• This record comes from PubMed

Tau-Reactive Endogenous Antibodies: Origin, Functionality, and Implications for the Pathophysiology of Alzheimer's Disease

. 2019 ; 2019 () : 7406810. [epub] 20190806

Language English Country Egypt Media electronic-ecollection

Document type Journal Article, Review

In Alzheimer's disease (AD), tau pathology manifested by the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a promising therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been documented both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.

See more in PubMed

Jack C. R., Jr., Knopman D. S., Jagust W. J., et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. The Lancet Neurology. 2010;9(1):119–128. doi: 10.1016/S1474-4422(09)70299-6. PubMed DOI PMC

Ittner L. M., Götz J. Amyloid-β and tau—a toxic pas de deux in Alzheimer’s disease. Nature Reviews Neuroscience. 2011;12(2):67–72. doi: 10.1038/nrn2967. PubMed DOI

Ovsepian S. V., O’Leary V. B., Zaborszky L., Ntziachristos V., Dolly J. O. Amyloid Plaques of Alzheimer’s Disease as Hotspots of Glutamatergic Activity. The Neuroscientist. 2018;(article 1073858418791128) doi: 10.1177/1073858418791128. PubMed DOI PMC

Binder L. I., Frankfurter A., Rebhun L. I. The distribution of tau in the mammalian central nervous system. Journal of Cell Biology. 1985;101(4):1371–1378. doi: 10.1083/jcb.101.4.1371. PubMed DOI PMC

Kadavath H., Hofele R. V., Biernat J., et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(24):7501–7506. doi: 10.1073/pnas.1504081112. PubMed DOI PMC

Kempf M., Clement A., Faissner A., Lee G., Brandt R. Tau binds to the distal axon early in development of polarity in a microtubule-and microfilament-dependent manner. The Journal of Neuroscience. 1996;16(18):5583–5592. doi: 10.1523/JNEUROSCI.16-18-05583.1996. PubMed DOI PMC

Trinczek B., Ebneth A., Mandelkow E. M., Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. Journal of Cell Science. 1999;112(14):2355–2367. PubMed

Dixit R., Ross J. L., Goldman Y. E., Holzbaur E. L. F. Differential regulation of dynein and kinesin motor proteins by tau. Science. 2008;319(5866):1086–1089. doi: 10.1126/science.1152993. PubMed DOI PMC

Elie A., Prezel E., Guérin C., et al. Tau co-organizes dynamic microtubule and actin networks. Scientific Reports. 2015;5(1, article 9964) doi: 10.1038/srep09964. PubMed DOI PMC

Wisniewski T., Goni F. Immunotherapeutic approaches for Alzheimer’s disease. Neuron. 2015;85(6):1162–1176. doi: 10.1016/j.neuron.2014.12.064. PubMed DOI PMC

Bach J.-P., Dodel R. Naturally Occurring Antibodies (NAbs) New York, NY, USA: Springer; 2012. Naturally occurring autoantibodies against β-amyloid; pp. 91–99. PubMed DOI

Hampel H., Schneider L. S., Giacobini E., et al. Advances in the therapy of Alzheimer’s disease: targeting amyloid beta and tau and perspectives for the future. Expert Review of Neurotherapeutics. 2015;15(1):83–105. doi: 10.1586/14737175.2015.995637. PubMed DOI

Folch J., Petrov D., Ettcheto M., et al. Current research therapeutic strategies for Alzheimer’s disease treatment. Neural Plasticity. 2016;2016:15. doi: 10.1155/2016/8501693. PubMed DOI PMC

Pedersen J. T., Sigurdsson E. M. Tau immunotherapy for Alzheimer’s disease. Trends in Molecular Medicine. 2015;21(6):394–402. doi: 10.1016/j.molmed.2015.03.003. PubMed DOI

Novak P., Kontsekova E., Zilka N., Novak M. Ten years of tau-targeted immunotherapy: the path walked and the roads ahead. Frontiers in Neuroscience. 2018;12:p. 798. doi: 10.3389/fnins.2018.00798. PubMed DOI PMC

Sigurdsson E. M. Tau immunotherapies for Alzheimer’s disease and related tauopathies: progress and potential pitfalls. Journal of Alzheimer's Disease. 2018;66(2):855–856. doi: 10.3233/jad-189010. PubMed DOI

Goedert M., Jakes R. Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. The EMBO Journal. 1990;9(13):4225–4230. doi: 10.1002/j.1460-2075.1990.tb07870.x. PubMed DOI PMC

Martin L., Latypova X., Terro F. Post-translational modifications of tau protein: implications for Alzheimer’s disease. Neurochemistry International. 2011;58(4):458–471. doi: 10.1016/j.neuint.2010.12.023. PubMed DOI

Mattsson N., Zetterberg H., Hansson O., et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA. 2009;302(4):385–393. doi: 10.1001/jama.2009.1064. PubMed DOI

Mattsson N., Andreasson U., Persson S., et al. The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimer's & Dementia. 2011;7(4):386–395.e6. doi: 10.1016/j.jalz.2011.05.2243. PubMed DOI PMC

Randall J., Mörtberg E., Provuncher G. K., et al. Tau proteins in serum predict neurological outcome after hypoxic brain injury from cardiac arrest: results of a pilot study. Resuscitation. 2013;84(3):351–356. doi: 10.1016/j.resuscitation.2012.07.027. PubMed DOI

Zetterberg H., Wilson D., Andreasson U., et al. Plasma tau levels in Alzheimer’s disease. Alzheimer's Research & Therapy. 2013;5(2):p. 9. doi: 10.1186/alzrt163. PubMed DOI PMC

Chiu M.-J., Fan L.-Y., Chen T.-F., Chen Y.-F., Chieh J.-J., Horng H.-E. Plasma tau levels in cognitively normal middle-aged and older adults. Frontiers in Aging Neuroscience. 2017;9:p. 51. doi: 10.3389/fnagi.2017.00051. PubMed DOI PMC

Dage J. L., Wennberg A. M. V., Airey D. C., et al. Levels of tau protein in plasma are associated with neurodegeneration and cognitive function in a population-based elderly cohort. Alzheimer's & Dementia. 2016;12(12):1226–1234. doi: 10.1016/j.jalz.2016.06.001. PubMed DOI PMC

Mattsson N., Zetterberg H., Janelidze S., et al. Plasma tau in Alzheimer disease. Neurology. 2016;87(17):1827–1835. doi: 10.1212/WNL.0000000000003246. PubMed DOI PMC

Deters K. D., Risacher S. L., Kim S., et al. Plasma tau association with brain atrophy in mild cognitive impairment and Alzheimer’s disease. Journal of Alzheimer's Disease. 2017;58(4):1245–1254. doi: 10.3233/JAD-161114. PubMed DOI PMC

Tatebe H., Kasai T., Ohmichi T., et al. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Molecular Neurodegeneration. 2017;12(1):p. 63. doi: 10.1186/s13024-017-0206-8. PubMed DOI PMC

Yang C. C., Chiu M. J., Chen T. F., Chang H. L., Liu B. H., Yang S. Y. Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. Journal of Alzheimer's Disease. 2018;61(4):1323–1332. doi: 10.3233/JAD-170810. PubMed DOI

Mielke M. M., Hagen C. E., Xu J., et al. Plasma phospho-tau181 increases with Alzheimer’s disease clinical severity and is associated with tau- and amyloid-positron emission tomography. Alzheimer's & Dementia. 2018;14(8):989–997. doi: 10.1016/j.jalz.2018.02.013. PubMed DOI PMC

Kolarova M., Sengupta U., Bartos A., Ricny J., Kayed R. Tau oligomers in sera of patients with Alzheimer’s disease and aged controls. Journal of Alzheimer's Disease. 2017;58(2):471–478. doi: 10.3233/JAD-170048. PubMed DOI

Tarasoff-Conway J. M., Carare R. O., Osorio R. S., et al. Clearance systems in the brain—implications for Alzheimer disease. Nature Reviews Neurology. 2015;11(8):457–470. doi: 10.1038/nrneurol.2015.119. PubMed DOI PMC

Chakraborty A., De Wit N. M., Van Der Flier W. M., De Vries H. E. The blood brain barrier in Alzheimer’s disease. Vascular Pharmacology. 2017;89:12–18. doi: 10.1016/j.vph.2016.11.008. PubMed DOI

Marchi N., Bazarian J. J., Puvenna V., et al. Consequences of repeated blood-brain barrier disruption in football players. PLoS One. 2013;8(3, article e56805) doi: 10.1371/journal.pone.0056805. PubMed DOI PMC

Zhang Z., Zoltewicz J. S., Mondello S., et al. Human traumatic brain injury induces autoantibody response against glial fibrillary acidic protein and its breakdown products. PLoS One. 2014;9(3, article e92698) doi: 10.1371/journal.pone.0092698. PubMed DOI PMC

Olivera A., Lejbman N., Jeromin A., et al. Peripheral total tau in military personnel who sustain traumatic brain injuries during deployment. JAMA Neurology. 2015;72(10):1109–1116. doi: 10.1001/jamaneurol.2015.1383. PubMed DOI

Alosco M. L., Tripodis Y., Jarnagin J., et al. Repetitive head impact exposure and later-life plasma total tau in former National Football League players. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2017;7:33–40. doi: 10.1016/j.dadm.2016.11.003. PubMed DOI PMC

Bogoslovsky T., Wilson D., Chen Y., et al. Increases of plasma levels of glial fibrillary acidic protein, tau, and amyloid β up to 90 days after traumatic brain injury. Journal of Neurotrauma. 2017;34(1):66–73. doi: 10.1089/neu.2015.4333. PubMed DOI PMC

Rubenstein R., Chang B., Yue J. K., et al. Comparing plasma phospho tau, total tau, and phospho tau–total tau ratio as acute and chronic traumatic brain injury biomarkers. JAMA Neurology. 2017;74(9):1063–1072. doi: 10.1001/jamaneurol.2017.0655. PubMed DOI PMC

Foiani M. S., Woollacott I. O., Heller C., et al. Plasma tau is increased in frontotemporal dementia. Journal of Neurology, Neurosurgery & Psychiatry. 2018;89(8):804–807. doi: 10.1136/jnnp-2017-317260. PubMed DOI PMC

Kasai T., Tatebe H., Kondo M., et al. Increased levels of plasma total tau in adult Down syndrome. PLoS One. 2017;12(11, article e0188802) doi: 10.1371/journal.pone.0188802. PubMed DOI PMC

Farrall A. J., Wardlaw J. M. Blood–brain barrier: ageing and microvascular disease–systematic review and meta-analysis. Neurobiology of Aging. 2009;30(3):337–352. doi: 10.1016/j.neurobiolaging.2007.07.015. PubMed DOI

Popescu B. O., Toescu E. C., Popescu L. M., et al. Blood-brain barrier alterations in ageing and dementia. Journal of the Neurological Sciences. 2009;283(1-2):99–106. doi: 10.1016/j.jns.2009.02.321. PubMed DOI

Montagne A., Barnes S. R., Sweeney M. D., et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron. 2015;85(2):296–302. doi: 10.1016/j.neuron.2014.12.032. PubMed DOI PMC

Banks W. A., Kovac A., Majerova P., Bullock K. M., Shi M., Zhang J. Tau proteins cross the blood-brain barrier. Journal of Alzheimer's Disease. 2017;55(1):411–419. doi: 10.3233/JAD-160542. PubMed DOI

Neumann K., Farías G., Slachevsky A., Perez P., Maccioni R. B. Human platelets tau: a potential peripheral marker for Alzheimer’s disease. Journal of Alzheimer's Disease. 2011;25(1):103–109. doi: 10.3233/JAD-2011-101641. PubMed DOI

Farías G., Pérez P., Slachevsky A., Maccioni R. B. Platelet tau pattern correlates with cognitive status in Alzheimer’s disease. Journal of Alzheimer's Disease. 2012;31(1):65–69. doi: 10.3233/JAD-2012-120304. PubMed DOI

Slachevsky A., Guzmán-Martínez L., Delgado C., et al. Tau platelets correlate with regional brain atrophy in patients with Alzheimer’s disease. Journal of Alzheimer's Disease. 2017;55(4):1595–1603. doi: 10.3233/JAD-160652. PubMed DOI

Mukaetova-Ladinska E. B., Abdell-All Z., Andrade J., et al. Platelet tau protein as a potential peripheral biomarker in Alzheimer’s disease: an explorative study. Current Alzheimer Research. 2018;15(9):800–808. doi: 10.2174/1567205015666180404165915. PubMed DOI

Fiandaca M. S., Kapogiannis D., Mapstone M., et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimer's & Dementia. 2015;11(6):600–607.e1. doi: 10.1016/j.jalz.2014.06.008. PubMed DOI PMC

Winston C. N., Goetzl E. J., Akers J. C., et al. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring. 2016;3:63–72. doi: 10.1016/j.dadm.2016.04.001. PubMed DOI PMC

Stern R. A., Tripodis Y., Baugh C. M., et al. Preliminary study of plasma exosomal tau as a potential biomarker for chronic traumatic encephalopathy. Journal of Alzheimer's Disease. 2016;51(4):1099–1109. doi: 10.3233/JAD-151028. PubMed DOI PMC

Mustapic M., Eitan E., Werner J. K., Jr., et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Frontiers in Neuroscience. 2017;11:p. 278. doi: 10.3389/fnins.2017.00278. PubMed DOI PMC

Shi M., Kovac A., Korff A., et al. CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimer's & Dementia. 2016;12(11):1125–1131. doi: 10.1016/j.jalz.2016.04.003. PubMed DOI PMC

Rosenmann H., Meiner Z., Geylis V., Abramsky O., Steinitz M. Detection of circulating antibodies against tau protein in its unphosphorylated and in its neurofibrillary tangles-related phosphorylated state in Alzheimer’s disease and healthy subjects. Neuroscience Letters. 2006;410(2):90–93. doi: 10.1016/j.neulet.2006.01.072. PubMed DOI

Fialová L., Bartos A., Švarcová J., Malbohan I. Increased intrathecal high-avidity anti-tau antibodies in patients with multiple sclerosis. PLoS One. 2011;6(11, article e27476) doi: 10.1371/journal.pone.0027476. PubMed DOI PMC

Krestova M., Ricny J., Bartos A. Changes in concentrations of tau-reactive antibodies are dependent on sex in Alzheimer’s disease patients. Journal of Neuroimmunology. 2018;322:1–8. doi: 10.1016/j.jneuroim.2018.05.004. PubMed DOI

Kuhn I., Rogosch T., Schindler T. I., et al. Serum titers of autoantibodies against α-synuclein and tau in child- and adulthood. Journal of Neuroimmunology. 2018;315:33–39. doi: 10.1016/j.jneuroim.2017.12.003. PubMed DOI

Bouras C., Riederer B. M., Kövari E., Hof P. R., Giannakopoulos P. Humoral immunity in brain aging and Alzheimer’s disease. Brain Research Reviews. 2005;48(3):477–487. doi: 10.1016/j.brainresrev.2004.09.009. PubMed DOI

Levin E. C., Acharya N. K., Han M., et al. Brain-reactive autoantibodies are nearly ubiquitous in human sera and may be linked to pathology in the context of blood–brain barrier breakdown. Brain Research. 2010;1345:221–232. doi: 10.1016/j.brainres.2010.05.038. PubMed DOI

Bartos A., Fialova L., Svarcova J. Lower serum antibodies against tau protein and heavy neurofilament in Alzheimer’s disease. Journal of Alzheimer's Disease. 2018;64(3):751–760. doi: 10.3233/JAD-180039. PubMed DOI

Bartos A., Fialová L., Švarcová J., Ripova D. Patients with Alzheimer disease have elevated intrathecal synthesis of antibodies against tau protein and heavy neurofilament. Journal of Neuroimmunology. 2012;252(1-2):100–105. doi: 10.1016/j.jneuroim.2012.08.001. PubMed DOI

Klaver A. C., Coffey M. P., Bennett D. A., Loeffler D. A. Specific serum antibody binding to phosphorylated and non-phosphorylated tau in non-cognitively impaired, mildly cognitively impaired, and Alzheimer’s disease subjects: an exploratory study. Translational Neurodegeneration. 2017;6(1):p. 32. doi: 10.1186/s40035-017-0100-x. PubMed DOI PMC

Terryberry J. W., Thor G., Peter J. B. Autoantibodies in neurodegenerative diseases: antigen-specific frequencies and intrathecal analysis. Neurobiology of Aging. 1998;19(3):205–216. doi: 10.1016/S0197-4580(98)00049-9. PubMed DOI

Krestova M., Hromadkova L., Bilkova Z., Bartos A., Ricny J. Characterization of isolated tau-reactive antibodies from the IVIG product, plasma of patients with Alzheimer’s disease and cognitively normal individuals. Journal of Neuroimmunology. 2017;313:16–24. doi: 10.1016/j.jneuroim.2017.09.011. PubMed DOI

Smith L. M., Coffey M. P., Klaver A. C., Loeffler D. A. Intravenous immunoglobulin products contain specific antibodies to recombinant human tau protein. International Immunopharmacology. 2013;16(4):424–428. doi: 10.1016/j.intimp.2013.04.034. PubMed DOI

Smith L. M., Coffey M. P., Loeffler D. A. Specific binding of intravenous immunoglobulin products to tau peptide fragments. International Immunopharmacology. 2014;21(2):279–282. doi: 10.1016/j.intimp.2014.05.009. PubMed DOI

Hromadkova L., Kolarova M., Jankovicova B., et al. Identification and characterization of natural antibodies against tau protein in an intravenous immunoglobulin product. Journal of Neuroimmunology. 2015;289:121–129. doi: 10.1016/j.jneuroim.2015.10.017. PubMed DOI

Loeffler D. A., Klaver A. C., Coffey M. P. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products. International Immunopharmacology. 2015;28(2):1108–1112. doi: 10.1016/j.intimp.2015.08.022. PubMed DOI

Schroeder S. K., Joly-Amado A., Gordon M. N., Morgan D. Tau-directed immunotherapy: a promising strategy for treating Alzheimer’s disease and other tauopathies. Journal of Neuroimmune Pharmacology. 2016;11(1):9–25. doi: 10.1007/s11481-015-9637-6. PubMed DOI PMC

Loeffler D. A. Should development of Alzheimer’s disease-specific intravenous immunoglobulin be considered? Journal of Neuroinflammation. 2014;11(1):p. 198. doi: 10.1186/s12974-014-0198-z. PubMed DOI PMC

Sedykh M. A., Buneva V. N., Nevinsky G. A. Polyreactivity of natural antibodies: exchange by HL-fragments. Biochemistry (Moscow) 2013;78(12):1305–1320. doi: 10.1134/s0006297913120018. PubMed DOI

Willis J. R., Briney B. S., DeLuca S. L., Crowe J. E., Meiler J. Human germline antibody gene segments encode polyspecific antibodies. PLoS Computational Biology. 2013;9(4, article e1003045) doi: 10.1371/journal.pcbi.1003045. PubMed DOI PMC

Avrameas S., Ternynck T. The natural autoantibodies system: between hypotheses and facts. Molecular Immunology. 1993;30(12):1133–1142. doi: 10.1016/0161-5890(93)90160-D. PubMed DOI

Ochsenbein A. F., Zinkernagel R. M. Natural antibodies and complement link innate and acquired immunity. Immunology Today. 2000;21(12):624–630. doi: 10.1016/S0167-5699(00)01754-0. PubMed DOI

Rossi F., Dietrich G., Kazatchkine M. D. Anti-idiotypes against autoantibodies in normal immunoglobulins: evidence for network regulation of human autoimmune responses. Immunological Reviews. 1989;110(1):135–149. doi: 10.1111/j.1600-065X.1989.tb00031.x. PubMed DOI

Kieber-Emmons T., Monzavi-Karbassi B., Pashov A., Saha S., Murali R., Kohler H. The promise of the anti-idiotype concept. Frontiers in Oncology. 2012;2:p. 196. doi: 10.3389/fonc.2012.00196. PubMed DOI PMC

Scofield R. H. Autoantibodies as predictors of disease. The Lancet. 2004;363(9420):1544–1546. doi: 10.1016/S0140-6736(04)16154-0. PubMed DOI

Lleo A., Invernizzi P., Gao B., Podda M., Gershwin M. E. Definition of human autoimmunity—autoantibodies versus autoimmune disease. Autoimmunity Reviews. 2010;9(5):A259–A266. doi: 10.1016/j.autrev.2009.12.002. PubMed DOI

Bayersdorf R., Fruscalzo A., Catania F. Linking autoimmunity to the origin of the adaptive immune system. Evolution, Medicine, and Public Health. 2018;2018(1):2–12. doi: 10.1093/emph/eoy001. PubMed DOI PMC

Atassi M. Z., Casali P., Atassi M. Z., Casali P. Molecular mechanisms of autoimmunity. Autoimmunity. 2009;41(2):123–132. doi: 10.1080/08916930801929021. PubMed DOI

D’Andrea M. R. Add Alzheimer’s disease to the list of autoimmune diseases. Medical Hypotheses. 2005;64(3):458–463. doi: 10.1016/j.mehy.2004.08.024. PubMed DOI

D’Andrea M. R. Evidence linking neuronal cell death to autoimmunity in Alzheimer’s disease. Brain Research. 2003;982(1):19–30. doi: 10.1016/S0006-8993(03)02881-6. PubMed DOI

Blennow K., Wallin A., Pam F., Carl-Gerhard G., Karlsson I., Svennerholm L. Intrathecal synthesis of immunoglobulins in patients with Alzheimer’s disease. European Neuropsychopharmacology. 1990;1(1):79–81. doi: 10.1016/0924-977X(90)90017-5. PubMed DOI

Abraha A., Ghoshal N., Gamblin T. C., et al. C-terminal inhibition of tau assembly in vitro and in Alzheimer’s disease. Journal of Cell Science. 2000;113(21):3737–3745. PubMed

Augustinack J. C., Schneider A., Mandelkow E. M., Hyman B. T. Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease. Acta Neuropathologica. 2002;103(1):26–35. doi: 10.1007/s004010100423. PubMed DOI

Berry R. W., Abraha A., Lagalwar S., et al. Inhibition of tau polymerization by its carboxy-terminal caspase cleavage fragment. Biochemistry. 2003;42(27):8325–8331. doi: 10.1021/bi027348m. PubMed DOI

García-Sierra F., Ghoshal N., Quinn B., Berry R. W., Binder L. I. Conformational changes and truncation of tau protein during tangle evolution in Alzheimer’s disease. Journal of Alzheimer's Disease. 2003;5(2):65–77. doi: 10.3233/JAD-2003-5201. PubMed DOI

Binder L. I., Guillozet-Bongaarts A. L., Garcia-Sierra F., Berry R. W. Tau, tangles, and Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2005;1739(2-3):216–223. doi: 10.1016/j.bbadis.2004.08.014. PubMed DOI

Guerrero-Muñoz M. J., Gerson J., Castillo-Carranza D. L. Tau oligomers: the toxic player at synapses in Alzheimer’s disease. Frontiers in Cellular Neuroscience. 2015;9:p. 464. doi: 10.3389/fncel.2015.00464. PubMed DOI PMC

Wang J., Jin W. S., Bu X. L., et al. Physiological clearance of tau in the periphery and its therapeutic potential for tauopathies. Acta Neuropathologica. 2018;136(4):525–536. doi: 10.1007/s00401-018-1891-2. PubMed DOI

Durandy A., Kaveri S. V., Kuijpers T. W., et al. Intravenous immunoglobulins–understanding properties and mechanisms. Clinical & Experimental Immunology. 2009;158:2–13. doi: 10.1111/j.1365-2249.2009.04022.x. PubMed DOI PMC

Zivkovic S. Intravenous immunoglobulin in the treatment of neurologic disorders. Acta Neurologica Scandinavica. 2016;133(2):84–96. doi: 10.1111/ane.12444. PubMed DOI

Dalakas M. C. Antibody Therapy. Springer, Cham; 2018. Use of intravenous immunoglobulin in neurology; pp. 101–109. DOI

Relkin N. Clinical trials of intravenous immunoglobulin for Alzheimer’s disease. Journal of Clinical Immunology. 2014;34(S1):74–79. doi: 10.1007/s10875-014-0041-4. PubMed DOI

Relkin N. R., Thomas R. G., Rissman R. A., et al. A phase 3 trial of IV immunoglobulin for Alzheimer disease. Neurology. 2017;88(18):1768–1775. doi: 10.1212/WNL.0000000000003904. PubMed DOI PMC

Okuya M., Matsunaga S., Ikuta T., Kishi T., Iwata N. Efficacy, acceptability, and safety of intravenous immunoglobulin administration for mild-to-moderate Alzheimer’s disease: a systematic review and meta-Analysis. Journal of Alzheimer's Disease. 2018;66(4):1379–1387. doi: 10.3233/JAD-180888. PubMed DOI

Boada M., Ramos-Fernández E., Guivernau B., et al. Treatment of Alzheimer disease using combination therapy with plasma exchange and haemapheresis with albumin and intravenous immunoglobulin: rationale and treatment approach of the AMBAR (Alzheimer Management By Albumin Replacement) study. Neurología. 2016;31(7):473–481. doi: 10.1016/j.nrl.2014.02.003. PubMed DOI

Cummings J., Lee G., Mortsdorf T., Ritter A., Zhong K. Alzheimer’s disease drug development pipeline: 2017. Alzheimer's & Dementia: Translational Research & Clinical Interventions. 2017;3(3):367–384. doi: 10.1016/j.trci.2017.05.002. PubMed DOI PMC

Svetlicky N., Ortega-Hernandez O. D., Mouthon L., et al. The advantage of specific intravenous immunoglobulin (sIVIG) on regular IVIG: experience of the last decade. Journal of Clinical Immunology. 2013;33(S1):27–32. doi: 10.1007/s10875-012-9842-5. PubMed DOI

Lejtenyi D., Mazer B. Consistency of protective antibody levels across lots of intravenous immunoglobulin preparations. Journal of Allergy and Clinical Immunology. 2008;121(1):254–255. doi: 10.1016/j.jaci.2007.11.001. PubMed DOI

Cattepoel S., Gaida A., Kropf A., Nolte M. W., Bolli R., Miescher S. M. Effect of IVIG formulation on IgG binding to self- and exo- antigens in vitro and in vivo. PLoS One. 2016;11(8, article e0161826) doi: 10.1371/journal.pone.0161826. PubMed DOI PMC

Loeffler D. A., Klaver A. C. Polyvalent immunoglobulin binding is an obstacle to accurate measurement of specific antibodies with ELISA despite inclusion of blocking agents. International Immunopharmacology. 2017;52:227–229. doi: 10.1016/j.intimp.2017.09.016. PubMed DOI

Hromádková L. Tau protein, a biomarker of Alzheimer’s disease: in vitro phosphorylation and tau-reactive antibodies characterization, [Ph.D. thesis] Prague, Czech Republic: Department of Physiology, Charles University; 2018.

Fialová L., Švarcová J., Bartos A., Malbohan I. Avidity of anti-neurocytoskeletal antibodies in cerebrospinal fluid and serum. Folia Microbiologica. 2012;57(5):415–419. doi: 10.1007/s12223-012-0105-x. PubMed DOI

Kronimus Y., Albus A., Balzer-Geldsetzer M., et al. Naturally occurring autoantibodies against tau protein are reduced in Parkinson’s disease dementia. PLoS One. 2016;11(11, article e0164953) doi: 10.1371/journal.pone.0164953. PubMed DOI PMC

Krestova M., Hromadkova L., Ricny J. Purification of natural antibodies against tau protein by affinity chromatography. In: Kaveri S., Bayry J., editors. Natural Antibodies. Methods in Molecular Biology, vol 1643. New York, NY, USA: Humana Press; 2017. pp. 33–44. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...