Oxygenated and Nitrated Polycyclic Aromatic Hydrocarbons in Ambient Air-Levels, Phase Partitioning, Mass Size Distributions, and Inhalation Bioaccessibility
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
31950831
PubMed Central
PMC7307896
DOI
10.1021/acs.est.9b06820
Knihovny.cz E-resources
- MeSH
- Nitrates MeSH
- Air Pollutants * MeSH
- Humans MeSH
- Environmental Monitoring MeSH
- Particulate Matter MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Nitrates MeSH
- Air Pollutants * MeSH
- Particulate Matter MeSH
- Polycyclic Aromatic Hydrocarbons * MeSH
Among the nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) are some of the most hazardous substances to public health, mainly because of their carcinogenicity and oxidative potential. Despite these concerns, the concentrations and fate of NPAHs and OPAHs in the atmospheric environment are largely unknown. Ambient air concentrations of 18 NPAHs, 5 quinones, and 5 other OPAHs were determined at two urban and one regional background sites in central Europe. At one of the urban sites, the total (gas and particulate) concentrations of Σ10OPAHs were 10.0 ± 9.2 ng/m3 in winter and 3.5 ± 1.6 ng/m3 in summer. The gradient to the regional background site exceeded 1 order of magnitude. Σ18NPAH concentrations were typically 1 order of magnitude lower than OPAHs. Among OPAHs, 9-fluorenone and (9,10)-anthraquinone were the most abundant species, accompanied by benzanthrone in winter. (9,10)-Anthraquinone represented two-thirds of quinones. We found that a large fraction of the target substance particulate mass was carried by submicrometer particles. The derived inhalation bioaccessibility in the PM10 size fraction is found to be ≈5% of the total ambient concentration of OPAHs and up to ≈2% for NPAHs. For 9-fluorenone and (9,10)-anthraquinone, up to 86 and 18%, respectively, were found at the rural site. Our results indicate that water solubility could function as a limiting factor for bioaccessibility of inhaled particulate NPAHs and OPAHs, without considerable effect of surfactant lipids and proteins in the lung lining fluid.
Air Quality Processes Research Section Environment and Climate Change Canada Toronto 12843 Canada
Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz 55128 Germany
Research Centre for Toxic Compounds in the Environment Masaryk University Brno 601 77 Czech Republic
See more in PubMed
Lewtas J. Complex mixtures of air pollutants: characterizing the cancer risk of polycyclic organic matter. Environ. Health Persp. 1993, 100, 211–218. 10.1289/ehp.93100211. PubMed DOI PMC
Jones A. P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. 10.1016/s1352-2310(99)00272-1. DOI
ECHA, European Chemicals Agency . Candidate list of substances of very high concern for authorisation published in accordance with Article 59(10) of the REACH regulation. 2019, https://echa.europa.eu/candidate-list-table?_cldee=bGFtbWVsQHJlY2V0b3gubXVuaS5jeg%3d%3dandrecipientid=lead-aeed4f21fc79e8118100005056952b31-eb7ae0105c8d48d4a93b0dc66666ade8andesid=3472782f-9da7-e911-810f-005056b9310e (last time accessed July 15, 2019).
Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum. 2010, 92, 1–853. PubMed PMC
WHO, World Health Organization . Health Risks of Persistent Organic Pollutants from Long-Range Transboundary Air Pollution; WHO Regional Office for Europe: Copenhagen, 2003.
Ghio A. J.; Soukup J. M.; Madden M. C. The toxicology of air pollution predicts its epidemiology. Inhal. Toxicol. 2018, 30, 327–334. 10.1080/08958378.2018.1530316. PubMed DOI PMC
Idowu O.; Semple K. T.; Ramadass K.; O’Connor W.; Hansbro P.; Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. Environ. Intl. 2019, 123, 543–557. 10.1016/j.envint.2018.12.051. PubMed DOI
Misaki K.; Takamura-Enya T.; Ogawa H.; Takamori K.; Yanagida M. Tumour-promoting activity of polycyclic aromatic hydrocarbons and their oxygenated or nitrated derivatives. Mutagenesis 2016, 31, 205–213. 10.1093/mutage/gev076. PubMed DOI
Bolton J. L.; Trush M. A.; Penning T. M.; Dryhurst G.; Monks T. J. Role of quinones in toxicology†. Chem. Res. Toxicol. 2000, 13, 135–160. 10.1021/tx9902082. PubMed DOI
Cassee F. R.; Héroux M.-E.; Gerlofs-Nijland M. E.; Kelly F. J. Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal. Toxicol. 2013, 25, 802–812. 10.3109/08958378.2013.850127. PubMed DOI PMC
Sies H.; Berndt C.; Jones D. P. Oxidative stress. Ann. Rev. Biochem. 2017, 86, 715–748. 10.1146/annurev-biochem-061516-045037. PubMed DOI
Siak J.; Chan T. L.; Gibson T. L.; Wolff G. T. Contribution to bacterial mutagenicity from nitro-PAH compounds in ambient aerosols. Atmos. Environ. 1985, 19, 369–376. 10.1016/0004-6981(85)90104-0. DOI
Nitroarenes – Occurrence, Metabolism, and Biological Impact; Howard P. C., Hecht S. S., Beland F. A., Eds.; Environmental Science Research 40; Plenum: New York, 1990.
Yaffe D.; Cohen Y.; Arey J.; Grosovsky A. J. Multimedia Analysis of PAHs and Nitro-PAH Daughter Products in the Los Angeles Basin. Risk Anal. 2001, 21, 275–294. 10.1111/0272-4332.212111. PubMed DOI
IARC, International Agency for Research on Cancer . Diesel and gasoline engine exhausts and some nitroarenes, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, 2013; Vol. 105, p 714. PubMed
Geier M. C.; Chlebowski A. C.; Truong L.; Massey Simonich S. L.; Anderson K. A.; Anderson K. A.; Tanguay R. L. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch. Toxicol. 2018, 92, 571–586. 10.1007/s00204-017-2068-9. PubMed DOI PMC
Walgraeve C.; Demeestere K.; Dewulf J.; Zimmermann R.; van Langenhove H. Oxygenated polycyclic aromatic hydrocarbons in atmospheric particulate matter: Molecular characterization and occurrence. Atmos. Environ. 2010, 44, 1831–1846. 10.1016/j.atmosenv.2009.12.004. DOI
Lammel G. Polycyclic aromatic compounds in the atmosphere - a review identifying research needs. Polycyclic Aromat. Compd. 2015, 35, 316–329. 10.1080/10406638.2014.931870. DOI
Bandowe B. A. M.; Meusel H. Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) in the environment - A review. Sci. Total Environ. 2017, 581–582, 237–257. 10.1016/j.scitotenv.2016.12.115. PubMed DOI
Finlayson-Pitts B. J.; Pitts J. N.. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, Application; Academic Press: San Diego, USA, 2002.
Keyte I. J.; Harrison R. M.; Lammel G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons - a review. Chem. Soc. Rev. 2013, 42, 9333–9391. 10.1039/c3cs60147a. PubMed DOI
Li W.; Wang C.; Shen H.; Su S.; Shen G.; Huang Y.; Zhang Y.; Chen Y.; Chen H.; Lin N.; Zhuo S.; Zhong Q.; Wang X.; Liu J.; Li B.; Liu W.; Tao S. Concentrations and origins of nitro-polycyclic aromatic hydrocarbons and oxy-polycyclic aromatic hydrocarbons in ambient air in urban and rural areas in northern China. Envion. Pollut. 2015, 197, 156–164. 10.1016/j.envpol.2014.12.019. PubMed DOI
Lin Y.; Ma Y.; Qiu X.; Li R.; Fang Y.; Wang J.; Zhu Y.; Hu D. Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing. J. Geophys. Res. 2015, 120, 7219–7228. 10.1002/2015jd023628. DOI
Tomaz S.; Shahpoury P.; Jaffrezo J.-L.; Lammel G.; Perraudin E.; Villenave E.; Albinet A. One-year study of polycyclic aromatic compounds at an urban site in Grenoble (France): Seasonal variations, gas/particle partitioning and cancer risk estimation. Sci. Total Environ. 2016, 565, 1071–1083. 10.1016/j.scitotenv.2016.05.137. PubMed DOI
Zhang J.; Yang L.; Mellouki A.; Chen J.; Chen X.; Gao Y.; Jiang P.; Li Y.; Yu H.; Wang W. Atmospheric PAHs, NPAHs, and OPAHs at an urban, mountainous, and marine sites in Northern China: Molecular composition, sources, and ageing. Atmos. Environ. 2018, 173, 256–264. 10.1016/j.atmosenv.2017.11.002. DOI
Hayakawa K.; Tang N.; Nagato E. G.; Toriba A.; Sakai S.; Kano F.; Goto S.; Endo O.; Arashidani K.-i.; Kakimoto H. Long term trends in atmospheric concentrations of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons: A study of Japanese cities from 1997 to 2014. Environ. Pollut. 2018, 233, 474–482. 10.1016/j.envpol.2017.10.038. PubMed DOI
Ciccioli P.; Cecinato A.; Brancaleoni E.; Frattoni M.; Zacchei P.; Miguel A. H.; de Castro Vasconcellos P. Formation and transport of 2-nitrofluoranthene and 2-nitropyrene of photochemical origin in the troposphere. J. Geophys. Res. 1996, 101, 19567–19581. 10.1029/95jd02118. DOI
Tsapakis M.; Stephanou E. G. Diurnal Cycle of PAHs, Nitro-PAHs, and oxy-PAHs in a High Oxidation Capacity Marine Background Atmosphere. Environ. Sci. Technol. 2007, 41, 8011–8017. 10.1021/es071160e. PubMed DOI
Lafontaine S.; Schrlau J.; Butler J.; Jia Y.; Harper B.; Harris S.; Bramer L. M.; Waters K. M.; Harding A.; Simonich S. L. M. Relative influence of trans-pacific and regional atmospheric transport of PAHs in the pacific northwest, U.S. Environ. Sci. Technol. 2015, 49, 13807–13816. 10.1021/acs.est.5b00800. PubMed DOI PMC
Harrison R. M.; Alam M. S.; Dang J.; Ismail I. M.; Basahi J.; Alghamdi M. A.; Hassan I. A.; Khoder M. Relationship of polycyclic aromatic hydrocarbons with oxy(quinone) and nitro derivatives during air mass transport. Sci. Total Environ. 2016, 572, 1175–1183. 10.1016/j.scitotenv.2016.08.030. PubMed DOI
Lammel G.; Mulder M. D.; Shahpoury P.; Kukučka P.; Lišková H.; Přibylová P.; Prokeš R.; Wotawa G. Nitro-polycyclic aromatic hydrocarbons - gas-particle partitioning, mass size distribution, and formation along transport in marine and continental background air. Atmos. Chem. Phys. 2017, 17, 6257–6270. 10.5194/acp-17-6257-2017. DOI
Borrowman C. K.; Zhou S.; Burrow T. E.; Abbatt J. P. D. Formation of environmentally persistent free radicals from the heterogeneous reaction of ozone and polycyclic aromatic compounds. Phys. Chem. Chem. Phys. 2016, 18, 205–212. 10.1039/c5cp05606c. PubMed DOI
Monks T. J.; Hanzlik R. P.; Cohen G. M.; Ross D.; Graham D. G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992, 112, 2–16. 10.1016/0041-008x(92)90273-u. PubMed DOI
Andersson H.; Piras E.; Demma J.; Hellman B.; Brittebo E. Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology 2009, 262, 57–64. 10.1016/j.tox.2009.05.008. PubMed DOI
Park E.-J.; Park K. Induction of pro-inflammatory signals by 1-nitropyrene in cultured BEAS-2B cells. Toxicol. Lett. 2009, 184, 126–133. 10.1016/j.toxlet.2008.10.028. PubMed DOI
Øvrevik J.; Arlt V. M.; Øya E.; Nagy E.; Mollerup S.; Phillips D. H.; Låg M.; Holme J. A. Differential effects of nitro-PAHs and amino-PAHs on cytokine and chemokine responses in human bronchial epithelial BEAS-2B cells. Toxicol. Appl. Pharmacol. 2010, 242, 270–280. 10.1016/j.taap.2009.10.017. PubMed DOI
Tuet W. Y.; Liu F.; de Oliveira Alves N.; Fok S.; Artaxo P.; Vasconcellos P.; Champion J. A.; Ng N. L. Chemical oxidative potential and cellular oxidative stress from open biomass burning aerosol. Environ. Sci. Technol. Lett. 2019, 6, 126–132. 10.1021/acs.estlett.9b00060. DOI
Shiraiwa M.; Ueda K.; Pozzer A.; Lammel G.; Kampf C. J.; Fushimi A.; Enami S.; Arangio A. M.; Fröhlich-Nowoisky J.; Fujitani Y.; Furuyama A.; Lakey P. S. J.; Lelieveld J.; Lucas K.; Morino Y.; Pöschl U.; Takahama S.; Takami A.; Tong H.; Weber B.; Yoshino A.; Sato K. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. 10.1021/acs.est.7b04417. PubMed DOI
Vejerano E. P.; Rao G.; Khachatryan L.; Cormier S. A.; Lomnicki S. Environmentally persistent free radicals: Insights on a new class of pollutants. Environ. Sci. Technol. 2018, 52, 2468–2481. 10.1021/acs.est.7b04439. PubMed DOI PMC
Oberdörster G.; Sharp Z.; Atudorei V.; Elder A.; Gelein R.; Kreyling W.; Cox C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. 10.1080/08958370490439597. PubMed DOI
Li X.-Y.; Hao L.; Liu Y.-H.; Chen C.-Y.; Pai V. J.; Kang J. X. Protection against fine particle-induced pulmonary and systemic inflammation by omega-3 polyunsaturated fatty acids. Biochim. Biophys. Acta 2017, 1861, 577–584. 10.1016/j.bbagen.2016.12.018. PubMed DOI
Wiseman C. L. S.; Zereini F. Characterizing metal(loid) solubility in airborne PM10, PM2.5 and PM1 in Frankfurt, Germany using simulated lung fluids. Atmos. Environ. 2014, 89, 282–289. 10.1016/j.atmosenv.2014.02.055. DOI
Polezer G.; Oliveira A.; Potgieter-Vermaak S. P.; Godoi A. F. L.; de Souza R. A. F.; Yamamoto C. I.; Andreoli R. V.; Medeiros A. S.; Machado C. M. D.; dos Santos E. O.; de André P. A.; Pauliquevis T.; Saldiva P. H. N.; Martin S. T.; Godoi R. H. M. The influence that different urban development models has on PM2.5 elemental and bioaccessible Profiles. Sci. Rep. 2019, 9, 14846.10.1038/s41598-019-51340-4. PubMed DOI PMC
Wei W.; Bonvallot N.; Gustafsson Å.; Raffy G.; Glorennec P.; Krais A.; Ramalho O.; le Bot B.; Mandin C. Bioaccessibility and bioavailability of environmental semi-volatile organic compounds via inhalation: A review of methods and models. Environ. Int. 2018, 113, 202–213. 10.1016/j.envint.2018.01.024. PubMed DOI
Nováková Z.; Novák J.; Kitanovski Z.; Kukučka P.; Přibylová P.; Prokeš R.; Smutná M.; Wietzoreck M.; Lammel G.; Hilscherová K.. Toxic potentials of particulate and gaseous air pollution and the role of PAHs and their derivatives. Environ. Int. 2019, submitted. PubMed
Pokorná P.; Hovorka J.; Klán M.; Hopke P. K. Source apportionment of size resolved particulate matter at a European air pollution hot spot. Sci. Total Environ. 2015, 502, 172–183. 10.1016/j.scitotenv.2014.09.021. PubMed DOI
Pokorná P.; Hovorka J.; Hopke P. K. Elemental composition and source identification of very fine aerosol particles in a European air pollution hot-spot. Air Pollut. Res. 2016, 7, 671–679. 10.1016/j.apr.2016.03.001. DOI
Kozáková J.; Pokorná P.; Vodička P.; Ondráčková L.; Ondráček J.; Křůmal K.; Mikuška P.; Hovorka J.; Moravec P.; Schwarz J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. Environ. Sci. Pollut. Res. 2019, 26, 1675–1692. 10.1007/s11356-018-3670-y. PubMed DOI
Líbalová H.; Uhlířová K.; Kléma J.; Machala M.; Šrám R. J.; Ciganek M.; Topinka J. Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles. Part. Fibre Toxicol. 2012, 9, 1–16. 10.1186/1743-8977-9-1. PubMed DOI PMC
Šram R. J.; Dostal M.; Libalová H.; Rossner P.; Rossnerová A.; Svečová V.; Topinka T.; Bartonová A.. The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava region. Czech Republic: Health Research Results; ISRN Public Health, 2013; p 416071.
Topinka J.; Rossner P.; Milcová A.; Schmuczerová J.; Pěnčíková K.; Rossnerová A.; Ambrož A.; Štolcpartová J.; Bendl J.; Hovorka J.; Machala M. Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol. Environ. Pollut. 2015, 202, 135–145. 10.1016/j.envpol.2015.03.024. PubMed DOI
Leoni C.; Hovorka J.; Dočekalová V.; Cajthaml T.; Marvanová S. Source impact determination using airborne and ground measurements of industrial plumes. Environ. Sci. Technol. 2016, 50, 9881–9888. 10.1021/acs.est.6b02304. PubMed DOI
Arangio A. M.; Tong H.; Socorro J.; Pöschl U.; Shiraiwa M. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles. Atmos. Chem. Phys. 2016, 16, 13105–13119. 10.5194/acp-16-13105-2016. DOI
Tong H.; Lakey P. S. J.; Arangio A. M.; Socorro J.; Shen F.; Lucas K.; William H.; Brune W. H.; Pöschl U.; Shiraiwa M. Reactive oxygen species formed by secondary organic aerosols in water and surrogate lung fluid. Environ. Sci. Technol. 2018, 52, 11642–11651. 10.1021/acs.est.8b03695. PubMed DOI
Colombo C.; Monhemius A. J.; Plant J. A. Platinum, palladium and rhodium release from vehicle exhaust catalysts and road dust exposed to simulated lung fluids. Ecotox. Environ. Safety 2008, 71, 722–730. 10.1016/j.ecoenv.2007.11.011. PubMed DOI
Boisa N.; Elom N.; Dean J. R.; Deary M. E.; Bird G.; Entwistle J. A. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10 size fraction of soil. Environ. Int. 2014, 70, 132–142. 10.1016/j.envint.2014.05.021. PubMed DOI
Holoubek I.; Klánová J.; Jarkovský J.; Kohoutek J. Trends in background levels of persistent organic pollutants at Kosetice observatory, Czech Republic. : Part I. Ambient air and wet deposition 1996-2005. J. Environ. Mon. 2007, 9, 557–563. 10.1039/b700750g. PubMed DOI
Lammel G.; Novák J.; Landlová L.; Dvorská A.; Klánová J.; Čupr P.; Kohoutek J.; Reimer E.; Škrdlíková L.. Sources and distributions of polycyclic aromatic hydrocarbons and toxicity of polluted atmosphere aerosols. In Urban Airborne Particulate Matter: Origins, Chemistry, Fate and Health Impacts; Zereini F., Wiseman C. L. S., Eds.; Springer: Berlin, 2010; pp 39–62.
Dvorská A.; Komprdová K.; Lammel G.; Klánová J.; Plachá H. Polycyclic aromatic hydrocarbons in background air in central Europe – seasonal levels and limitations for source apportionment. Atmos. Environ. 2012, 46, 147–154. 10.1016/j.atmosenv.2011.10.007. DOI
CHMI . Air Pollution in the Czech Republic 2013. Graphic Yearbook; Czech Hydrometeorological Institute: Prague, 2014, http://portal.chmi.cz/files/portal/docs/uoco/isko/grafroc/13groc/gr13e/Obsah_GB.html (last time accessed November 10, 2019).
Vossler T.; Černikovsky L.; Novák J.; Plachá H.; Krejci B.; Nikolová I.; Chalupníčková E.; Williams R. An investigation of local and regional sources of fine particulate matter in Ostrava, the Czech Republic. Atmos. Pollut. Res. 2015, 6, 454–463. 10.5094/APR.2015.050. DOI
Degrendele C.; Fiedler H.; Kočan A.; Kukučka P.; Přibylová P.; Prokeš R.; Klánová J.; Lammel G. Multiyear levels of PCDD/Fs, dl-PCBs and PAHs in background air in central Europe and implications for deposition. Chemosphere 2020, 240, 124852.10.1016/j.chemosphere.2019.124852. PubMed DOI
Srivastava D.; Tomaz S.; Favez O.; Lanzafame G. M.; Golly B.; Besombes J.-L.; Alleman L. Y.; Jaffrezo J.-L.; Jacob V.; Perraudin E.; Villenave E.; Albinet A. Speciation of organic fraction does matter for source apportionment. Part 1: A one-year campaign in Grenoble (France). Sci Tot. Environ. 2018, 624, 1598–1611. 10.1016/j.scitotenv.2017.12.135. PubMed DOI
Lammel G.; Brüggemann E.; Gnauk T.; Müller K.; Neusüss C.; Röhrl A. A new method to study aerosol source contributions along the tracks of air parcels and its application to the near-ground level aerosol chemical composition in central Europe. J. Aerosol Sci. 2003, 34, 1–25. 10.1016/s0021-8502(02)00134-9. DOI
Shahpoury P.; Lammel G.; Albinet A.; Sofuoǧlu A.; Dumanoğlu Y.; Sofuoǧlu S. C.; Wagner Z.; Ždimal V. Evaluation of a conceptual model for gas-particle partitioning of polycyclic aromatic hydrocarbons using polyparameter linear free energy relationships. Environ. Sci. Technol. 2016, 50, 12312–12319. 10.1021/acs.est.6b02158. PubMed DOI
Shahpoury P.; Kitanovski Z.; Lammel G. Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic. Atmos. Chem. Phys. 2018, 18, 13495–13510. 10.5194/acp-18-13495-2018. DOI
Wang W.; Simonich S. L. M.; Wang W.; Giri B.; Zhao J.; Xue M.; Cao J.; Lu X.; Tao S. Atmospheric polycyclic aromatic hydrocarbon concentrations and gas/particle partitioning at background, rural village and urban sites in the North China Plain. Atmos. Res. 2011, 99, 197–206. 10.1016/j.atmosres.2010.10.002. DOI
Verma P. K.; Sah D.; Kumari K. M.; Lakhani A. Atmospheric concentrations and gas-particle partitioning of polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs at Indo-Gangetic sites. Environ. Sci. Proc. Imp. 2017, 19, 1051–1060. 10.1039/c7em00168a. PubMed DOI
CZSO . Energo 2015; Czech Statistical Office, 2015, https://www.czso.cz/csu/czso/o-setreni-energo-2015 (last time accessed July 1, 2019).
Kitanovski Z.; Shahpoury P.; Samara C.; Voliotis A.; Lammel G.. Mass size distribution of nitrated and oxygenated aromatic compounds in ambient particulate matter from southern and central Europe – contribution to humic-like substances. Atmos. Chem. Phys. 2020, 2010.5194/acp-2019-673. DOI
Huang W.; Huang B.; Bi X.; Lin Q.; Liu M.; Ren Z.; Zhang G.; Wang X.; Sheng G.; Fu J. Emission of PAHs, NPAHs and OPAHs from residential honeycomb coal briquette combustion. Energy Fuels 2014, 28, 636–642. 10.1021/ef401901d. DOI
Shen G.; Chen Y.; Du W.; Lin N.; Wang X.; Cheng H.; Liu J.; Xue C.; Liu G.; Zeng E. Y.; Xing B.; Tao S. Exposure and size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons among the population using different household fuels. Environ. Pollut. 2016, 216, 935–942. 10.1016/j.envpol.2016.07.002. PubMed DOI
Leoni C.; Pokorná P.; Hovorka J.; Masiol M.; Topinka J.; Zhao Y.; Křůmal K.; Cliff S.; Mikuška P.; Hopke P. K. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environ. Pollut. 2018, 234, 145–154. 10.1016/j.envpol.2017.10.097. PubMed DOI
Mikuška P.; Křůmal K.; Večeřa Z. Characterization of organic compounds in the PM2.5 aerosols in winter in an industrial urban area. Atmos. Environ. 2015, 105, 97–108. 10.1016/j.atmosenv.2015.01.028. DOI
Odyssee – EC Project Odyssee-Mure, Energy Consumption Data Base, 2016, http://www.indicators.odyssee-mure.eu/energy-efficiency-database.html.
WHO, World Health Organization . Global Urban Ambient Air Pollution Database (Update 2016), 2016, http://www.who.int/phe/health_topics/outdoorair/databases/cities/en/ (accessed on August 12, 2019).
Allen J. O.; Dookeran N. M.; Taghizadeh K.; Lafleur A. L.; Smith K. A.; Sarofim A. F. Measurement of oxygenated polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol. Environ. Sci. Technol. 1997, 31, 2064–2070. 10.1021/es960894g. DOI
Albinet A.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Jaffrezo J.-L. Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys Part 2: Particle size distribution. Atmos. Environ. 2008, 42, 55–64. 10.1016/j.atmosenv.2007.10.008. DOI
Ringuet J.; Leoz-Garziandia E.; Budzinski H.; Villenave E.; Albinet A. Particle size distribution of nitrated and oxygenated polycyclic aromatic hydrocarbons (NPAHs and OPAHs) on traffic and suburban sites of a European megacity: Paris (France). Atmos. Chem. Phys. 2012, 12, 8877–8887. 10.5194/acp-12-8877-2012. DOI
di Filippo P.; Riccardi C.; Pomata D.; Buiarelli F. Concentrations of PAHs, and nitro- and methyl- derivatives associated with a size-segregated urban aerosol. Atmos. Environ. 2010, 44, 2742–2749. 10.1016/j.atmosenv.2010.04.035. DOI
Mulder M. D.; Dumanoglu Y.; Efstathiou C.; Kukučka P.; Matejovičová J.; Maurer C.; Přibylová P.; Prokeš R.; Sofuoglu A.; Sofuoglu S. C.; Wilson J.; Zetzsch C.; Wotawa G.; Lammel G. Fast formation of nitro-PAHs in the marine atmosphere constrained in a regional-scale Lagrangian field experiment. Environ. Sci. Technol. 2019, 53, 8914–8924. 10.1021/acs.est.9b03090. PubMed DOI
Dellinger B.; Lomnicki S.; Khachatryan L.; Maskos Z.; Hall R. W.; Adounkpe J.; McFerrin C.; Truong H. Formation and stabilization of persistent free radicals. Proc. Combust. Inst. 2007, 31, 521–528. 10.1016/j.proci.2006.07.172. PubMed DOI PMC
Gehling W.; Dellinger B. Environmentally persistent free radicals and their lifetimes in PM2.5. Environ. Sci. Technol. 2013, 47, 8172–8178. 10.1021/es401767m. PubMed DOI PMC
Wang P.; Pan B.; Li H.; Huang Y.; Dong X.; Ai F.; Liu L.; Wu M.; Xing B. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China. Environ. Sci. Technol. 2018, 52, 1054–1061. 10.1021/acs.est.7b05453. PubMed DOI
Chen Q.; Sun H.; Mu Z.; Wang Y.; Li Y.; Zhang L.; Wang M.; Zhang Z. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi’an, Northwestern China. Environ. Pollut. 2019, 247, 18–26. 10.1016/j.envpol.2019.01.015. PubMed DOI
Shaltout A. A.; Boman J.; Shehadeh Z. F.; Al-Malawi D.-a. R.; Hemeda O. M.; Morsy M. M. Spectroscopic investigation of PM2.5 collected at industrial, residential and traffic sites in Taif, Saudi Arabia. J. Aerosol Sci. 2015, 79, 97–108. 10.1016/j.jaerosci.2014.09.004. DOI
Squadrito G. L.; Cueto R.; Dellinger B.; Pryor W. A. Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biol. Med. 2001, 31, 1132–1138. 10.1016/s0891-5849(01)00703-1. PubMed DOI
Gehling W.; Khachatryan L.; Dellinger B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5. Environ. Sci. Technol. 2014, 48, 4266–4272. 10.1021/es401770y. PubMed DOI PMC
Jia H.; Nulaji G.; Gao H.; Wang F.; Zhu Y.; Wang C. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays. Environ. Sci. Technol. 2016, 50, 6310–6319. 10.1021/acs.est.6b00527. PubMed DOI
Jia H.; Zhao S.; Shi Y.; Zhu L.; Wang C.; Sharma V. K. Transformation of Polycyclic Aromatic Hydrocarbons and Formation of environmentally persistent free radicals on modified montmorillonite: the role of surface metal ions and polycyclic promatic hydrocarbon molecular properties. Environ. Sci. Technol. 2018, 52, 5725–5733. 10.1021/acs.est.8b00425. PubMed DOI
Zhao S.; Gao P.; Miao D.; Wu L.; Qian Y.; Chen S.; Sharma V. K.; Jia H. Formation and evolution of solvent-extracted and nonextractable environmentally persistent free radicals in fly ash of municipal solid waste incinerators. Environ. Sci. Technol. 2019, 53, 10120–10130. 10.1021/acs.est.9b03453. PubMed DOI
Charrier J. G.; McFall A. S.; Richards-Henderson N. K.; Anastasio C. Hydrogen peroxide formation in a surrogate lung fluid by transition metals and quinones present in particulate matter. Environ. Sci. Technol. 2014, 48, 7010–7017. 10.1021/es501011w. PubMed DOI PMC
Wei J.; Yu H.; Wang Y.; Verma V. Complexation of iron and copper in ambient particulate matter and its effect on the oxidative potential measured in a surrogate lung fluid. Environ. Sci. Technol. 2019, 53, 1661–1671. 10.1021/acs.est.8b05731. PubMed DOI
Zhao H.; Joseph J.; Zhang H.; Karoui H.; Kalyanaraman B. Synthesis and biochemical applications of a solid cyclic nitrone spin trap: a relatively superior trap for detecting superoxide anions and glutathiyl radicals. Free Radical Biol. Med. 2001, 31, 599–606. 10.1016/s0891-5849(01)00619-0. PubMed DOI
Tong H.; Zhang Y.; Filippi A.; Wang T.; Li C.; Liu F.; Leppla D.; Kourtchev I.; Wang K.; Keskinen H.-M.; Levula J. T.; Arangio A. M.; Shen F.; Ditas F.; Martin S. T.; Artaxo P.; Godoi R. H. M.; Yamamoto C. I.; de Souza R. A. F.; Huang R.-J.; Berkemeier T.; Wang Y.; Su H.; Cheng Y.; Pope F. D.; Fu P.; Yao M.; Pöhlker C.; Petäjä T.; Kulmala M.; Andreae M. O.; Shiraiwa M.; Pöschl U.; Hoffmann T.; Kalberer M. Radical formation by fine particulate matter associated with highly oxygenated molecules. Environ. Sci. Technol. 2019, 53, 12506–12518. 10.1021/acs.est.9b05149. PubMed DOI
Lakey P. S. J.; Berkemeier T.; Tong H.; Arangio A. M.; Lucas K.; Pöschl U.; Shiraiwa M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci. Rep. 2016, 6, 32916.10.1038/srep32916. PubMed DOI PMC
Julien C.; Esperanza P.; Bruno M.; Alleman L. Y. Development of an in vitro method to estimate lung bioaccessibility of metals from atmospheric particles. J. Environ. Monit. 2011, 13, 621–630. 10.1039/c0em00439a. PubMed DOI
Zhang X.; Zheng M.; Liu G.; Zhu Q.; Dong S.; Zhang H.; Wang X.; Xiao K.; Gao L.; Liu W. A comparison of the levels and particle size distribution of lower chlorinated dioxin/furans (mono- to tri-chlorinated homologues) with those of tetra- to octa-chlorinated homologues in atmospheric samples. Chemosphere 2016, 151, 55–58. 10.1016/j.chemosphere.2016.02.059. PubMed DOI
Is the oxidative potential of components of fine particulate matter surface-mediated?
Nitro- and oxy-PAHs in grassland soils from decade-long sampling in central Europe