Investigation of Anti-Inflammatory Potential of N-Arylcinnamamide Derivatives
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-17-0373
Slovak Research and Development Agency
LO1305
Ministry of Education, Youth and Sports of the Czech Republic
ITMS 26240120034
Center of Excellence in Security Research
PubMed
31835703
PubMed Central
PMC6943612
DOI
10.3390/molecules24244531
PII: molecules24244531
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray structure, anti-inflammatory potential, cinnamamides, polypharmacology,
- MeSH
- antiflogistika chemická syntéza chemie farmakologie MeSH
- cinnamáty chemická syntéza chemie farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- lipopolysacharidy škodlivé účinky MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- NF-kappa B metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- THP-1 buňky MeSH
- TNF-alfa metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- cinnamáty MeSH
- lipopolysacharidy MeSH
- NF-kappa B MeSH
- TNF protein, human MeSH Prohlížeč
- TNF-alfa MeSH
A series of sixteen ring-substituted N-arylcinnamanilides, previously described as highly antimicrobially effective against a wide spectrum of bacteria and fungi, together with two new derivatives from this group were prepared and characterized. Moreover, the molecular structure of (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide as a model compound was determined using single-crystal X-ray analysis. All the compounds were tested for their anti-inflammatory potential, and most tested compounds significantly attenuated the lipopolysaccharide-induced NF-κB activation and were more potent than the parental cinnamic acid. (2E)-N-[2-Chloro-5-(trifluoromethyl)phenyl]-3-phenylprop-2-enamide, (2E)-N-(2,6-dibromophenyl)- 3-phenylprop-2-enamide, and (2E)-N-(2,5-dichlorophenyl)-3-phenylprop-2-enamide demonstrated the highest inhibition effect on transcription factor NF-κB at the concentration of 2 µM and showed a similar effectiveness as the reference drug prednisone. Several compounds also decreased the level of TNF-α. Nevertheless, subsequent tests showed that the investigated compounds affect neither IκBα level nor MAPKs activity, which suggests that the N-arylcinnamanilides may have a different mode of action to prednisone. The modification of the C(2,5)' or C(2,6)' positions of the anilide core by rather lipophilic and bulky moieties seems to be preferable for the anti-inflammatory potential of these compounds.
Zobrazit více v PubMed
Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–435. doi: 10.1038/nature07201. PubMed DOI
Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–874. doi: 10.1038/nature01323. PubMed DOI
McInnes I.B., Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007;7:429–442. doi: 10.1038/nri2094. PubMed DOI
Nickoloff B.J., Nestle F.O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest. 2004;113:1664–1675. doi: 10.1172/JCI200422147. PubMed DOI PMC
Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025. PubMed DOI PMC
Barnes P.J. Immunology of asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2008;8:183–192. doi: 10.1038/nri2254. PubMed DOI
Jampilek J., Dolezal M., Opletalova V., Hartl J. 5-Lipoxygenase, leukotrienes biosynthesis and potential antileukotrienic agents. Curr. Med. Chem. 2006;13:117–129. doi: 10.2174/092986706775197935. PubMed DOI
Shoelson S.E., Herrero L., Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology. 2007;132:2169–2180. doi: 10.1053/j.gastro.2007.03.059. PubMed DOI
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
Zhang H.J., Jampilek J. Anti-infective drug discovery based on diversified plant natural compounds. Curr. Org. Chem. 2017;21:1775–1776. doi: 10.2174/138527282118171002153130. DOI
Newman D.J., Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016;79:629–661. doi: 10.1021/acs.jnatprod.5b01055. PubMed DOI
Guzman J.D. Natural cinnamic acids, synthetic derivatives and hybrids with antimicrobial activity. Molecules. 2014;19:19292–19349. doi: 10.3390/molecules191219292. PubMed DOI PMC
Sova M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev. Med. Chem. 2012;12:749–767. doi: 10.2174/138955712801264792. PubMed DOI
De P., Baltas M., Bedos-Belval F. Cinnamic acid derivatives as anticancer agents – a review. Curr Med Chem. 2011;18:1672–1703. doi: 10.2174/092986711795471347. PubMed DOI
Liao J.C., Deng J.S., Chiu C.S., Hou W.C., Huang S.S., Shie P.H., Huang G.J. Anti-Inflammatory activities of cinnamomum cassia constituents in vitro and in vivo. Evid-Based Compl. Alt. 2012;2012:429320. doi: 10.1155/2012/429320. PubMed DOI PMC
Choudhary A., Raines R.T. An evaluation of peptide-bond isosteres. ChemBioChem. 2011;12:1801–1807. doi: 10.1002/cbic.201100272. PubMed DOI PMC
Mrozek-Wilczkiewicz A., Kalinowski D., Musiol R., Finster J., Szurko A., Serafin K., Knas M., Kamalapuram S.K., Kovacevic Z., Jampilek J., et al. Investigating anti-proliferative activity of styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010;18:2664–2671. doi: 10.1016/j.bmc.2010.02.025. PubMed DOI
Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]- benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC
Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis—Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI
Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Ferriz J.M., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus (MRSA) Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI
Mahesh S., Tang K.C., Raj M. Amide bond activation of biological molecules. Molecules. 2018;23:2615. doi: 10.3390/molecules23102615. PubMed DOI PMC
Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Trávníček Z., et al. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: Comparative molecular surface analysis. Molecules. 2019;24:2991. doi: 10.3390/molecules24162991. PubMed DOI PMC
Chen G.Z., Zhang Y.L., Liu X., Fang Q.L., Wang Z., Fu L.L., Liu Z.G., Wang Y., Zhao Y.J., Li X.K., et al. Discovery of a New inhibitor of myeloid differentiation 2 from cinnamamide derivatives with anti-inflammatory activity in sepsis and acute lung injury. J. Med. Chem. 2016;59:2436–2451. doi: 10.1021/acs.jmedchem.5b01574. PubMed DOI
Gaikwad N., Nanduri S., Madhavi Y.V. Cinnamamide: An insight into the pharmacological advances and structure-activity relationships. Eur. J. Med. Chem. 2019;181:111561. doi: 10.1016/j.ejmech.2019.07.064. PubMed DOI
Pospisilova S., Kos J., Michnova H., Kapustikova I., Strharsky T., Oravec M., Moricz A.M., Bakonyi J., Kauerova T., Kollar P., et al. Synthesis and spectrum of biological activities of novel N-arylcinnamamides. Int. J. Mol. Sci. 2018;19:2318. doi: 10.3390/ijms19082318. PubMed DOI PMC
Pospisilova S., Kos J., Michnova H., Strharsky T., Cizek A., Jampilek J. N-Arylcinnamamides as antistaphylococcal agents; Proceedings of the 4th International Electronic Conference on Medicinal Chemistry (ECMC-4); 1–30 November 2018; [(accessed on 17 November 2019)]. Available online: https://sciforum.net/manuscripts/5576/slides.pdf.
Mangoni A.A., Guillou C., Vanden Eynde J.J., Hulme C., Jampilek J., Li W., Prokai-Tatrai K., Rautio J., Collina S., Tuccinardi T., et al. Breakthroughs in medicinal chemistry: New targets and mechanisms, new drugs, new hopes–4. Molecules. 2019;24:130. doi: 10.3390/molecules24010130. PubMed DOI
Saeed A., Khera R.A., Simpson J. N-(2-Fluorophenyl)cinnamamide. Acta Cryst. E. 2010;66:o533–o534. doi: 10.1107/S1600536810003867. PubMed DOI PMC
Nissa M.N., Aravindan P.G., Kasinath V., Gopalakrishnan G., Merazig H., Velmurugan D. Crystal structures of 2-chloro cinnamoyl phenolate (I) and 3-chloro cinnamanilide (II) Cryst. Res. Technol. 2004;39:643–649. doi: 10.1002/crat.200310236. DOI
Skolyapova A.D., Selivanova G.A., Tretyakov E.V., Bogdanova T.F., Shchegoleva L.N., Bagryanskaya I.Y., Gurskaya L.Y., Shteingarts V.D. Interaction of polyfluorinated 2-chloroquinolines with ammonia. Tetrahedron. 2017;73:1219–1229. doi: 10.1016/j.tet.2017.01.026. DOI
Hansch C., Leo A., Unger S.H., Kim K.H., Nikaitani D., Lien E.J. “Aromatic” substituent constants for structure-activity correlations. J. Med. Chem. 1973;16:1207–1216. doi: 10.1021/jm00269a003. PubMed DOI
Kucerova-Chlupacova M., Opletalova V., Jampilek J., Dolezel J., Dohnal J., Pour M., Kunes J., Vorisek V. New hydrophobicity constants of substituents in pyrazine rings derived from RP-HPLC study. Coll. Czech. Chem. Commun. 2008;73:1–18. doi: 10.1135/cccc20080001. DOI
Adewoyin M., Mohsin S.M.N., Arulselvan P., Hussein M.Z., Fakurazi S. Enhanced anti-inflammatory potential of cinnamate-zinc layered hydroxide in lipopolysaccharide-stimulated RAW 264.7 macrophages. Drug Des. Dev. Ther. 2015;9:2475–2484. doi: 10.2147/DDDT.S72716. PubMed DOI PMC
Jan J.S., Chou Y.C., Cheng Y.W., Chen C.K., Huang W.J., Hsiao G. The novel HDAC8 inhibitor WK2-16 attenuates lipopolysaccharide-activated matrix metalloproteinase-9 expression in human monocytic cells and improves hypercytokinemia in vivo. Int. J. Mol. Sci. 2017;18:1394. doi: 10.3390/ijms18071394. PubMed DOI PMC
Perkins N.D., Gilmore T.D. Good cop, bad cop: The different faces of NF-kappa B. Cell. Death Differ. 2006;13:759–772. doi: 10.1038/sj.cdd.4401838. PubMed DOI
Hoesel B., Schmid J.A. The complexity of NF-kappa B signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86. PubMed DOI PMC
Arthur J.S.C., Ley S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013;13:679–692. doi: 10.1038/nri3495. PubMed DOI
Tsai C.M., Sun F.M., Chen Y.L., Hsu C.L., Yen G.C., Weng C.J. Molecular mechanism depressing PMA-induced invasive behaviors in human lung adenocarcinoma cells by cis- and trans-cinnamic acid. Eur. J. Pharm. Sci. 2013;48:494–501. doi: 10.1016/j.ejps.2012.11.013. PubMed DOI
Kim M.S., Kim J.Y. Cinnamon subcritical water extract attenuates intestinal inflammation and enhances intestinal tight junction in a Caco-2 and RAW264.7 co-culture model. Food Funct. 2019;10:4350–4360. doi: 10.1039/C9FO00302A. PubMed DOI
Lin F.L., Yen J.L., Kuo Y.C., Kang J.J., Cheng Y.W., Huang W.J., Hsiao G. HADC8 inhibitor WK2-16 therapeutically targets lipopolysaccharide-induced mouse model of neuroinflammation and microglial activation. Int. J. Mol. Sci. 2019;20:410. doi: 10.3390/ijms20020410. PubMed DOI PMC
D’Acquisto F., May M.J., Ghosh S. Inhibition of nuclear factor kappa B (NF-kB): An emerging theme in anti-inflammatory therapies. Mol. Interv. 2002;2:22–35. doi: 10.1124/mi.2.1.22. PubMed DOI
Liu T., Zhang L.Y., Joo D., Sun S.C. NF-kappa B signaling in inflammation. Signal Transduct. Target Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Wierda R.J., Geutskens S.B., Jukema J.W., Quax P.H.A., van den Elsen P.J. Epigenetics in atherosclerosis and inflammation. J Cell. Mol. Med. 2010;14:1225–1240. doi: 10.1111/j.1582-4934.2010.01022.x. PubMed DOI PMC
Zelova H., Hosek J. TNF-alpha signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013;62:641–651. doi: 10.1007/s00011-013-0633-0. PubMed DOI
Chakrabarti S., Jana M., Roy A., Pahan K. Upregulation of suppressor of cytokine signaling 3 in microglia by cinnamic acid. Curr. Alzheimer Res. 2018;15:894–904. doi: 10.2174/1567205015666180507104755. PubMed DOI PMC
Xu F., Wang F., Wen T.Q., Sang W.T., He X.Y., Li L., Zeng N. Protective effect of cinnamic acid in endotoxin-poisoned mice. Phytother. Res. 2017;31:1946–1953. doi: 10.1002/ptr.5944. PubMed DOI
Bruker . Apex3. Bruker AXS Inc.; Madison, WI, USA: 2015. [(accessed on 17 November 2019)]. Available online: https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/single-crystal-x-ray-diffraction/sc-xrd-software/apex3.html.
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Brandenburg K. Diamond Version 4.6.0. Crystal Impact GbR; Bonn, Germany: 2019.
Plavcova Z., Salamunova P., Salon I., Stepanek F., Hanus J., Hosek J. Curcumin encapsulation in yeast glucan particles promotes its anti-inflammatory potential in vitro. Int. J. Pharm. 2019;568:118532. doi: 10.1016/j.ijpharm.2019.118532. PubMed DOI
Vančo J., Trávníček Z., Hošek J., Suchý P. In vitro and in vivo anti-inflammatory active copper(II)-lawsone complexes. PLoS ONE. 2017;12:e0181822. doi: 10.1371/journal.pone.0181822. PubMed DOI PMC
Brezani V., Lelakova V., Hassan S.T.S., Berchova-Bimova K., Novy P., Kloucek P., Marsik P., Dall’Acqua S., Hosek J., Smejkal K. Anti-Infectivity against herpes simplex virus and selected microbes and anti-inflammatory activities of compounds isolated from Eucalyptus globulus Labill. Viruses. 2018;10:E360. doi: 10.3390/v10070360. PubMed DOI PMC
Leláková V., Šmejkal K., Jakubczyk K., Veselý O., Landa P., Václavík J., Bobál P., Pížová H., Temml V., Steinacher T., et al. Parallel in vitro and in silico investigations into anti-inflammatory effects of non-prenylated stilbenoids. Food Chem. 2019;285:431–440. doi: 10.1016/j.foodchem.2019.01.128. PubMed DOI
Trifluoromethylcinnamanilide Michael Acceptors for Treatment of Resistant Bacterial Infections
Insights into Antimalarial Activity of N-Phenyl-Substituted Cinnamanilides
Study of Biological Activities and ADMET-Related Properties of Novel Chlorinated N-arylcinnamamides
Biological Activities and ADMET-Related Properties of Novel Set of Cinnamanilides