata N. Efficacy, acceptability, and safety of intravenous immunoglobulin administration for mild-to-moderate Alzheimer’s disease: a systematic review and meta-Analysis. Journal of Alzheimer's Disease. 2018;66(4):1379–1387. doi: 10.3233/JAD-180888. PubMed DOI
Boada M., Ramos-Fernández E., Guivernau B., et al. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurología. 2016;31(7):473–481. doi: 10.1016/j.nrl.2014.02.003. PubMed DOI
Cummings J., Lee G., Mortsdorf T., Ritter A., Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2017;3(3):367–384. doi: 10.1016/j.trci.2017.05.002. PubMed DOI PMC
Svetlicky N., Ortega-Hernandez O. D., Mouthon L., et al. The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. Journal of Clinical Immunology. 2013;33(S1):27–32. doi: 10.1007/s10875-012-9842-5. PubMed DOI
Lejtenyi D., Mazer B. Consistency of protective antibody levels across lots of intravenous immunoglobulin preparations. Journal of Allergy and Clinical Immunology. 2008;121(1):254–255. doi: 10.1016/j.jaci.2007.11.001. PubMed DOI
Cattepoel S., Gaida A., Kropf A., Nolte M. W., Bolli R., Miescher S. M. Effect of IVIG formulation on IgG binding to self- and exo- antigens in vitro and in vivo. PLoS One. 2016;11(8, article e0161826) doi: 10.1371/journal.pone.0161826. PubMed DOI PMC
Loeffler D. A., Klaver A. C. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents. International Immunopharmacology. 2017;52:227–229. doi: 10.1016/j.intimp.2017.09.016. PubMed DOI
Hromádková L. Tau protein, a biomarker of Alzheimer’s disease: in vitro phosphorylation and tau-reactive antibodies characterization, [Ph.D. thesis] Prague, Czech Republic: Department of Physiology, Charles University; 2018.
Fialová L., Švarcová J., Bartos A., Malbohan I. Avidity of anti-neurocytoskeletal antibodies in cerebrospinal fluid and serum. Folia Microbiologica. 2012;57(5):415–419. doi: 10.1007/s12223-012-0105-x. PubMed DOI
Kronimus Y., Albus A., Balzer-Geldsetzer M., et al. Naturally occurring autoantibodies against tau protein are reduced in Parkinson’s disease dementia. PLoS One. 2016;11(11, article e0164953) doi: 10.1371/journal.pone.0164953. PubMed DOI PMC
Krestova M., Hromadkova L., Ricny J. Purification of natural antibodies against tau protein by affinity chromatography. In: Kaveri S., Bayry J., editors. Natural Antibodies. Methods in Molecular Biology, vol 1643. New York, NY, USA: Humana Press; 2017. pp. 33–44. PubMed DOI
Autoantibodies targeting neuronal proteins as biomarkers for neurodegenerative diseases