Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives

. 2019 Dec 11 ; 24 (24) : . [epub] 20191211

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31835703

Grantová podpora
APVV-17-0373 Slovak Research and Development Agency
LO1305 Ministry of Education, Youth and Sports of the Czech Republic
ITMS 26240120034 Center of Excellence in Security Research

A series of sixteen ring-substituted N-arylcinnamanilides, previously described as highly antimicrobially effective against a wide spectrum of bacteria and fungi, together with two new derivatives from this group were prepared and characterized. Moreover, the molecular structure of (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide as a model compound was determined using single-crystal X-ray analysis. All the compounds were tested for their anti-inflammatory potential, and most tested compounds significantly attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. (2E)-N-[2-Chloro-5-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide, (2E)-N-(2,6-dibromophenyl)- 3-phenylprop-2-enamide, and (2E)-N-(2,5-dichlorophenyl)-3-phenylprop-2-enamide demonstrated the highest inhibition effect on transcription factor NF-κB at the concentration of 2 µM and showed a similar effectiveness as the reference drug prednisone. Several compounds also decreased the level of TNF-α. Nevertheless, subsequent tests showed that the investigated compounds affect neither IκBα level nor MAPKs activity, which suggests that the N-arylcinnamanilides may have a different mode of action to prednisone. The modification of the C(2,5)' or C(2,6)' positions of the anilide core by rather lipophilic and bulky moieties seems to be preferable for the anti-inflammatory potential of these compounds.

Zobrazit více v PubMed

Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201. PubMed DOI

Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874. doi: 10.1038/nature01323. PubMed DOI

McInnes I.B., Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007;7:429–442. doi: 10.1038/nri2094. PubMed DOI

Nickoloff B.J., Nestle F.O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest. 2004;113:1664–1675. doi: 10.1172/JCI200422147. PubMed DOI PMC

Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025. PubMed DOI PMC

Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008;8:183–192. doi: 10.1038/nri2254. PubMed DOI

Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI

Shoelson S.E., Herrero L., Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–2180. doi: 10.1053/j.gastro.2007.03.059. PubMed DOI

Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC

Zhang H.J., Jampilek J. Anti-infective drug discovery based on diversified plant natural compounds. Curr. Org. Chem. 2017;21:1775–1776. doi: 10.2174/138527282118171002153130. DOI

Newman D.J., Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI

Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC

Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem. 2012;12:749–767. doi: 10.2174/138955712801264792. PubMed DOI

De P., Baltas M., Bedos-Belval F. Cinnamic acid derivatives as anticancer agents – a review. Curr Med Chem. 2011;18:1672–1703. doi: 10.2174/092986711795471347. PubMed DOI

Liao J.C., Deng J.S., Chiu C.S., Hou W.C., Huang S.S., Shie P.H., Huang G.J. Anti-Inflammatory activities of cinnamomum cassia constituents in vitro and in vivo. Evid-Based Compl. Alt. 2012;2012:429320. doi: 10.1155/2012/429320. PubMed DOI PMC

Choudhary A., Raines R.T. An evaluation of peptide-bond isosteres. ChemBioChem. 2011;12:1801–1807. doi: 10.1002/cbic.201100272. PubMed DOI PMC

Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]- benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Mahesh S., Tang K.C., Raj M. Amide bond activation of biological molecules. Molecules. 2018;23:2615. doi: 10.3390/molecules23102615. PubMed DOI PMC

Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Trávníček Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC

Chen G.Z., Zhang Y.L., Liu X., Fang Q.L., Wang Z., Fu L.L., Liu Z.G., Wang Y., Zhao Y.J., Li X.K., et al. Discovery of a New inhibitor of myeloid differentiation 2 from cinnamamide derivatives with anti-inflammatory activity in sepsis and acute lung injury. J. Med. Chem. 2016;59:2436–2451. doi: 10.1021/acs.jmedchem.5b01574. PubMed DOI

Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI

Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC

Pospisilova S., Kos J., Michnova H., Strharsky T., Cizek A., Jampilek J. N-Arylcinnamamides as antistaphylococcal agents; Proceedings of the 4th International Electronic Conference on Medicinal Chemistry (ECMC-4); 1–30 November 2018; [(accessed on 17 November 2019)]. Available online: https://sciforum.net/manuscripts/5576/slides.pdf.

Mangoni A.A., Guillou C., Vanden Eynde J.J., Hulme C., Jampilek J., Li W., Prokai-Tatrai K., Rautio J., Collina S., Tuccinardi T., et al. Breakthroughs in medicinal chemistry: New targets and mechanisms, new drugs, new hopes–4. Molecules. 2019;24:130. doi: 10.3390/molecules24010130. PubMed DOI

Saeed A., Khera R.A., Simpson J. N-(2-Fluorophenyl)cinnamamide. Acta Cryst. E. 2010;66:o533–o534. doi: 10.1107/S1600536810003867. PubMed DOI PMC

Nissa M.N., Aravindan P.G., Kasinath V., Gopalakrishnan G., Merazig H., Velmurugan D. Crystal structures of 2-chloro cinnamoyl phenolate (I) and 3-chloro cinnamanilide (II) Cryst. Res. Technol. 2004;39:643–649. doi: 10.1002/crat.200310236. DOI

Skolyapova A.D., Selivanova G.A., Tretyakov E.V., Bogdanova T.F., Shchegoleva L.N., Bagryanskaya I.Y., Gurskaya L.Y., Shteingarts V.D. Interaction of polyfluorinated 2-chloroquinolines with ammonia. Tetrahedron. 2017;73:1219–1229. doi: 10.1016/j.tet.2017.01.026. DOI

Hansch C., Leo A., Unger S.H., Kim K.H., Nikaitani D., Lien E.J. “Aromatic” substituent constants for structure-activity correlations. J. Med. Chem. 1973;16:1207–1216. doi: 10.1021/jm00269a003. PubMed DOI

Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Coll. Czech. Chem. Commun. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI

Adewoyin M., Mohsin S.M.N., Arulselvan P., Hussein M.Z., Fakurazi S. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. Drug Des. Dev. Ther. 2015;9:2475–2484. doi: 10.2147/DDDT.S72716. PubMed DOI PMC

Jan J.S., Chou Y.C., Cheng Y.W., Chen C.K., Huang W.J., Hsiao G. The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo. Int. J. Mol. Sci. 2017;18:1394. doi: 10.3390/ijms18071394. PubMed DOI PMC

Perkins N.D., Gilmore T.D. Good cop, bad cop: The different faces of NF-kappa B. Cell. Death Differ. 2006;13:759–772. doi: 10.1038/sj.cdd.4401838. PubMed DOI

Hoesel B., Schmid J.A. The complexity of NF-kappa B signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86. PubMed DOI PMC

Arthur J.S.C., Ley S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013;13:679–692. doi: 10.1038/nri3495. PubMed DOI

Tsai C.M., Sun F.M., Chen Y.L., Hsu C.L., Yen G.C., Weng C.J. Molecular mechanism depressing PMA-induced invasive behaviors in human lung adenocarcinoma cells by cis- and trans-cinnamic acid. Eur. J. Pharm. Sci. 2013;48:494–501. doi: 10.1016/j.ejps.2012.11.013. PubMed DOI

Kim M.S., Kim J.Y. Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 co-culture model. Food Funct. 2019;10:4350–4360. doi: 10.1039/C9FO00302A. PubMed DOI

Lin F.L., Yen J.L., Kuo Y.C., Kang J.J., Cheng Y.W., Huang W.J., Hsiao G. HADC8 inhibitor WK2-16 therapeutically targets lipopolysaccharide-induced mouse model of neuroinflammation and microglial activation. Int. J. Mol. Sci. 2019;20:410. doi: 10.3390/ijms20020410. PubMed DOI PMC

D’Acquisto F., May M.J., Ghosh S. Inhibition of nuclear factor kappa B (NF-kB): An emerging theme in anti-inflammatory therapies. Mol. Interv. 2002;2:22–35. doi: 10.1124/mi.2.1.22. PubMed DOI

Liu T., Zhang L.Y., Joo D., Sun S.C. NF-kappa B signaling in inflammation. Signal Transduct. Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC

Wierda R.J., Geutskens S.B., Jukema J.W., Quax P.H.A., van den Elsen P.J. Epigenetics in atherosclerosis and inflammation. J Cell. Mol. Med. 2010;14:1225–1240. doi: 10.1111/j.1582-4934.2010.01022.x. PubMed DOI PMC

Zelova H., Hosek J. TNF-alpha signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013;62:641–651. doi: 10.1007/s00011-013-0633-0. PubMed DOI

Chakrabarti S., Jana M., Roy A., Pahan K. Upregulation of suppressor of cytokine signaling 3 in microglia by cinnamic acid. Curr. Alzheimer Res. 2018;15:894–904. doi: 10.2174/1567205015666180507104755. PubMed DOI PMC

Xu F., Wang F., Wen T.Q., Sang W.T., He X.Y., Li L., Zeng N. Protective effect of cinnamic acid in endotoxin-poisoned mice. Phytother. Res. 2017;31:1946–1953. doi: 10.1002/ptr.5944. PubMed DOI

Bruker . Apex3. Bruker AXS Inc.; Madison, WI, USA: 2015. [(accessed on 17 November 2019)]. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html.

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Brandenburg K. Diamond Version 4.6.0. Crystal Impact GbR; Bonn, Germany: 2019.

Plavcova Z., Salamunova P., Salon I., Stepanek F., Hanus J., Hosek J. Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int. J. Pharm. 2019;568:118532. doi: 10.1016/j.ijpharm.2019.118532. PubMed DOI

Vančo J., Trávníček Z., Hošek J., Suchý P. In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS ONE. 2017;12:e0181822. doi: 10.1371/journal.pone.0181822. PubMed DOI PMC

Brezani V., Lelakova V., Hassan S.T.S., Berchova-Bimova K., Novy P., Kloucek P., Marsik P., Dall’Acqua S., Hosek J., Smejkal K. Anti-Infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses. 2018;10:E360. doi: 10.3390/v10070360. PubMed DOI PMC

Leláková V., Šmejkal K., Jakubczyk K., Veselý O., Landa P., Václavík J., Bobál P., Pížová H., Temml V., Steinacher T., et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...