Loss of ISWI ATPase SMARCA5 (SNF2H) in Acute Myeloid Leukemia Cells Inhibits Proliferation and Chromatid Cohesion
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-01687S, 19-03586S
Grantová Agentura České Republiky
GAUK 228316, SVV 260374/2017, UNCE/MED/016, Progres Q26
Univerzita Karlova v Praze
NV19-08-00144
Agentura Pro Zdravotnický Výzkum České Republiky
LM2015040, NPU II LQ1604 (MEYS), OP RDI CZ.1.05/2.1.00/19.0395, CZ.1.05/1.1.00/02.0109 (ERDF, MEYS)
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32197313
PubMed Central
PMC7139293
DOI
10.3390/ijms21062073
PII: ijms21062073
Knihovny.cz E-resources
- Keywords
- AML, CRISPR, SMARCA5, SNF2H, leukemia, therapeutic target,
- MeSH
- Adenosine Triphosphatases deficiency metabolism MeSH
- Leukemia, Myeloid, Acute * enzymology genetics pathology MeSH
- K562 Cells MeSH
- Chromatids * genetics metabolism MeSH
- Chromosomal Proteins, Non-Histone deficiency metabolism MeSH
- Gene Knockout Techniques * MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Neoplasm Proteins * deficiency metabolism MeSH
- Cell Proliferation * MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Adenosine Triphosphatases MeSH
- Chromosomal Proteins, Non-Histone MeSH
- Neoplasm Proteins * MeSH
- SMARCA5 protein, human MeSH Browser
ISWI chromatin remodeling ATPase SMARCA5 (SNF2H) is a well-known factor for its role in regulation of DNA access via nucleosome sliding and assembly. SMARCA5 transcriptionally inhibits the myeloid master regulator PU.1. Upregulation of SMARCA5 was previously observed in CD34+ hematopoietic progenitors of acute myeloid leukemia (AML) patients. Since high levels of SMARCA5 are necessary for intensive cell proliferation and cell cycle progression of developing hematopoietic stem and progenitor cells in mice, we reasoned that removal of SMARCA5 enzymatic activity could affect the cycling or undifferentiated state of leukemic progenitor-like clones. Indeed, we observed that CRISPR/cas9-mediated SMARCA5 knockout in AML cell lines (S5KO) inhibited the cell cycle progression. We also observed that the SMARCA5 deletion induced karyorrhexis and nuclear budding as well as increased the ploidy, indicating its role in mitotic division of AML cells. The cytogenetic analysis of S5KO cells revealed the premature chromatid separation. We conclude that deleting SMARCA5 in AML blocks leukemic proliferation and chromatid cohesion.
Biocev 1st Medical Faculty Charles University 25250 Vestec Czech Republic
Department of Medicine 3 University Hospital LMU Munich D 80539 Munich Germany
German Cancer Consortium partner site Munich D 80336 Munich Germany
See more in PubMed
Kokavec J., Zikmund T., Savvulidi F., Kulvait V., Edelmann W., Skoultchi A.I., Stopka T. The ISWI ATPase Smarca5 (Snf2h) Is Required for Proliferation and Differentiation of Hematopoietic Stem and Progenitor Cells. Stem Cells. 2017;35:1614–1623. doi: 10.1002/stem.2604. PubMed DOI PMC
Stopka T., Skoultchi A.I. The ISWI ATPase Snf2h is required for early mouse development. Proc. Natl. Acad. Sci. USA. 2003;100:14097–14102. doi: 10.1073/pnas.2336105100. PubMed DOI PMC
Zikmund T., Kokavec J., Turkova T., Savvulidi F., Paszekova H., Vodenkova S., Sedlacek R., Skoultchi A.I., Stopka T. ISWI ATPase Smarca5 Regulates Differentiation of Thymocytes Undergoing beta-Selection. J. Immunol. 2019;202:3434–3446. doi: 10.4049/jimmunol.1801684. PubMed DOI PMC
Alvarez-Saavedra M., De Repentigny Y., Lagali P.S., Raghu Ram E.V., Yan K., Hashem E., Ivanochko D., Huh M.S., Yang D., Mears A.J., et al. Snf2h-mediated chromatin organization and histone H1 dynamics govern cerebellar morphogenesis and neural maturation. Nat. Commun. 2014;5:4181. doi: 10.1038/ncomms5181. PubMed DOI PMC
He S., Limi S., McGreal R.S., Xie Q., Brennan L.A., Kantorow W.L., Kokavec J., Majumdar R., Hou H., Jr., Edelmann W., et al. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation. Development. 2016;143:1937–1947. doi: 10.1242/dev.135285. PubMed DOI PMC
Barisic D., Stadler M.B., Iurlaro M., Schubeler D. Mammalian ISWI and SWI/SNF selectively mediate binding of distinct transcription factors. Nature. 2019;569:136–140. doi: 10.1038/s41586-019-1115-5. PubMed DOI PMC
Dluhosova M., Curik N., Vargova J., Jonasova A., Zikmund T., Stopka T. Epigenetic control of SPI1 gene by CTCF and ISWI ATPase SMARCA5. PLoS ONE. 2014;9:e87448. doi: 10.1371/journal.pone.0087448. PubMed DOI PMC
Morris S.A., Baek S., Sung M.H., John S., Wiench M., Johnson T.A., Schiltz R.L., Hager G.L. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions. Nat. Struct. Mol. Biol. 2014;21:73–81. doi: 10.1038/nsmb.2718. PubMed DOI PMC
Goodwin L.R., Picketts D.J. The role of ISWI chromatin remodeling complexes in brain development and neurodevelopmental disorders. Mol. Cell Neurosci. 2018;87:55–64. doi: 10.1016/j.mcn.2017.10.008. PubMed DOI
Erdel F., Rippe K. Chromatin remodelling in mammalian cells by ISWI-type complexes—Where, when and why? FEBS J. 2011;278:3608–3618. doi: 10.1111/j.1742-4658.2011.08282.x. PubMed DOI
Kadoch C., Crabtree G.R. Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics. Sci. Adv. 2015;1:e1500447. doi: 10.1126/sciadv.1500447. PubMed DOI PMC
Garraway L.A., Lander E.S. Lessons from the cancer genome. Cell. 2013;153:17–37. doi: 10.1016/j.cell.2013.03.002. PubMed DOI
Dutta A., Sardiu M., Gogol M., Gilmore J., Zhang D., Florens L., Abmayr S.M., Washburn M.P., Workman J.L. Composition and Function of Mutant Swi/Snf Complexes. Cell Rep. 2017;18:2124–2134. doi: 10.1016/j.celrep.2017.01.058. PubMed DOI PMC
Gigek C.O., Lisboa L.C., Leal M.F., Silva P.N., Lima E.M., Khayat A.S., Assumpcao P.P., Burbano R.R., Smith Mde A. SMARCA5 methylation and expression in gastric cancer. Cancer Investig. 2011;29:162–166. doi: 10.3109/07357907.2010.543365. PubMed DOI
Reis S.T., Timoszczuk L.S., Pontes-Junior J., Viana N., Silva I.A., Dip N., Srougi M., Leite K.R. The role of micro RNAs let7c, 100 and 218 expression and their target RAS, C-MYC, BUB1, RB, SMARCA5, LAMB3 and Ki-67 in prostate cancer. Clinics. 2013;68:652–657. doi: 10.6061/clinics/2013(05)12. PubMed DOI PMC
Sheu J.J., Choi J.H., Yildiz I., Tsai F.J., Shaul Y., Wang T.L., Shih Ie M. The roles of human sucrose nonfermenting protein 2 homologue in the tumor-promoting functions of Rsf-1. Cancer Res. 2008;68:4050–4057. doi: 10.1158/0008-5472.CAN-07-3240. PubMed DOI PMC
Jin Q., Mao X., Li B., Guan S., Yao F., Jin F. Overexpression of SMARCA5 correlates with cell proliferation and migration in breast cancer. Tumour. Biol. 2015;36:1895–1902. doi: 10.1007/s13277-014-2791-2. PubMed DOI
Zhao X.C., An P., Wu X.Y., Zhang L.M., Long B., Tian Y., Chi X.Y., Tong D.Y. Overexpression of hSNF2H in glioma promotes cell proliferation, invasion, and chemoresistance through its interaction with Rsf-1. Tumour. Biol. 2016;37:7203–7212. doi: 10.1007/s13277-015-4579-4. PubMed DOI
Stopka T., Zakova D., Fuchs O., Kubrova O., Blafkova J., Jelinek J., Necas E., Zivny J. Chromatin remodeling gene SMARCA5 is dysregulated in primitive hematopoietic cells of acute leukemia. Leukemia. 2000;14:1247–1252. doi: 10.1038/sj.leu.2401807. PubMed DOI
Rosenbauer F., Wagner K., Kutok J.L., Iwasaki H., Le Beau M.M., Okuno Y., Akashi K., Fiering S., Tenen D.G. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat. Genet. 2004;36:624–630. doi: 10.1038/ng1361. PubMed DOI
Behan F.M., Iorio F., Picco G., Goncalves E., Beaver C.M., Migliardi G., Santos R., Rao Y., Sassi F., Pinnelli M., et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 2019;568:511. doi: 10.1038/s41586-019-1103-9. PubMed DOI
Law J.C., Ritke M.K., Yalowich J.C., Leder G.H., Ferrell R.E. Mutational inactivation of the p53 gene in the human erythroid leukemic K562 cell line. Leuk. Res. 1993;17:1045–1050. doi: 10.1016/0145-2126(93)90161-D. PubMed DOI
Hakimi M.A., Bochar D.A., Schmiesing J.A., Dong Y., Barak O.G., Speicher D.W., Yokomori K., Shiekhattar R. A chromatin remodelling complex that loads cohesin onto human chromosomes. Nature. 2002;418:994–998. doi: 10.1038/nature01024. PubMed DOI
Welch J.S., Ley T.J., Link D.C., Miller C.A., Larson D.E., Koboldt D.C., Wartman L.D., Lamprecht T.L., Liu F., Xia J., et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150:264–278. doi: 10.1016/j.cell.2012.06.023. PubMed DOI PMC
Kim J.-S., He X., Orr B., Wutz G., Hill V., Peters J.-M., Compton D.A., Waldman T. Intact Cohesion, Anaphase, and Chromosome Segregation in Human Cells Harboring Tumor-Derived Mutations in STAG2. PLOS Genet. 2016;12:e1005865. doi: 10.1371/journal.pgen.1005865. PubMed DOI PMC
Leman A.R., Noguchi C., Lee C.Y., Noguchi E. Human Timeless and Tipin stabilize replication forks and facilitate sister-chromatid cohesion. J. Cell Sci. 2010;123:660–670. doi: 10.1242/jcs.057984. PubMed DOI PMC
De Lange J., Faramarz A., Oostra A.B., de Menezes R.X., van der Meulen I.H., Rooimans M.A., Rockx D.A., Brakenhoff R.H., van Beusechem V.W., King R.W., et al. Defective sister chromatid cohesion is synthetically lethal with impaired APC/C function. Nat. Commun. 2015;6:8399. doi: 10.1038/ncomms9399. PubMed DOI PMC
Kishtagari A.N., Jarman C., Tiwari A.D., Phillips J.G., Schuerger C., Jha B.K., Saunthararajah Y. A First-in-Class Inhibitor of ISWI-Mediated (ATP-Dependent) Transcription Repression Releases Terminal-Differentiation in AML Cells While Sparing Normal Hematopoiesis. Blood. 2018;132:216. doi: 10.1182/blood-2018-99-119311. DOI
Herold T., Jurinovic V., Batcha A.M.N., Bamopoulos S.A., Rothenberg-Thurley M., Ksienzyk B., Hartmann L., Greif P.A., Phillippou-Massier J., Krebs S., et al. A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia. Haematologica. 2018;103:456–465. doi: 10.3324/haematol.2017.178442. PubMed DOI PMC
Stief S.M., Hanneforth A.L., Weser S., Mattes R., Carlet M., Liu W.H., Bartoschek M.D., Dominguez Moreno H., Oettle M., Kempf J., et al. Loss of KDM6A confers drug resistance in acute myeloid leukemia. Leukemia. 2020;34:50–62. doi: 10.1038/s41375-019-0497-6. PubMed DOI PMC
Batcha A.M.N., Bamopoulos S.A., Kerbs P., Kumar A., Jurinovic V., Rothenberg-Thurley M., Ksienzyk B., Philippou-Massier J., Krebs S., Blum H., et al. Allelic Imbalance of Recurrently Mutated Genes in Acute Myeloid Leukaemia. Sci. Rep. 2019;9:11796. doi: 10.1038/s41598-019-48167-4. PubMed DOI PMC
Jacks T., Remington L., Williams B.O., Schmitt E.M., Halachmi S., Bronson R.T., Weinberg R.A. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 1994;4:1–7. doi: 10.1016/S0960-9822(00)00002-6. PubMed DOI
SMARCA5-mediated chromatin remodeling is required for germinal center formation