Nanostructured Materials for Artificial Tissue Replacements
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
17-10907S
Grantová Agentura České Republiky
PubMed
32260477
PubMed Central
PMC7178059
DOI
10.3390/ijms21072521
PII: ijms21072521
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial effects, biologic properties, mechanical properties, nanomaterials, tissue engineering,
- MeSH
- lidé MeSH
- nanostruktury chemie MeSH
- regenerativní lékařství metody MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Zobrazit více v PubMed
Staszek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI
Polivkova M., Valova M., Rimpelova S., Slepicka P., Svorcik V., Siegel J. Pd nanowire coatings of laser-treated polyethylene naphthalate: Preparation, characterization and biological response. Express Polym. Lett. 2018;12:1039–1046. doi: 10.3144/expresspolymlett.2018.91. DOI
Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI
Fathi-Achachelouei M., Knopf-Marques H., Ribeiro da Silva C.E., Barthès J., Bat E., Tezcaner A., Vrana N.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2019;7:113. doi: 10.3389/fbioe.2019.00113. PubMed DOI PMC
Yang Y., Wang S., Wang Y., Wang X., Wang Q., Chen M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014;32:1301–1316. doi: 10.1016/j.biotechadv.2014.07.007. PubMed DOI
Bhunia S.K., Saha A., Maity A.R., Ray S.C., Jana N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013;3:1473. doi: 10.1038/srep01473. PubMed DOI PMC
Keles E., Song Y., Du D., Dong W.-J., Lin Y. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci. 2016;4:1291–1309. doi: 10.1039/C6BM00441E. PubMed DOI
Almeida A.J., Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007;59:478–490. doi: 10.1016/j.addr.2007.04.007. PubMed DOI
Prego C., García M., Torres D., Alonso M.J. Transmucosal macromolecular drug delivery. J. Control. Release. 2005;101:151–162. doi: 10.1016/j.jconrel.2004.07.030. PubMed DOI
Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006;61:1027–1040. doi: 10.1016/j.ces.2005.06.019. DOI
Jean-Gilles R., Soscia D., Sequeira S., Melfi M., Gadre A., Castracane J., Larsen M. Novel modeling approach to generate a polymeric nanofiber scaffold for salivary gland cells. J. Nanotechnol. Eng. Med. 2010;1:031008. doi: 10.1115/1.4001744. PubMed DOI PMC
Li X., Liu W., Sun L., Fan Y., Feng Q. The application of inorganic nanomaterials in bone tissue engineering. J. Biomater. Tiss. Eng. 2014;4:994–1003. doi: 10.1166/jbt.2014.1253. DOI
Sridhar R., Sundarrajan S., Venugopal J.R., Ravichandran R., Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J. Biomater. Sci. Polym. Ed. 2013;24:365–385. doi: 10.1080/09205063.2012.690711. PubMed DOI
O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.
Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. doi: 10.1016/j.biomaterials.2006.01.039. PubMed DOI
Cao L., Wu X., Wang Q., Wang J. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. J. Photoch. Photobio. B. 2018;178:440–446. doi: 10.1016/j.jphotobiol.2017.10.026. PubMed DOI
Sahoo N.G., Pan Y.Z., Li L., He C.B. Nanocomposites for bone tissue regeneration. Nanomedicine. 2013;8:639–653. doi: 10.2217/nnm.13.44. PubMed DOI
Baranes K., Shevach M., Shefi O., Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 2016;16:2916–2920. doi: 10.1021/acs.nanolett.5b04033. PubMed DOI
Dvir T., Timko B.P., Brigham M.D., Naik S.R., Karajanagi S.S., Levy O., Jin H., Parker K.K., Langer R., Kohane D.S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011;6:720–725. doi: 10.1038/nnano.2011.160. PubMed DOI PMC
Jin G., Prabhakaran M.P., Nadappuram B.P., Singh G., Kai D., Ramakrishna S. Electrospun poly(L-lactic acid)-co-poly(ϵ-caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering. J. Biomater. Sci. Polym. Ed. 2012;23:2337–2352. PubMed
Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–4757. doi: 10.1016/j.biomaterials.2003.12.005. PubMed DOI
Bini T.B., Gao S., Wang S., Ramakrishna S. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: An in vitro study. J. Mater. Sci. 2006;41:6453–6459. doi: 10.1007/s10853-006-0714-3. DOI
Chen X., Fu X., Shi J.-G., Wang H. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomed. Nanotechnol. Biol. Med. 2013;9:1283–1292. doi: 10.1016/j.nano.2013.04.013. PubMed DOI
Teh T.K.H., Toh S.-L., Goh J.C.H. Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng. C. 2011;17:687–703. doi: 10.1089/ten.tec.2010.0513. PubMed DOI
Wang W., Itoh S., Konno K., Kikkawa T., Ichinose S., Sakai K., Ohkuma T., Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res. A. 2009;91:994–1005. doi: 10.1002/jbm.a.32329. PubMed DOI
Cooper A., Jana S., Bhattarai N., Zhang M. Aligned chitosan-based nanofibers for enhanced myogenesis. J. Mater. Chem. 2010;20:8904–8911. doi: 10.1039/c0jm01841d. DOI
Gautam S., Chou C.-F., Dinda A.K., Potdar P.D., Mishra N.C. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater. Sci. Eng. C. 2014;34:402–409. doi: 10.1016/j.msec.2013.09.043. PubMed DOI
Li W.-J., Tuli R., Okafor C., Derfoul A., Danielson K.G., Hall D.J., Tuan R.S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609. doi: 10.1016/j.biomaterials.2004.03.005. PubMed DOI
Frenkel S.R., Di Cesare P.E. Scaffolds for articular cartilage repair. Ann. Biomed. Eng. 2004;32:26–34. doi: 10.1023/B:ABME.0000007788.41804.0d. PubMed DOI
Woodfield T., Bezemer J., Pieper J., Van Blitterswijk C., Riesle J. Scaffolds for tissue engineering of cartilage. Crit. Rev. Eukaryot. Gene Expr. 2002;12:28. doi: 10.1615/CritRevEukarGeneExpr.v12.i3.40. PubMed DOI
Wang Y., Blasioli D.J., Kim H.-J., Kim H.S., Kaplan D.L. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27:4434–4442. doi: 10.1016/j.biomaterials.2006.03.050. PubMed DOI
Griffon D.J., Sedighi M.R., Schaeffer D.V., Eurell J.A., Johnson A.L. Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomater. 2006;2:313–320. doi: 10.1016/j.actbio.2005.12.007. PubMed DOI
Yoo H.S., Lee E.A., Yoon J.J., Park T.G. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26:1925–1933. doi: 10.1016/j.biomaterials.2004.06.021. PubMed DOI
Chang K.Y., Hung L.H., Chu I.M., Ko C.S., Lee Y.D. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J. Biomed. Mater. Res. A. 2010;92:712–723. doi: 10.1002/jbm.a.32198. PubMed DOI
Wang C.-C., Yang K.-C., Lin K.-H., Liu H.-C., Lin F.-H. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32:7118–7126. doi: 10.1016/j.biomaterials.2011.06.018. PubMed DOI
Lien S.-M., Ko L.-Y., Huang T.-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–679. doi: 10.1016/j.actbio.2008.09.020. PubMed DOI
Müller F.A., Müller L., Hofmann I., Greil P., Wenzel M.M., Staudenmaier R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials. 2006;27:3955–3963. doi: 10.1016/j.biomaterials.2006.02.031. PubMed DOI
Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D., Brittberg M., Gatenholm P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419–431. doi: 10.1016/j.biomaterials.2004.02.049. PubMed DOI
Bölgen N., Yang Y., Korkusuz P., Güzel E., El Haj A.J., Pişkin E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2011;5:770–779. doi: 10.1002/term.375. PubMed DOI
Chu C.R., Coutts R.D., Yoshioka M., Harwood F.L., Monosov A.Z., Amiel D. Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous polylactic acid (PLA): A tissue-engineering study. J. Biomed. Mater. Res. 1995;29:1147–1154. doi: 10.1002/jbm.820290915. PubMed DOI
Moran J.M., Pazzano D., Bonassar L.J. Characterization of polylactic acid–polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 2003;9:63–70. doi: 10.1089/107632703762687546. PubMed DOI
Sato M., Ishihara M., Ishihara M., Kaneshiro N., Mitani G., Nagai T., Kutsuna T., Asazuma T., Kikuchi M., Mochida J. Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J. Biomed. Mater. Res. B. 2007;83:181–188. doi: 10.1002/jbm.b.30782. PubMed DOI
Springer I.N., Fleiner B., Jepsen S., Açil Y. Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds. Biomaterials. 2001;22:2569–2577. doi: 10.1016/S0142-9612(01)00148-X. PubMed DOI
Neves A.A., Medcalf N., Brindle K.M. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials. 2005;26:4828–4836. doi: 10.1016/j.biomaterials.2004.12.002. PubMed DOI
Vikingsson L., Gómez-Tejedor J.A., Ferrer G.G., Ribelles J.G. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J. Biomech. 2015;48:1310–1317. doi: 10.1016/j.jbiomech.2015.02.013. PubMed DOI
Ohyabu Y., Adegawa T., Yoshioka T., Ikoma T., Uemura T., Tanaka J. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite. Mater. Sci. Eng. B. 2010;173:204–207. doi: 10.1016/j.mseb.2009.12.008. PubMed DOI
Kao C.-T., Lin C.-C., Chen Y.-W., Yeh C.-H., Fang H.-Y., Shie M.-Y. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2015;56:165–173. doi: 10.1016/j.msec.2015.06.028. PubMed DOI
Liu H., Slamovich E., Webster T. Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomed. 2006;1:541–545. doi: 10.2147/nano.2006.1.4.541. PubMed DOI PMC
Kim J., Kim I.S., Cho T.H., Lee K.B., Hwang S.J., Tae G., Noh I., Lee S.H., Park Y., Sun K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28:1830–1837. doi: 10.1016/j.biomaterials.2006.11.050. PubMed DOI
Shuai C., Mao Z., Lu H., Nie Y., Hu H., Peng S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication. 2013;5:015014. doi: 10.1088/1758-5082/5/1/015014. PubMed DOI
Lu M.-C., Huang Y.-T., Lin J.-H., Yao C.-H., Lou C.-W., Tsai C.-C., Chen Y.-S. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J. Mater. Sci. Mater. Med. 2009;20:1175–1180. doi: 10.1007/s10856-008-3646-4. PubMed DOI
Lavik E., Teng Y.D., Snyder E., Langer R. Seeding neural stem cells on scaffolds of PGA, PLA, and their copolymers. Methods Mol. Biol. 2002;198:89–97. PubMed
Leipzig N.D., Wylie R.G., Kim H., Shoichet M.S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials. 2011;32:57–64. doi: 10.1016/j.biomaterials.2010.09.031. PubMed DOI
Chen Y.W., Chiou S.H., Wong T.T., Ku H.H., Lin H.T., Chung C.F., Yen S.H., Kao C.L. Using gelatin scaffold with coated basic fibroblast growth factor as a transfer system for transplantation of human neural stem cells. Transplant. Proc. 2006;38:1616–1617. doi: 10.1016/j.transproceed.2006.02.084. PubMed DOI
Nistal F., García-Martínez V., Arbe E., Fernández D., Artiñano E., Mazorra F., Gallo I. In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 1990;99:1074–1081. PubMed
Stock U., Mayer J.E., Jr. Tissue engineering of cardiac valves on the basis of PGA/PLA Co-polymers. J. Long Term Eff. Med. Implants. 2001;11:249–260. doi: 10.1615/JLongTermEffMedImplants.v11.i34.110. PubMed DOI
Balguid A., Mol A., van Marion M.H., Bank R.A., Bouten C.V.C., Baaijens F.P.T. Tailoring fiber diameter in electrospun poly(ɛ-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. A. 2008;15:437–444. doi: 10.1089/ten.tea.2007.0294. PubMed DOI
Castellano D., Blanes M., Marco B., Cerrada I., Ruiz-Saurí A., Pelacho B., Araña M., Montero J.A., Cambra V., Prosper F., et al. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair. Stem Cells Dev. 2014;23:1479–1490. doi: 10.1089/scd.2013.0578. PubMed DOI PMC
Chun S., Huang Y., Xie W.J., Hou Y., Huang R.P., Song Y.M., Liu X.M., Zheng W., Shi Y., Song C.F. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant. Proc. 2008;40:1658–1663. doi: 10.1016/j.transproceed.2008.02.088. PubMed DOI
Elcin Y.M., Elcin E., Bretzel R., Linn T. Pancreatic islet culture and transplantation using chitosan and PLGA scaffolds. Adv. Exp. Med. Biol. 2003;534:255–264. PubMed
Muthyala S., Bhonde R.R., Nair P.D. Cytocompatibility studies of mouse pancreatic islets on gelatin—PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets. 2010;2:357–366. doi: 10.4161/isl.2.6.13765. PubMed DOI
Teramura Y., Kaneda Y., Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)–lipids in the cell membrane. Biomaterials. 2007;28:4818–4825. doi: 10.1016/j.biomaterials.2007.07.050. PubMed DOI
Pattison M.A., Wurster S., Webster T.J., Haberstroh K.M. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26:2491–2500. doi: 10.1016/j.biomaterials.2004.07.011. PubMed DOI
Brown A.L., Srokowski E.M., Shu X.Z., Prestwich G.D., Woodhouse K.A. Development of a model bladder extracellular matrix combining disulfide cross-linked hyaluronan with decellularized bladder tissue. Macromol. Biosci. 2006;6:648–657. doi: 10.1002/mabi.200600052. PubMed DOI
Jang Y.-J., Chun S.Y., Kim G.N., Kim J.R., Oh S.H., Lee J.H., Kim B.S., Song P.H., Yoo E.S., Kwon T.G. Characterization of a novel composite scaffold consisting of acellular bladder submucosa matrix, polycaprolactone and Pluronic F127 as a substance for bladder reconstruction. Acta Biomater. 2014;10:3117–3125. doi: 10.1016/j.actbio.2014.03.002. PubMed DOI
Tsang M., Chun Y.W., Im Y.M., Khang D., Webster T.J. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tissue Eng. A. 2011;17:1879–1889. doi: 10.1089/ten.tea.2010.0569. PubMed DOI
Espandar L., Bunnell B., Wang G.Y., Gregory P., McBride C., Moshirfar M. Adipose-derived stem cells on hyaluronic acid-derived scaffold: A new horizon in bioengineered cornea. Arch. Ophthalmol. 2012;130:202–208. doi: 10.1001/archopthalmol.2011.1398. PubMed DOI
Liang Y., Liu W., Han B., Yang C., Ma Q., Zhao W., Rong M., Li H. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J. Mater. Sci. Mater. Med. 2011;22:175–183. doi: 10.1007/s10856-010-4190-6. PubMed DOI
Uchino Y., Shimmura S., Miyashita H., Taguchi T., Kobayashi H., Shimazaki J., Tanaka J., Tsubota K. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J. Biomed. Mater. Res. B. 2007;81:201–206. doi: 10.1002/jbm.b.30654. PubMed DOI
Ozcelik B., Brown K.D., Blencowe A., Daniell M., Stevens G.W., Qiao G.G. Ultrathin chitosan–poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 2013;9:6594–6605. doi: 10.1016/j.actbio.2013.01.020. PubMed DOI
Sun T., Mai S., Norton D., Haycock J.W., Ryan A.J., Macneil S. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng. 2005;11:1023–1033. doi: 10.1089/ten.2005.11.1023. PubMed DOI
Yang J., Shi G., Bei J., Wang S., Cao Y., Shang Q., Yang G., Wang W. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 2002;62:438–446. doi: 10.1002/jbm.10318. PubMed DOI
Adekogbe I., Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005;26:7241–7250. doi: 10.1016/j.biomaterials.2005.05.043. PubMed DOI
Lee S.B., Kim Y.H., Chong M.S., Hong S.H., Lee Y.M. Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–1968. doi: 10.1016/j.biomaterials.2004.06.032. PubMed DOI
Chang C.-H., Liu H.-C., Lin C.-C., Chou C.-H., Lin F.-H. Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials. 2003;24:4853–4858. doi: 10.1016/S0142-9612(03)00383-1. PubMed DOI
Janouskova O. Synthetic polymer scaffolds for soft tissue engineering. Physiol. Res. 2018;67:335–348. doi: 10.33549/physiolres.933983. PubMed DOI
Polivkova M., Strublova V., Hubacek T., Rimpelova S., Svorcik V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI
Siegel J., Lyutakov O., Polivkova M., Staszek M., Hubacek T., Svorcik V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI
Siegel J., Sulakova P., Kaimlova M., Svorcik V., Hubacek T. Underwater laser treatment of PET: Effect of processing parameters on surface morphology and chemistry. Appl. Sci. 2018;8:2389–2397. doi: 10.3390/app8122389. DOI
Kaimlova M., Nemogova I., Kolarova K., Slepicka P., Svorcik V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI
Peterbauer T., Yakunin S., Siegel J., Heitz J. Dynamics of the Alignment of Mammalian Cells on a Nano-Structured Polymer Surface. Macromol. Symp. 2010;296:272–277. doi: 10.1002/masy.201051038. DOI
Zhao H., Ding R., Zhao X., Li Y., Qu L., Pei H., Yildirimer L., Wu Z., Zhang W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today. 2017;22:1302–1317. doi: 10.1016/j.drudis.2017.04.002. PubMed DOI
Farzin L., Shamsipur M., Samandari L., Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim. Acta. 2018;185:276. doi: 10.1007/s00604-018-2820-8. PubMed DOI
Mahaye N., Thwala M., Cowan D.A., Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat. Res. Rev. Mutat. Res. 2017;773:134–160. doi: 10.1016/j.mrrev.2017.05.004. PubMed DOI
Hillman Y., Lustiger D., Wine Y. Antibody-based nanotechnology. Nanotechnology. 2019;30:282001. doi: 10.1088/1361-6528/ab12f4. PubMed DOI
Slowing I.I., Vivero-Escoto J.L., Wu C.-W., Lin V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008;60:1278–1288. doi: 10.1016/j.addr.2008.03.012. PubMed DOI
Tang Y., Zhao Y., Wang X., Lin T. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: Enhancement of osteoblast cell adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. A. 2014;102:3803–3812. doi: 10.1002/jbm.a.35050. PubMed DOI
Lipski A.M., Pino C.J., Haselton F.R., Chen I.W., Shastri V.P. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials. 2008;29:3836–3846. doi: 10.1016/j.biomaterials.2008.06.002. PubMed DOI PMC
Wu X., Wu M., Zhao J.X. Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed. Nanotechnol. Biol. Med. 2014;10:297–312. doi: 10.1016/j.nano.2013.08.008. PubMed DOI PMC
Lee J.M., Kim B.-S., Lee H., Im G.-I. In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol. Ther. 2012;20:1434–1442. doi: 10.1038/mt.2012.60. PubMed DOI PMC
Yang K.-N., Zhang C.-Q., Wang W., Wang P.C., Zhou J.-P., Liang X.-J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol. Med. 2014;11:34–43. PubMed PMC
Arjmandi M., Ramezani M. Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J. Mech. Behav. Biomed. Mater. 2019;95:196–204. doi: 10.1016/j.jmbbm.2019.04.020. PubMed DOI
Beck G.R., Jr., Ha S.W., Camalier C.E., Yamaguchi M., Li Y., Lee J.K., Weitzmann M.N. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med. 2012;8:793–803. doi: 10.1016/j.nano.2011.11.003. PubMed DOI PMC
Baei P., Jalili-Firoozinezhad S., Rajabi-Zeleti S., Tafazzoli-Shadpour M., Baharvand H., Aghdami N. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater. Sci. Eng. C. 2016;63:131–141. doi: 10.1016/j.msec.2016.02.056. PubMed DOI
Suh K.S., Lee Y.S., Seo S.H., Kim Y.S., Choi E.M. Gold nanoparticles attenuates antimycin a-induced mitochondrial dysfunction in MC3T3-E1 osteoblastic cells. Biol. Trace Elem. Res. 2013;153:428–436. doi: 10.1007/s12011-013-9679-7. PubMed DOI
Asgari V., Landarani-Isfahani A., Salehi H., Amirpour N., Hashemibeni B., Rezaei S., Bahramian H. The story of nanoparticles in differentiation of stem cells into neural cells. Neurochem. Res. 2019;44:2695–2707. doi: 10.1007/s11064-019-02900-7. PubMed DOI
You J.-O., Rafat M., Ye G.J.C., Auguste D.T. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11:3643–3648. doi: 10.1021/nl201514a. PubMed DOI
Aktürk Ö., Keskin D. Collagen/PEO/gold nanofibrous matrices for skin tissue engineering. Turk. J. Biol. 2016;40:380–398. doi: 10.3906/biy-1502-49. DOI
Xing Z.-C., Chae W.-P., Baek J.-Y., Choi M.-J., Jung Y., Kang I.-K. In Vitro Assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules. 2010;11:1248–1253. doi: 10.1021/bm1000372. PubMed DOI
Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI
Johari N., Hosseini H.R.M., Samadikuchaksaraei A. Mechanical modeling of silk fibroin/tio2 and silk fibroin/fluoridated tio2 nanocomposite scaffolds for bone tissue engineering. Iran. Polym. J. 2020;29:219–224. doi: 10.1007/s13726-020-00789-6. DOI
Carballo-Vila M., Moreno-Burriel B., Chinarro E., Jurado J.R., Casañ-Pastor N., Collazos-Castro J.E. Titanium oxide as substrate for neural cell growth. J. Biomed. Mater. Res. A. 2009;90:94–105. doi: 10.1002/jbm.a.32058. PubMed DOI
Jawad H., Ali N.N., Lyon A.R., Chen Q.Z., Harding S.E., Boccaccini A.R. Myocardial tissue engineering: A review. J. Tissue Eng. Regen. Med. 2007;1:327–342. doi: 10.1002/term.46. PubMed DOI
Li N., Fan X., Tang K., Zheng X., Liu J., Wang B. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide. Colloids Surf. B. 2016;140:287–296. doi: 10.1016/j.colsurfb.2015.12.005. PubMed DOI
Zhang N., Lock J., Sallee A., Liu H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: Synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl. Mater. Interfaces. 2015;7:20987–20998. doi: 10.1021/acsami.5b06939. PubMed DOI
Bock N., Riminucci A., Dionigi C., Russo A., Tampieri A., Landi E., Goranov V.A., Marcacci M., Dediu V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI
Poggetti A., Battistini P., Parchi P.D., Novelli M., Raffa S., Cecchini M., Nucci A.M., Lisanti M. How to direct the neuronal growth process in peripheral nerve regeneration: Future strategies for nanosurfaces scaffold and magnetic nanoparticles. Surg. Technol. Int. 2017;30:458–461. PubMed
Shimizu K., Ito A., Lee J.-K., Yoshida T., Miwa K., Ishiguro H., Numaguchi Y., Murohara T., Kodama I., Honda H. Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnol. Bioeng. 2007;96:803–809. doi: 10.1002/bit.21094. PubMed DOI
Shao C., Chen J., Chen P., Zhu M., Yao Q., Gu P., Fu Y., Fan X. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2014;24:756–767. doi: 10.1089/scd.2014.0255. PubMed DOI PMC
Kay S., Thapa A., Haberstroh K.M., Webster T.J. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002;8:753–761. doi: 10.1089/10763270260424114. PubMed DOI
Li X., Feng Q., Liu X., Dong W., Cui F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27:1917–1923. doi: 10.1016/j.biomaterials.2005.11.013. PubMed DOI
Barabadi Z., Azami M., Sharifi E., Karimi R., Lotfibakhshaiesh N., Roozafzoon R., Joghataei M.T., Ai J. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. Mater. Sci. Eng. C. 2016;69:1137–1146. doi: 10.1016/j.msec.2016.08.012. PubMed DOI
Karbasi S., Alizadeh Z.M. Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bull. Mater. Sci. 2017;40:1247–1253. doi: 10.1007/s12034-017-1479-9. DOI
Shi X., Sitharaman B., Pham Q.P., Liang F., Wu K., Edward Billups W., Wilson L.J., Mikos A.G. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials. 2007;28:4078–4090. doi: 10.1016/j.biomaterials.2007.05.033. PubMed DOI PMC
Lee J.-R., Ryu S., Kim S., Kim B.-S. Behaviors of stem cells on carbon nanotube. Biomater. Res. 2015;19:3. doi: 10.1186/s40824-014-0024-9. PubMed DOI PMC
Stout D.A., Basu B., Webster T.J. Poly(lactic–co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 2011;7:3101–3112. doi: 10.1016/j.actbio.2011.04.028. PubMed DOI
Jing T., Shao Y., Zheng Y., Tian J. Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Adv. 2015;5:103943–103955.
Orlando A., Colombo M., Prosperi D., Corsi F., Panariti A., Rivolta I., Masserini M., Cazzaniga E. Evaluation of gold nanoparticles biocompatibility: A multiparametric study on cultured endothelial cells and macrophages. J. Nanopart. Res. 2016;18:58. doi: 10.1007/s11051-016-3359-4. DOI
Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC
Gunawidjaja R., Kharlampieva E., Choi I., Tsukruk V. Bimetallic nanostructures as active raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small. 2009;5:2460–2466. doi: 10.1002/smll.200900688. PubMed DOI
Polivkova M., Siegel J., Rimpelova S., Hubacek T., Kolska Z., Svorcik V. Cytotoxicity of Pd nanostructures supported on PEN: Influence of sterilization on Pd/PEN interface. Mater. Sci. Eng. C. 2017;70:479–486. doi: 10.1016/j.msec.2016.09.032. PubMed DOI
Siegel J., Polivkova M., Kasalkova N.S., Kolska Z., Svorcik V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8:1–10. doi: 10.1186/1556-276X-8-388. PubMed DOI PMC
Siegel J., Zaruba K., Svorcik V., Kroumanova K., Burketova L., Martinec J. Round-shape gold nanoparticles: Effect of particle size and concentration on Arabidopsis thaliana root growth. Nanoscale Res. Lett. 2018;13:1–7. doi: 10.1186/s11671-018-2510-9. PubMed DOI PMC
Buchman J.T., Hudson-Smith N.V., Landy K.M., Haynes C.L. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 2019;52:1632–1642. doi: 10.1021/acs.accounts.9b00053. PubMed DOI
Jaroenworaluck A., Sunsaneeyametha W., Kosachan N., Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 2006;38:473–477. doi: 10.1002/sia.2313. DOI
Oguma J., Kakuma Y., Murayama S., Nosaka Y. Effects of silica coating on photocatalytic reactions of anatase titanium dioxide studied by quantitative detection of reactive oxygen species. Appl. Catal. B. 2013;129:282–286. doi: 10.1016/j.apcatb.2012.09.034. DOI
Chen S.-Z., Zhang P.-Y., Zhu W.-P., Chen L., Xu S.-M. Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl. Surf. Sci. 2006;252:7532–7538. doi: 10.1016/j.apsusc.2005.09.023. DOI
Skocaj M., Filipic M., Petkovic J., Novak S.J.R. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011;45:227–247. doi: 10.2478/v10019-011-0037-0. PubMed DOI PMC
Alexiou C., Schmid R., Jurgons R., Kremer M., Wanner G., Bergemann C., Huenges E., Nawroth T., Arnold W., Parak F. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J. 2006;35:446–450. doi: 10.1007/s00249-006-0042-1. PubMed DOI
Hergt R., Dutz S., Müller R., Zeisberger M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 2006;18:2919–2934. doi: 10.1088/0953-8984/18/38/S26. DOI
Park H., Park H.-J., Kim J.A., Lee S.H., Kim J.H., Yoon J., Park T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods. 2011;84:41–45. doi: 10.1016/j.mimet.2010.10.010. PubMed DOI
Cunningham C.H., Arai T., Yang P.C., McConnell M.V., Pauly J.M., Conolly S.M. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 2005;53:999–1005. doi: 10.1002/mrm.20477. PubMed DOI
Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–6686. doi: 10.1021/la0202374. DOI
Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI
Tran P.A., Webster T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC
Parkin S.S., Kaiser C., Panchula A., Rice P.M., Hughes B., Samant M., Yang S.-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004;3:862–867. doi: 10.1038/nmat1256. PubMed DOI
Singh J.P., Chae K.H. d° ferromagnetism of magnesium oxide. Condens. Matter. 2017;2:36. doi: 10.3390/condmat2040036. DOI
Garcia M.A., Merino J.M., Fernández Pinel E., Quesada A., de la Venta J., Ruíz González M.L., Castro G.R., Crespo P., Llopis J., González-Calbet J.M., et al. Magnetic properties of ZnO nanoparticles. Nano Lett. 2007;7:1489–1494. doi: 10.1021/nl070198m. PubMed DOI
Bernard G.M., Eichele K., Wu G., Kirby C.W., Wasylishen R.E. Nuclear magnetic shielding tensors for the carbon, nitrogen, and selenium nuclei of selenocyanates—A combined experimental and theoretical approach. Can. J. Chem. 2000;78:614–625. doi: 10.1139/v00-046. DOI
Aykut-Yetkiner A., Attin T., Wiegand A. Prevention of dentine erosion by brushing with anti-erosive toothpastes. J. Dent. 2014;42:856–861. doi: 10.1016/j.jdent.2014.03.011. PubMed DOI
Maeda H., Kasuga T. Calcium phosphate cement with silicate ion releasing ability by incorporating calcium silicate hydrate. J. Ceram. Soc. JPN. 2014;122:591–595. doi: 10.2109/jcersj2.122.591. DOI
Chatterjee K., Sun L., Chow L.C., Young M.F., Simon C.G., Jr. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays. Biomaterials. 2011;32:1361–1369. doi: 10.1016/j.biomaterials.2010.10.043. PubMed DOI PMC
Gohil S., Domb A., Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2011;6:157–181. PubMed
Abdulkareem E.H., Memarzadeh K., Allaker R.P., Huang J., Pratten J., Spratt D. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J. Dent. 2015;43:1462–1469. doi: 10.1016/j.jdent.2015.10.010. PubMed DOI
Madhumathi K., Sampath Kumar T.S. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. 2014;9:035002. doi: 10.1088/1748-6041/9/3/035002. PubMed DOI
Choi B., Cui Z.-K., Kim S., Fan J., Wu B.M., Lee M. Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. J. Mater. Chem. B. 2015;3:6448–6455. doi: 10.1039/C5TB00843C. PubMed DOI PMC
Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014;9:393. doi: 10.1186/1556-276X-9-393. PubMed DOI PMC
Klumpp C., Kostarelos K., Prato M., Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta. 2006;1758:404–412. doi: 10.1016/j.bbamem.2005.10.008. PubMed DOI
Raja I.S., Song S.J., Kang M.S., Lee Y.B., Kim B., Hong S.W., Jeong S.J., Lee J.C., Han D.W. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials. 2019;9:1214. doi: 10.3390/nano9091214. PubMed DOI PMC
Zhu Y., Li W. Cytotoxicity of carbon nanotubes. Sci. China Ser. B. 2008;51:1021–1029. doi: 10.1007/s11426-008-0120-6. DOI
Xie X., Hu K., Fang D., Shang L., Tran S., Cerruti M. Graphene and hydroxyapatite self-assemble into homogenous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale. 2015;7:7992–8002. doi: 10.1039/C5NR01107H. PubMed DOI
Lamprecht C., Taale M., Paulowicz I., Westerhaus H., Grabosch C., Schuchardt A., Mecklenburg M., Böttner M., Lucius R., Schulte K., et al. A tunable scaffold of microtubular graphite for 3D cell growth. ACS Appl. Mater. Interfaces. 2016;8:14980–14985. doi: 10.1021/acsami.6b00778. PubMed DOI PMC
Shimizu K., Ito A., Yoshida T., Yamada Y., Ueda M., Honda H. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J. Biomed. Mater. Res. B. 2007;82:471–480. doi: 10.1002/jbm.b.30752. PubMed DOI
Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012;41:2256–2282. doi: 10.1039/C1CS15166E. PubMed DOI
Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI
Ko W.-K., Heo D.N., Moon H.-J., Lee S.J., Bae M.S., Lee J.B., Sun I.-C., Jeon H.B., Park H.K., Kwon I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci. 2015;438:68–76. doi: 10.1016/j.jcis.2014.08.058. PubMed DOI
Liu D., Zhang J., Yi C., Yang M. The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chin. Sci. Bull. 2010;55:1013–1019. doi: 10.1007/s11434-010-0046-1. DOI
Hasan A., Morshed M., Memic A., Hassan S., Webster T.J., Marei H.E.-S. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018;13:5637–5655. doi: 10.2147/IJN.S153758. PubMed DOI PMC
Suarasan S., Focsan M., Soritau O., Maniu D., Astilean S. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells. Colloids Surf. B. 2015;132:122–131. doi: 10.1016/j.colsurfb.2015.05.009. PubMed DOI
Jaconi M. Nanomedicine: Gold nanowires to mend a heart. Nat. Nanotechnol. 2011;6:692–693. doi: 10.1038/nnano.2011.195. PubMed DOI
El Fray M., Boccaccini A.R. Novel hybrid PET/DFA–TiO2 nanocomposites by in situ polycondensation. Mater. Lett. 2005;59:2300–2304. doi: 10.1016/j.matlet.2005.03.008. DOI
Lim D., Lee E., Kim H., Park S., Baek S., Yoon J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015;11:1606–1613. doi: 10.1039/C4SM02564D. PubMed DOI
Rane A.A., Christman K.L. Biomaterials for the treatment of myocardial infarction: A 5-year update. J. Am. Coll. Cardiol. 2011;58:2615–2629. doi: 10.1016/j.jacc.2011.11.001. PubMed DOI
Shi W., Zhang Z.-J., Yuan Y., Xing E.-M., Qin Y., Peng Z.-J., Zhang Z.-P., Yang K.-Y. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J. Huazhong Univ. Sci. Med. 2013;33:754–758. doi: 10.1007/s11596-013-1192-x. PubMed DOI
Shin S.R., Shin C., Memic A., Shadmehr S., Miscuglio M., Jung H.Y., Jung S.M., Bae H., Khademhosseini A., Tang X.S., et al. Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators. Adv. Funct. Mater. 2015;25:4486–4495. doi: 10.1002/adfm.201501379. PubMed DOI PMC
Bei H.P., Yang Y., Zhang Q., Tian Y., Luo X., Yang M., Zhao X. Graphene-based nanocomposites for neural tissue engineering. Molecules. 2019;24:658. doi: 10.3390/molecules24040658. PubMed DOI PMC
Galiano K., Pleifer C., Engelhardt K., Brössner G., Lackner P., Huck C., Lass-Flörl C., Obwegeser A. Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol. Res. 2008;30:285–287. doi: 10.1179/016164107X229902. PubMed DOI
Bindhu M.R., Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 2014;120:122–125. doi: 10.1016/j.matlet.2014.01.108. DOI
Tiwari M., Jain P., Chandrashekhar Hariharapura R., Narayanan K., Bhat K.U., Udupa N., Rao J.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016;51:1348–1356. doi: 10.1016/j.procbio.2016.08.008. DOI
Nangmenyi G., Economy J. Nanotechnology Applications for Clean Water. Elsevier; Amsterdam, The Netherlands: 2009. Nanometallic particles for oligodynamic microbial disinfection; pp. 3–15.
Prasher P., Singh M., Mudila H. Oligodynamic effect of silver nanoparticles: A review. BioNanoScience. 2018;8:951–962. doi: 10.1007/s12668-018-0552-1. DOI
Li X., Wang L., Fan Y., Feng Q., Cui F.-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater. 2012;2012:548389. doi: 10.1155/2012/548389. DOI
Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC
Kolarova K., Samec D., Kvitek O., Reznickova A., Rimpelova S., Svorcik V. Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. JPN J. Appl. Phys. 2017;56:06GG09. doi: 10.7567/JJAP.56.06GG09. DOI
Jones R.S., Draheim R.R., Roldo M. Silver nanowires: Synthesis, antibacterial activity and biomedical applications. Appl. Sci.-Basel. 2018;8 doi: 10.3390/app8050673. DOI
Polivkova M., Valova M., Siegel J., Rimpelova S., Hubacek T., Lyutakov O., Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C. DOI
Rezaei-Zarchi S., Imani S., mohammad Zand A., Saadati M., Zaghari Z. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles. Int. Nano Lett. 2012;2:21. doi: 10.1186/2228-5326-2-21. DOI
Galarraga-Vinueza M.E., Passoni B., Benfatti C.A.M., Mesquita-Guimarães J., Henriques B., Magini R.S., Fredel M.C., Meerbeek B.V., Teughels W., Souza J.C.M. Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J. Biomed. Mater. Res. A. 2017;105:1994–2003. doi: 10.1002/jbm.a.36056. PubMed DOI
Vasita R., Katti D. Nanofiber and their application in tissue engineering. Int. J. Nanomed. 2006;1:15. doi: 10.2147/nano.2006.1.1.15. PubMed DOI PMC
Liu X., Li X., Fan Y., Zhang G., Li D., Dong W., Sha Z., Yu X., Feng Q., Cui F., et al. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. B. 2010;94:44–52. doi: 10.1002/jbm.b.31622. PubMed DOI
Moore W.R., Graves S.E., Bain G.I. Synthetic bone graft substitutes. ANZ J. Surg. 2001;71:354–361. doi: 10.1046/j.1440-1622.2001.02128.x. PubMed DOI
Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI
Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of spreading and alignment of cells cultured in vitro on a grooved polymer surface. J. Nanomater. 2011;2011:413079. doi: 10.1155/2011/413079. DOI
Diez-Escudero A., Espanol M., Ginebra M.P. Synthetic bone graft substitutes: Calcium-based biomaterials. In: Alghamdi H., Jansen J., editors. Dental Implants and Bone Grafts: Materials and Biological Issues. Elsevier; Amsterdam, The Netherlands: 2019. pp. 125–157. DOI
Ribas R.G., Schatkoski V.M., Montanheiro T.L.D., de Menezes B.R.C., Stegemann C., Leite D.M.G., Thim G.P. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceram. Int. 2019;45:21051–21061. doi: 10.1016/j.ceramint.2019.07.096. DOI
Zhang J., Zhou H., Yang K., Yuan Y., Liu C. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials. 2013;34:9381–9392. doi: 10.1016/j.biomaterials.2013.08.059. PubMed DOI
Li X., van Blitterswijk C.A., Feng Q., Cui F., Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials. 2008;29:3306–3316. doi: 10.1016/j.biomaterials.2008.04.039. PubMed DOI
Xiao J., Wan Y.Z., Yang Z.W., Huang Y., Zhu Y., Yao F.L., Luo H.L. Simvastatin-loaded nanotubular mesoporous bioactive glass scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2019;288:109570. doi: 10.1016/j.micromeso.2019.109570. DOI
Zhou P.H., Guan J.J., Xu P.P., Zhao J.W., Zhang C.C., Zhang B., Mao Y.J., Cui W.G. Cell therapeutic strategies for spinal cord injury. Adv. Wound Care. 2019;8:585–605. doi: 10.1089/wound.2019.1046. PubMed DOI PMC
Kam N.W.S., Jan E., Kotov N.A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 2009;9:273–278. doi: 10.1021/nl802859a. PubMed DOI
Yang F., Murugan R., Ramakrishna S., Wang X., Ma Y.X., Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900. doi: 10.1016/j.biomaterials.2003.08.062. PubMed DOI
Yang F., Murugan R., Wang S., Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–2610. doi: 10.1016/j.biomaterials.2004.06.051. PubMed DOI
Wang L., Kisaalita W.S. Characterization of micropatterned nanofibrous scaffolds for neural network activity readout for high-throughput screening. J. Biomed. Mater. Res. B. 2010;94:238–249. doi: 10.1002/jbm.b.31646. PubMed DOI
Li W., Guo Y., Wang H., Shi D., Liang C., Ye Z., Qing F., Gong J. Electrospun nanofibers immobilized with collagen for neural stem cells culture. J. Mater. Sci. Mater. Med. 2008;19:847–854. doi: 10.1007/s10856-007-3087-5. PubMed DOI
Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., de Ferranti S., Despres J.P., Fullerton H.J., Howard V.J., et al. Heart disease and stroke statistics-2015 update A report from the american heart association. Circulation. 2015;131:29–322. PubMed
Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y., Fujii T., Uematsu M., Ohgushi H., Yamagishi M., et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128–1135. doi: 10.1161/CIRCULATIONAHA.104.500447. PubMed DOI
Han J., Park J., Kim B.-S. Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction. Adv. Drug Deliv. Rev. 2015;95:15–28. doi: 10.1016/j.addr.2015.09.002. PubMed DOI
Wickham A.M., Islam M.M., Mondal D., Phopase J., Sadhu V., Tamás É., Polisetti N., Richter-Dahlfors A., Liedberg B., Griffith M. Polycaprolactone–thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. J. Biomed. Mater. Res. B. 2014;102:1553–1561. doi: 10.1002/jbm.b.33136. PubMed DOI
Martins A.M., Eng G., Caridade S.G., Mano J.F., Reis R.L., Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15:635–643. doi: 10.1021/bm401679q. PubMed DOI PMC
Kharaziha M., Shin S.R., Nikkhah M., Topkaya S.N., Masoumi N., Annabi N., Dokmeci M.R., Khademhosseini A. Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346–7354. doi: 10.1016/j.biomaterials.2014.05.014. PubMed DOI PMC
Singh A., AS A., Gade W., Vats T., Lenardi C., Milani P. Nanomaterials: New generation therapeutics in wound healing and tissue repair. Curr. Nanosci. 2010;6:577–586. doi: 10.2174/157341310793348632. DOI
Muthuvignesh V., Jaganathan S., Manikandan A. Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers. RSC Adv. 2016;6:114859–114878.
Mohamed A., Xing M.M. Nanomaterials and nanotechnology for skin tissue engineering. Int. J. Burns Trauma. 2012;2:29–41. PubMed PMC
Laser-Processed PEN with Au Nanowires Array: A Biocompatibility Assessment
Bimetallic Nanowires on Laser-Patterned PEN as Promising Biomaterials