• This record comes from PubMed

Nanostructured Materials for Artificial Tissue Replacements

. 2020 Apr 05 ; 21 (7) : . [epub] 20200405

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
17-10907S Grantová Agentura České Republiky

This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.

See more in PubMed

Staszek M., Siegel J., Rimpelova S., Lyutakov O., Svorcik V. Cytotoxicity of noble metal nanoparticles sputtered into glycerol. Mater. Lett. 2015;158:351–354. doi: 10.1016/j.matlet.2015.06.021. DOI

Polivkova M., Valova M., Rimpelova S., Slepicka P., Svorcik V., Siegel J. Pd nanowire coatings of laser-treated polyethylene naphthalate: Preparation, characterization and biological response. Express Polym. Lett. 2018;12:1039–1046. doi: 10.3144/expresspolymlett.2018.91. DOI

Siegel J., Polivkova M., Staszek M., Kolarova K., Rimpelova S., Svorcik V. Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 2015;145:87–90. doi: 10.1016/j.matlet.2015.01.050. DOI

Fathi-Achachelouei M., Knopf-Marques H., Ribeiro da Silva C.E., Barthès J., Bat E., Tezcaner A., Vrana N.E. Use of nanoparticles in tissue engineering and regenerative medicine. Front. Bioeng. Biotechnol. 2019;7:113. doi: 10.3389/fbioe.2019.00113. PubMed DOI PMC

Yang Y., Wang S., Wang Y., Wang X., Wang Q., Chen M. Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol. Adv. 2014;32:1301–1316. doi: 10.1016/j.biotechadv.2014.07.007. PubMed DOI

Bhunia S.K., Saha A., Maity A.R., Ray S.C., Jana N.R. Carbon nanoparticle-based fluorescent bioimaging probes. Sci. Rep. 2013;3:1473. doi: 10.1038/srep01473. PubMed DOI PMC

Keles E., Song Y., Du D., Dong W.-J., Lin Y. Recent progress in nanomaterials for gene delivery applications. Biomater. Sci. 2016;4:1291–1309. doi: 10.1039/C6BM00441E. PubMed DOI

Almeida A.J., Souto E. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 2007;59:478–490. doi: 10.1016/j.addr.2007.04.007. PubMed DOI

Prego C., García M., Torres D., Alonso M.J. Transmucosal macromolecular drug delivery. J. Control. Release. 2005;101:151–162. doi: 10.1016/j.jconrel.2004.07.030. PubMed DOI

Xu Z.P., Zeng Q.H., Lu G.Q., Yu A.B. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci. 2006;61:1027–1040. doi: 10.1016/j.ces.2005.06.019. DOI

Jean-Gilles R., Soscia D., Sequeira S., Melfi M., Gadre A., Castracane J., Larsen M. Novel modeling approach to generate a polymeric nanofiber scaffold for salivary gland cells. J. Nanotechnol. Eng. Med. 2010;1:031008. doi: 10.1115/1.4001744. PubMed DOI PMC

Li X., Liu W., Sun L., Fan Y., Feng Q. The application of inorganic nanomaterials in bone tissue engineering. J. Biomater. Tiss. Eng. 2014;4:994–1003. doi: 10.1166/jbt.2014.1253. DOI

Sridhar R., Sundarrajan S., Venugopal J.R., Ravichandran R., Ramakrishna S. Electrospun inorganic and polymer composite nanofibers for biomedical applications. J. Biomater. Sci. Polym. Ed. 2013;24:365–385. doi: 10.1080/09205063.2012.690711. PubMed DOI

O’Brien F.J. Biomaterials & scaffolds for tissue engineering. Mater. Today. 2011;14:88–95.

Rezwan K., Chen Q.Z., Blaker J.J., Boccaccini A.R. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–3431. doi: 10.1016/j.biomaterials.2006.01.039. PubMed DOI

Cao L., Wu X., Wang Q., Wang J. Biocompatible nanocomposite of TiO2 incorporated bi-polymer for articular cartilage tissue regeneration: A facile material. J. Photoch. Photobio. B. 2018;178:440–446. doi: 10.1016/j.jphotobiol.2017.10.026. PubMed DOI

Sahoo N.G., Pan Y.Z., Li L., He C.B. Nanocomposites for bone tissue regeneration. Nanomedicine. 2013;8:639–653. doi: 10.2217/nnm.13.44. PubMed DOI

Baranes K., Shevach M., Shefi O., Dvir T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett. 2016;16:2916–2920. doi: 10.1021/acs.nanolett.5b04033. PubMed DOI

Dvir T., Timko B.P., Brigham M.D., Naik S.R., Karajanagi S.S., Levy O., Jin H., Parker K.K., Langer R., Kohane D.S. Nanowired three-dimensional cardiac patches. Nat. Nanotechnol. 2011;6:720–725. doi: 10.1038/nnano.2011.160. PubMed DOI PMC

Jin G., Prabhakaran M.P., Nadappuram B.P., Singh G., Kai D., Ramakrishna S. Electrospun poly(L-lactic acid)-co-poly(ϵ-caprolactone) nanofibres containing silver nanoparticles for skin-tissue engineering. J. Biomater. Sci. Polym. Ed. 2012;23:2337–2352. PubMed

Wei G., Ma P.X. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–4757. doi: 10.1016/j.biomaterials.2003.12.005. PubMed DOI

Bini T.B., Gao S., Wang S., Ramakrishna S. Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: An in vitro study. J. Mater. Sci. 2006;41:6453–6459. doi: 10.1007/s10853-006-0714-3. DOI

Chen X., Fu X., Shi J.-G., Wang H. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomed. Nanotechnol. Biol. Med. 2013;9:1283–1292. doi: 10.1016/j.nano.2013.04.013. PubMed DOI

Teh T.K.H., Toh S.-L., Goh J.C.H. Aligned hybrid silk scaffold for enhanced differentiation of mesenchymal stem cells into ligament fibroblasts. Tissue Eng. C. 2011;17:687–703. doi: 10.1089/ten.tec.2010.0513. PubMed DOI

Wang W., Itoh S., Konno K., Kikkawa T., Ichinose S., Sakai K., Ohkuma T., Watabe K. Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res. A. 2009;91:994–1005. doi: 10.1002/jbm.a.32329. PubMed DOI

Cooper A., Jana S., Bhattarai N., Zhang M. Aligned chitosan-based nanofibers for enhanced myogenesis. J. Mater. Chem. 2010;20:8904–8911. doi: 10.1039/c0jm01841d. DOI

Gautam S., Chou C.-F., Dinda A.K., Potdar P.D., Mishra N.C. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Mater. Sci. Eng. C. 2014;34:402–409. doi: 10.1016/j.msec.2013.09.043. PubMed DOI

Li W.-J., Tuli R., Okafor C., Derfoul A., Danielson K.G., Hall D.J., Tuan R.S. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26:599–609. doi: 10.1016/j.biomaterials.2004.03.005. PubMed DOI

Frenkel S.R., Di Cesare P.E. Scaffolds for articular cartilage repair. Ann. Biomed. Eng. 2004;32:26–34. doi: 10.1023/B:ABME.0000007788.41804.0d. PubMed DOI

Woodfield T., Bezemer J., Pieper J., Van Blitterswijk C., Riesle J. Scaffolds for tissue engineering of cartilage. Crit. Rev. Eukaryot. Gene Expr. 2002;12:28. doi: 10.1615/CritRevEukarGeneExpr.v12.i3.40. PubMed DOI

Wang Y., Blasioli D.J., Kim H.-J., Kim H.S., Kaplan D.L. Cartilage tissue engineering with silk scaffolds and human articular chondrocytes. Biomaterials. 2006;27:4434–4442. doi: 10.1016/j.biomaterials.2006.03.050. PubMed DOI

Griffon D.J., Sedighi M.R., Schaeffer D.V., Eurell J.A., Johnson A.L. Chitosan scaffolds: Interconnective pore size and cartilage engineering. Acta Biomater. 2006;2:313–320. doi: 10.1016/j.actbio.2005.12.007. PubMed DOI

Yoo H.S., Lee E.A., Yoon J.J., Park T.G. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials. 2005;26:1925–1933. doi: 10.1016/j.biomaterials.2004.06.021. PubMed DOI

Chang K.Y., Hung L.H., Chu I.M., Ko C.S., Lee Y.D. The application of type II collagen and chondroitin sulfate grafted PCL porous scaffold in cartilage tissue engineering. J. Biomed. Mater. Res. A. 2010;92:712–723. doi: 10.1002/jbm.a.32198. PubMed DOI

Wang C.-C., Yang K.-C., Lin K.-H., Liu H.-C., Lin F.-H. A highly organized three-dimensional alginate scaffold for cartilage tissue engineering prepared by microfluidic technology. Biomaterials. 2011;32:7118–7126. doi: 10.1016/j.biomaterials.2011.06.018. PubMed DOI

Lien S.-M., Ko L.-Y., Huang T.-J. Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta Biomater. 2009;5:670–679. doi: 10.1016/j.actbio.2008.09.020. PubMed DOI

Müller F.A., Müller L., Hofmann I., Greil P., Wenzel M.M., Staudenmaier R. Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials. 2006;27:3955–3963. doi: 10.1016/j.biomaterials.2006.02.031. PubMed DOI

Svensson A., Nicklasson E., Harrah T., Panilaitis B., Kaplan D., Brittberg M., Gatenholm P. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419–431. doi: 10.1016/j.biomaterials.2004.02.049. PubMed DOI

Bölgen N., Yang Y., Korkusuz P., Güzel E., El Haj A.J., Pişkin E. 3D ingrowth of bovine articular chondrocytes in biodegradable cryogel scaffolds for cartilage tissue engineering. J. Tissue Eng. Regen. Med. 2011;5:770–779. doi: 10.1002/term.375. PubMed DOI

Chu C.R., Coutts R.D., Yoshioka M., Harwood F.L., Monosov A.Z., Amiel D. Articular cartilage repair using allogeneic perichondrocyteseeded biodegradable porous polylactic acid (PLA): A tissue-engineering study. J. Biomed. Mater. Res. 1995;29:1147–1154. doi: 10.1002/jbm.820290915. PubMed DOI

Moran J.M., Pazzano D., Bonassar L.J. Characterization of polylactic acid–polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 2003;9:63–70. doi: 10.1089/107632703762687546. PubMed DOI

Sato M., Ishihara M., Ishihara M., Kaneshiro N., Mitani G., Nagai T., Kutsuna T., Asazuma T., Kikuchi M., Mochida J. Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering. J. Biomed. Mater. Res. B. 2007;83:181–188. doi: 10.1002/jbm.b.30782. PubMed DOI

Springer I.N., Fleiner B., Jepsen S., Açil Y. Culture of cells gained from temporomandibular joint cartilage on non-absorbable scaffolds. Biomaterials. 2001;22:2569–2577. doi: 10.1016/S0142-9612(01)00148-X. PubMed DOI

Neves A.A., Medcalf N., Brindle K.M. Influence of stirring-induced mixing on cell proliferation and extracellular matrix deposition in meniscal cartilage constructs based on polyethylene terephthalate scaffolds. Biomaterials. 2005;26:4828–4836. doi: 10.1016/j.biomaterials.2004.12.002. PubMed DOI

Vikingsson L., Gómez-Tejedor J.A., Ferrer G.G., Ribelles J.G. An experimental fatigue study of a porous scaffold for the regeneration of articular cartilage. J. Biomech. 2015;48:1310–1317. doi: 10.1016/j.jbiomech.2015.02.013. PubMed DOI

Ohyabu Y., Adegawa T., Yoshioka T., Ikoma T., Uemura T., Tanaka J. Cartilage regeneration using a porous scaffold, a collagen sponge incorporating a hydroxyapatite/chondroitinsulfate composite. Mater. Sci. Eng. B. 2010;173:204–207. doi: 10.1016/j.mseb.2009.12.008. PubMed DOI

Kao C.-T., Lin C.-C., Chen Y.-W., Yeh C.-H., Fang H.-Y., Shie M.-Y. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering. Mater. Sci. Eng. C. 2015;56:165–173. doi: 10.1016/j.msec.2015.06.028. PubMed DOI

Liu H., Slamovich E., Webster T. Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int. J. Nanomed. 2006;1:541–545. doi: 10.2147/nano.2006.1.4.541. PubMed DOI PMC

Kim J., Kim I.S., Cho T.H., Lee K.B., Hwang S.J., Tae G., Noh I., Lee S.H., Park Y., Sun K. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28:1830–1837. doi: 10.1016/j.biomaterials.2006.11.050. PubMed DOI

Shuai C., Mao Z., Lu H., Nie Y., Hu H., Peng S. Fabrication of porous polyvinyl alcohol scaffold for bone tissue engineering via selective laser sintering. Biofabrication. 2013;5:015014. doi: 10.1088/1758-5082/5/1/015014. PubMed DOI

Lu M.-C., Huang Y.-T., Lin J.-H., Yao C.-H., Lou C.-W., Tsai C.-C., Chen Y.-S. Evaluation of a multi-layer microbraided polylactic acid fiber-reinforced conduit for peripheral nerve regeneration. J. Mater. Sci. Mater. Med. 2009;20:1175–1180. doi: 10.1007/s10856-008-3646-4. PubMed DOI

Lavik E., Teng Y.D., Snyder E., Langer R. Seeding neural stem cells on scaffolds of PGA, PLA, and their copolymers. Methods Mol. Biol. 2002;198:89–97. PubMed

Leipzig N.D., Wylie R.G., Kim H., Shoichet M.S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials. 2011;32:57–64. doi: 10.1016/j.biomaterials.2010.09.031. PubMed DOI

Chen Y.W., Chiou S.H., Wong T.T., Ku H.H., Lin H.T., Chung C.F., Yen S.H., Kao C.L. Using gelatin scaffold with coated basic fibroblast growth factor as a transfer system for transplantation of human neural stem cells. Transplant. Proc. 2006;38:1616–1617. doi: 10.1016/j.transproceed.2006.02.084. PubMed DOI

Nistal F., García-Martínez V., Arbe E., Fernández D., Artiñano E., Mazorra F., Gallo I. In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 1990;99:1074–1081. PubMed

Stock U., Mayer J.E., Jr. Tissue engineering of cardiac valves on the basis of PGA/PLA Co-polymers. J. Long Term Eff. Med. Implants. 2001;11:249–260. doi: 10.1615/JLongTermEffMedImplants.v11.i34.110. PubMed DOI

Balguid A., Mol A., van Marion M.H., Bank R.A., Bouten C.V.C., Baaijens F.P.T. Tailoring fiber diameter in electrospun poly(ɛ-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng. A. 2008;15:437–444. doi: 10.1089/ten.tea.2007.0294. PubMed DOI

Castellano D., Blanes M., Marco B., Cerrada I., Ruiz-Saurí A., Pelacho B., Araña M., Montero J.A., Cambra V., Prosper F., et al. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair. Stem Cells Dev. 2014;23:1479–1490. doi: 10.1089/scd.2013.0578. PubMed DOI PMC

Chun S., Huang Y., Xie W.J., Hou Y., Huang R.P., Song Y.M., Liu X.M., Zheng W., Shi Y., Song C.F. Adhesive growth of pancreatic islet cells on a polyglycolic acid fibrous scaffold. Transplant. Proc. 2008;40:1658–1663. doi: 10.1016/j.transproceed.2008.02.088. PubMed DOI

Elcin Y.M., Elcin E., Bretzel R., Linn T. Pancreatic islet culture and transplantation using chitosan and PLGA scaffolds. Adv. Exp. Med. Biol. 2003;534:255–264. PubMed

Muthyala S., Bhonde R.R., Nair P.D. Cytocompatibility studies of mouse pancreatic islets on gelatin—PVP semi IPN scaffolds in vitro: Potential implication towards pancreatic tissue engineering. Islets. 2010;2:357–366. doi: 10.4161/isl.2.6.13765. PubMed DOI

Teramura Y., Kaneda Y., Iwata H. Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)–lipids in the cell membrane. Biomaterials. 2007;28:4818–4825. doi: 10.1016/j.biomaterials.2007.07.050. PubMed DOI

Pattison M.A., Wurster S., Webster T.J., Haberstroh K.M. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26:2491–2500. doi: 10.1016/j.biomaterials.2004.07.011. PubMed DOI

Brown A.L., Srokowski E.M., Shu X.Z., Prestwich G.D., Woodhouse K.A. Development of a model bladder extracellular matrix combining disulfide cross-linked hyaluronan with decellularized bladder tissue. Macromol. Biosci. 2006;6:648–657. doi: 10.1002/mabi.200600052. PubMed DOI

Jang Y.-J., Chun S.Y., Kim G.N., Kim J.R., Oh S.H., Lee J.H., Kim B.S., Song P.H., Yoo E.S., Kwon T.G. Characterization of a novel composite scaffold consisting of acellular bladder submucosa matrix, polycaprolactone and Pluronic F127 as a substance for bladder reconstruction. Acta Biomater. 2014;10:3117–3125. doi: 10.1016/j.actbio.2014.03.002. PubMed DOI

Tsang M., Chun Y.W., Im Y.M., Khang D., Webster T.J. Effects of increasing carbon nanofiber density in polyurethane composites for inhibiting bladder cancer cell functions. Tissue Eng. A. 2011;17:1879–1889. doi: 10.1089/ten.tea.2010.0569. PubMed DOI

Espandar L., Bunnell B., Wang G.Y., Gregory P., McBride C., Moshirfar M. Adipose-derived stem cells on hyaluronic acid-derived scaffold: A new horizon in bioengineered cornea. Arch. Ophthalmol. 2012;130:202–208. doi: 10.1001/archopthalmol.2011.1398. PubMed DOI

Liang Y., Liu W., Han B., Yang C., Ma Q., Zhao W., Rong M., Li H. Fabrication and characters of a corneal endothelial cells scaffold based on chitosan. J. Mater. Sci. Mater. Med. 2011;22:175–183. doi: 10.1007/s10856-010-4190-6. PubMed DOI

Uchino Y., Shimmura S., Miyashita H., Taguchi T., Kobayashi H., Shimazaki J., Tanaka J., Tsubota K. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium. J. Biomed. Mater. Res. B. 2007;81:201–206. doi: 10.1002/jbm.b.30654. PubMed DOI

Ozcelik B., Brown K.D., Blencowe A., Daniell M., Stevens G.W., Qiao G.G. Ultrathin chitosan–poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater. 2013;9:6594–6605. doi: 10.1016/j.actbio.2013.01.020. PubMed DOI

Sun T., Mai S., Norton D., Haycock J.W., Ryan A.J., Macneil S. Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng. 2005;11:1023–1033. doi: 10.1089/ten.2005.11.1023. PubMed DOI

Yang J., Shi G., Bei J., Wang S., Cao Y., Shang Q., Yang G., Wang W. Fabrication and surface modification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds for human skin fibroblast cell culture. J. Biomed. Mater. Res. 2002;62:438–446. doi: 10.1002/jbm.10318. PubMed DOI

Adekogbe I., Ghanem A. Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials. 2005;26:7241–7250. doi: 10.1016/j.biomaterials.2005.05.043. PubMed DOI

Lee S.B., Kim Y.H., Chong M.S., Hong S.H., Lee Y.M. Study of gelatin-containing artificial skin V: Fabrication of gelatin scaffolds using a salt-leaching method. Biomaterials. 2005;26:1961–1968. doi: 10.1016/j.biomaterials.2004.06.032. PubMed DOI

Chang C.-H., Liu H.-C., Lin C.-C., Chou C.-H., Lin F.-H. Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Biomaterials. 2003;24:4853–4858. doi: 10.1016/S0142-9612(03)00383-1. PubMed DOI

Janouskova O. Synthetic polymer scaffolds for soft tissue engineering. Physiol. Res. 2018;67:335–348. doi: 10.33549/physiolres.933983. PubMed DOI

Polivkova M., Strublova V., Hubacek T., Rimpelova S., Svorcik V., Siegel J. Surface characterization and antibacterial response of silver nanowire arrays supported on laser-treated polyethylene naphthalate. Mater. Sci. Eng. C. 2017;72:512–518. doi: 10.1016/j.msec.2016.11.072. PubMed DOI

Siegel J., Lyutakov O., Polivkova M., Staszek M., Hubacek T., Svorcik V. Laser-assisted immobilization of colloid silver nanoparticles on polyethyleneterephthalate. Appl. Surf. Sci. 2017;420:661–668. doi: 10.1016/j.apsusc.2017.05.151. DOI

Siegel J., Sulakova P., Kaimlova M., Svorcik V., Hubacek T. Underwater laser treatment of PET: Effect of processing parameters on surface morphology and chemistry. Appl. Sci. 2018;8:2389–2397. doi: 10.3390/app8122389. DOI

Kaimlova M., Nemogova I., Kolarova K., Slepicka P., Svorcik V., Siegel J. Optimization of silver nanowire formation on laser processed PEN: Surface properties and antibacterial effects. Appl. Surf. Sci. 2019;473:516–526. doi: 10.1016/j.apsusc.2018.12.185. DOI

Peterbauer T., Yakunin S., Siegel J., Heitz J. Dynamics of the Alignment of Mammalian Cells on a Nano-Structured Polymer Surface. Macromol. Symp. 2010;296:272–277. doi: 10.1002/masy.201051038. DOI

Zhao H., Ding R., Zhao X., Li Y., Qu L., Pei H., Yildirimer L., Wu Z., Zhang W. Graphene-based nanomaterials for drug and/or gene delivery, bioimaging, and tissue engineering. Drug Discov. Today. 2017;22:1302–1317. doi: 10.1016/j.drudis.2017.04.002. PubMed DOI

Farzin L., Shamsipur M., Samandari L., Sheibani S. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review. Microchim. Acta. 2018;185:276. doi: 10.1007/s00604-018-2820-8. PubMed DOI

Mahaye N., Thwala M., Cowan D.A., Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. Mutat. Res. Rev. Mutat. Res. 2017;773:134–160. doi: 10.1016/j.mrrev.2017.05.004. PubMed DOI

Hillman Y., Lustiger D., Wine Y. Antibody-based nanotechnology. Nanotechnology. 2019;30:282001. doi: 10.1088/1361-6528/ab12f4. PubMed DOI

Slowing I.I., Vivero-Escoto J.L., Wu C.-W., Lin V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 2008;60:1278–1288. doi: 10.1016/j.addr.2008.03.012. PubMed DOI

Tang Y., Zhao Y., Wang X., Lin T. Layer-by-layer assembly of silica nanoparticles on 3D fibrous scaffolds: Enhancement of osteoblast cell adhesion, proliferation, and differentiation. J. Biomed. Mater. Res. A. 2014;102:3803–3812. doi: 10.1002/jbm.a.35050. PubMed DOI

Lipski A.M., Pino C.J., Haselton F.R., Chen I.W., Shastri V.P. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials. 2008;29:3836–3846. doi: 10.1016/j.biomaterials.2008.06.002. PubMed DOI PMC

Wu X., Wu M., Zhao J.X. Recent development of silica nanoparticles as delivery vectors for cancer imaging and therapy. Nanomed. Nanotechnol. Biol. Med. 2014;10:297–312. doi: 10.1016/j.nano.2013.08.008. PubMed DOI PMC

Lee J.M., Kim B.-S., Lee H., Im G.-I. In vivo tracking of mesechymal stem cells using fluorescent nanoparticles in an osteochondral repair model. Mol. Ther. 2012;20:1434–1442. doi: 10.1038/mt.2012.60. PubMed DOI PMC

Yang K.-N., Zhang C.-Q., Wang W., Wang P.C., Zhou J.-P., Liang X.-J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol. Med. 2014;11:34–43. PubMed PMC

Arjmandi M., Ramezani M. Mechanical and tribological assessment of silica nanoparticle-alginate-polyacrylamide nanocomposite hydrogels as a cartilage replacement. J. Mech. Behav. Biomed. Mater. 2019;95:196–204. doi: 10.1016/j.jmbbm.2019.04.020. PubMed DOI

Beck G.R., Jr., Ha S.W., Camalier C.E., Yamaguchi M., Li Y., Lee J.K., Weitzmann M.N. Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med. 2012;8:793–803. doi: 10.1016/j.nano.2011.11.003. PubMed DOI PMC

Baei P., Jalili-Firoozinezhad S., Rajabi-Zeleti S., Tafazzoli-Shadpour M., Baharvand H., Aghdami N. Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Mater. Sci. Eng. C. 2016;63:131–141. doi: 10.1016/j.msec.2016.02.056. PubMed DOI

Suh K.S., Lee Y.S., Seo S.H., Kim Y.S., Choi E.M. Gold nanoparticles attenuates antimycin a-induced mitochondrial dysfunction in MC3T3-E1 osteoblastic cells. Biol. Trace Elem. Res. 2013;153:428–436. doi: 10.1007/s12011-013-9679-7. PubMed DOI

Asgari V., Landarani-Isfahani A., Salehi H., Amirpour N., Hashemibeni B., Rezaei S., Bahramian H. The story of nanoparticles in differentiation of stem cells into neural cells. Neurochem. Res. 2019;44:2695–2707. doi: 10.1007/s11064-019-02900-7. PubMed DOI

You J.-O., Rafat M., Ye G.J.C., Auguste D.T. Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Lett. 2011;11:3643–3648. doi: 10.1021/nl201514a. PubMed DOI

Aktürk Ö., Keskin D. Collagen/PEO/gold nanofibrous matrices for skin tissue engineering. Turk. J. Biol. 2016;40:380–398. doi: 10.3906/biy-1502-49. DOI

Xing Z.-C., Chae W.-P., Baek J.-Y., Choi M.-J., Jung Y., Kang I.-K. In Vitro Assessment of antibacterial activity and cytocompatibility of silver-containing PHBV nanofibrous scaffolds for tissue engineering. Biomacromolecules. 2010;11:1248–1253. doi: 10.1021/bm1000372. PubMed DOI

Patrascu J.M., Nedelcu I.A., Sonmez M., Ficai D., Ficai A., Vasile B.S., Ungureanu C., Albu M.G., Andor B., Andronescu E., et al. Composite scaffolds based on silver nanoparticles for biomedical applications. J. Nanomater. 2015;2015:587989. doi: 10.1155/2015/587989. DOI

Johari N., Hosseini H.R.M., Samadikuchaksaraei A. Mechanical modeling of silk fibroin/tio2 and silk fibroin/fluoridated tio2 nanocomposite scaffolds for bone tissue engineering. Iran. Polym. J. 2020;29:219–224. doi: 10.1007/s13726-020-00789-6. DOI

Carballo-Vila M., Moreno-Burriel B., Chinarro E., Jurado J.R., Casañ-Pastor N., Collazos-Castro J.E. Titanium oxide as substrate for neural cell growth. J. Biomed. Mater. Res. A. 2009;90:94–105. doi: 10.1002/jbm.a.32058. PubMed DOI

Jawad H., Ali N.N., Lyon A.R., Chen Q.Z., Harding S.E., Boccaccini A.R. Myocardial tissue engineering: A review. J. Tissue Eng. Regen. Med. 2007;1:327–342. doi: 10.1002/term.46. PubMed DOI

Li N., Fan X., Tang K., Zheng X., Liu J., Wang B. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide. Colloids Surf. B. 2016;140:287–296. doi: 10.1016/j.colsurfb.2015.12.005. PubMed DOI

Zhang N., Lock J., Sallee A., Liu H. Magnetic nanocomposite hydrogel for potential cartilage tissue engineering: Synthesis, characterization, and cytocompatibility with bone marrow derived mesenchymal stem cells. ACS Appl. Mater. Interfaces. 2015;7:20987–20998. doi: 10.1021/acsami.5b06939. PubMed DOI

Bock N., Riminucci A., Dionigi C., Russo A., Tampieri A., Landi E., Goranov V.A., Marcacci M., Dediu V. A novel route in bone tissue engineering: Magnetic biomimetic scaffolds. Acta Biomater. 2010;6:786–796. doi: 10.1016/j.actbio.2009.09.017. PubMed DOI

Poggetti A., Battistini P., Parchi P.D., Novelli M., Raffa S., Cecchini M., Nucci A.M., Lisanti M. How to direct the neuronal growth process in peripheral nerve regeneration: Future strategies for nanosurfaces scaffold and magnetic nanoparticles. Surg. Technol. Int. 2017;30:458–461. PubMed

Shimizu K., Ito A., Lee J.-K., Yoshida T., Miwa K., Ishiguro H., Numaguchi Y., Murohara T., Kodama I., Honda H. Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnol. Bioeng. 2007;96:803–809. doi: 10.1002/bit.21094. PubMed DOI

Shao C., Chen J., Chen P., Zhu M., Yao Q., Gu P., Fu Y., Fan X. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2014;24:756–767. doi: 10.1089/scd.2014.0255. PubMed DOI PMC

Kay S., Thapa A., Haberstroh K.M., Webster T.J. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion. Tissue Eng. 2002;8:753–761. doi: 10.1089/10763270260424114. PubMed DOI

Li X., Feng Q., Liu X., Dong W., Cui F. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials. 2006;27:1917–1923. doi: 10.1016/j.biomaterials.2005.11.013. PubMed DOI

Barabadi Z., Azami M., Sharifi E., Karimi R., Lotfibakhshaiesh N., Roozafzoon R., Joghataei M.T., Ai J. Fabrication of hydrogel based nanocomposite scaffold containing bioactive glass nanoparticles for myocardial tissue engineering. Mater. Sci. Eng. C. 2016;69:1137–1146. doi: 10.1016/j.msec.2016.08.012. PubMed DOI

Karbasi S., Alizadeh Z.M. Effects of multi-wall carbon nanotubes on structural and mechanical properties of poly(3-hydroxybutyrate)/chitosan electrospun scaffolds for cartilage tissue engineering. Bull. Mater. Sci. 2017;40:1247–1253. doi: 10.1007/s12034-017-1479-9. DOI

Shi X., Sitharaman B., Pham Q.P., Liang F., Wu K., Edward Billups W., Wilson L.J., Mikos A.G. Fabrication of porous ultra-short single-walled carbon nanotube nanocomposite scaffolds for bone tissue engineering. Biomaterials. 2007;28:4078–4090. doi: 10.1016/j.biomaterials.2007.05.033. PubMed DOI PMC

Lee J.-R., Ryu S., Kim S., Kim B.-S. Behaviors of stem cells on carbon nanotube. Biomater. Res. 2015;19:3. doi: 10.1186/s40824-014-0024-9. PubMed DOI PMC

Stout D.A., Basu B., Webster T.J. Poly(lactic–co-glycolic acid): Carbon nanofiber composites for myocardial tissue engineering applications. Acta Biomater. 2011;7:3101–3112. doi: 10.1016/j.actbio.2011.04.028. PubMed DOI

Jing T., Shao Y., Zheng Y., Tian J. Graphene oxide-based Fe3O4 nanoparticles as a novel scaffold for the immobilization of porcine pancreatic lipase. RSC Adv. 2015;5:103943–103955.

Orlando A., Colombo M., Prosperi D., Corsi F., Panariti A., Rivolta I., Masserini M., Cazzaniga E. Evaluation of gold nanoparticles biocompatibility: A multiparametric study on cultured endothelial cells and macrophages. J. Nanopart. Res. 2016;18:58. doi: 10.1007/s11051-016-3359-4. DOI

Polivkova M., Hubacek T., Staszek M., Svorcik V., Siegel J. Antimicrobial treatment of polymeric medical devices by silver nanomaterials and related technology. Int. J. Mol. Sci. 2017;18:419. doi: 10.3390/ijms18020419. PubMed DOI PMC

Gunawidjaja R., Kharlampieva E., Choi I., Tsukruk V. Bimetallic nanostructures as active raman markers: Gold-nanoparticle assembly on 1D and 2D silver nanostructure surfaces. Small. 2009;5:2460–2466. doi: 10.1002/smll.200900688. PubMed DOI

Polivkova M., Siegel J., Rimpelova S., Hubacek T., Kolska Z., Svorcik V. Cytotoxicity of Pd nanostructures supported on PEN: Influence of sterilization on Pd/PEN interface. Mater. Sci. Eng. C. 2017;70:479–486. doi: 10.1016/j.msec.2016.09.032. PubMed DOI

Siegel J., Polivkova M., Kasalkova N.S., Kolska Z., Svorcik V. Properties of silver nanostructure-coated PTFE and its biocompatibility. Nanoscale Res. Lett. 2013;8:1–10. doi: 10.1186/1556-276X-8-388. PubMed DOI PMC

Siegel J., Zaruba K., Svorcik V., Kroumanova K., Burketova L., Martinec J. Round-shape gold nanoparticles: Effect of particle size and concentration on Arabidopsis thaliana root growth. Nanoscale Res. Lett. 2018;13:1–7. doi: 10.1186/s11671-018-2510-9. PubMed DOI PMC

Buchman J.T., Hudson-Smith N.V., Landy K.M., Haynes C.L. Understanding nanoparticle toxicity mechanisms to inform redesign strategies to reduce environmental impact. Acc. Chem. Res. 2019;52:1632–1642. doi: 10.1021/acs.accounts.9b00053. PubMed DOI

Jaroenworaluck A., Sunsaneeyametha W., Kosachan N., Stevens R. Characteristics of silica-coated TiO2 and its UV absorption for sunscreen cosmetic applications. Surf. Interface Anal. 2006;38:473–477. doi: 10.1002/sia.2313. DOI

Oguma J., Kakuma Y., Murayama S., Nosaka Y. Effects of silica coating on photocatalytic reactions of anatase titanium dioxide studied by quantitative detection of reactive oxygen species. Appl. Catal. B. 2013;129:282–286. doi: 10.1016/j.apcatb.2012.09.034. DOI

Chen S.-Z., Zhang P.-Y., Zhu W.-P., Chen L., Xu S.-M. Deactivation of TiO2 photocatalytic films loaded on aluminium: XPS and AFM analyses. Appl. Surf. Sci. 2006;252:7532–7538. doi: 10.1016/j.apsusc.2005.09.023. DOI

Skocaj M., Filipic M., Petkovic J., Novak S.J.R. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011;45:227–247. doi: 10.2478/v10019-011-0037-0. PubMed DOI PMC

Alexiou C., Schmid R., Jurgons R., Kremer M., Wanner G., Bergemann C., Huenges E., Nawroth T., Arnold W., Parak F. Targeting cancer cells: Magnetic nanoparticles as drug carriers. Eur. Biophys. J. 2006;35:446–450. doi: 10.1007/s00249-006-0042-1. PubMed DOI

Hergt R., Dutz S., Müller R., Zeisberger M. Magnetic particle hyperthermia: Nanoparticle magnetism and materials development for cancer therapy. J. Phys. Condens. Matter. 2006;18:2919–2934. doi: 10.1088/0953-8984/18/38/S26. DOI

Park H., Park H.-J., Kim J.A., Lee S.H., Kim J.H., Yoon J., Park T.H. Inactivation of Pseudomonas aeruginosa PA01 biofilms by hyperthermia using superparamagnetic nanoparticles. J. Microbiol. Methods. 2011;84:41–45. doi: 10.1016/j.mimet.2010.10.010. PubMed DOI

Cunningham C.H., Arai T., Yang P.C., McConnell M.V., Pauly J.M., Conolly S.M. Positive contrast magnetic resonance imaging of cells labeled with magnetic nanoparticles. Magn. Reson. Med. 2005;53:999–1005. doi: 10.1002/mrm.20477. PubMed DOI

Stoimenov P.K., Klinger R.L., Marchin G.L., Klabunde K.J. Metal oxide nanoparticles as bactericidal agents. Langmuir. 2002;18:6679–6686. doi: 10.1021/la0202374. DOI

Jones N., Ray B., Ranjit K.T., Manna A.C. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol. Lett. 2008;279:71–76. doi: 10.1111/j.1574-6968.2007.01012.x. PubMed DOI

Tran P.A., Webster T.J. Selenium nanoparticles inhibit Staphylococcus aureus growth. Int. J. Nanomed. 2011;6:1553–1558. PubMed PMC

Parkin S.S., Kaiser C., Panchula A., Rice P.M., Hughes B., Samant M., Yang S.-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004;3:862–867. doi: 10.1038/nmat1256. PubMed DOI

Singh J.P., Chae K.H. d° ferromagnetism of magnesium oxide. Condens. Matter. 2017;2:36. doi: 10.3390/condmat2040036. DOI

Garcia M.A., Merino J.M., Fernández Pinel E., Quesada A., de la Venta J., Ruíz González M.L., Castro G.R., Crespo P., Llopis J., González-Calbet J.M., et al. Magnetic properties of ZnO nanoparticles. Nano Lett. 2007;7:1489–1494. doi: 10.1021/nl070198m. PubMed DOI

Bernard G.M., Eichele K., Wu G., Kirby C.W., Wasylishen R.E. Nuclear magnetic shielding tensors for the carbon, nitrogen, and selenium nuclei of selenocyanates—A combined experimental and theoretical approach. Can. J. Chem. 2000;78:614–625. doi: 10.1139/v00-046. DOI

Aykut-Yetkiner A., Attin T., Wiegand A. Prevention of dentine erosion by brushing with anti-erosive toothpastes. J. Dent. 2014;42:856–861. doi: 10.1016/j.jdent.2014.03.011. PubMed DOI

Maeda H., Kasuga T. Calcium phosphate cement with silicate ion releasing ability by incorporating calcium silicate hydrate. J. Ceram. Soc. JPN. 2014;122:591–595. doi: 10.2109/jcersj2.122.591. DOI

Chatterjee K., Sun L., Chow L.C., Young M.F., Simon C.G., Jr. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays. Biomaterials. 2011;32:1361–1369. doi: 10.1016/j.biomaterials.2010.10.043. PubMed DOI PMC

Gohil S., Domb A., Kumar N. Nanomaterials for regenerative medicine. Nanomedicine. 2011;6:157–181. PubMed

Abdulkareem E.H., Memarzadeh K., Allaker R.P., Huang J., Pratten J., Spratt D. Anti-biofilm activity of zinc oxide and hydroxyapatite nanoparticles as dental implant coating materials. J. Dent. 2015;43:1462–1469. doi: 10.1016/j.jdent.2015.10.010. PubMed DOI

Madhumathi K., Sampath Kumar T.S. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed. Mater. 2014;9:035002. doi: 10.1088/1748-6041/9/3/035002. PubMed DOI

Choi B., Cui Z.-K., Kim S., Fan J., Wu B.M., Lee M. Glutamine-chitosan modified calcium phosphate nanoparticles for efficient siRNA delivery and osteogenic differentiation. J. Mater. Chem. B. 2015;3:6448–6455. doi: 10.1039/C5TB00843C. PubMed DOI PMC

Eatemadi A., Daraee H., Karimkhanloo H., Kouhi M., Zarghami N., Akbarzadeh A., Abasi M., Hanifehpour Y., Joo S.W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014;9:393. doi: 10.1186/1556-276X-9-393. PubMed DOI PMC

Klumpp C., Kostarelos K., Prato M., Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta. 2006;1758:404–412. doi: 10.1016/j.bbamem.2005.10.008. PubMed DOI

Raja I.S., Song S.J., Kang M.S., Lee Y.B., Kim B., Hong S.W., Jeong S.J., Lee J.C., Han D.W. Toxicity of zero- and one-dimensional carbon nanomaterials. Nanomaterials. 2019;9:1214. doi: 10.3390/nano9091214. PubMed DOI PMC

Zhu Y., Li W. Cytotoxicity of carbon nanotubes. Sci. China Ser. B. 2008;51:1021–1029. doi: 10.1007/s11426-008-0120-6. DOI

Xie X., Hu K., Fang D., Shang L., Tran S., Cerruti M. Graphene and hydroxyapatite self-assemble into homogenous, free standing nanocomposite hydrogels for bone tissue engineering. Nanoscale. 2015;7:7992–8002. doi: 10.1039/C5NR01107H. PubMed DOI

Lamprecht C., Taale M., Paulowicz I., Westerhaus H., Grabosch C., Schuchardt A., Mecklenburg M., Böttner M., Lucius R., Schulte K., et al. A tunable scaffold of microtubular graphite for 3D cell growth. ACS Appl. Mater. Interfaces. 2016;8:14980–14985. doi: 10.1021/acsami.6b00778. PubMed DOI PMC

Shimizu K., Ito A., Yoshida T., Yamada Y., Ueda M., Honda H. Bone tissue engineering with human mesenchymal stem cell sheets constructed using magnetite nanoparticles and magnetic force. J. Biomed. Mater. Res. B. 2007;82:471–480. doi: 10.1002/jbm.b.30752. PubMed DOI

Dykman L., Khlebtsov N. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012;41:2256–2282. doi: 10.1039/C1CS15166E. PubMed DOI

Boisselier E., Astruc D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009;38:1759–1782. doi: 10.1039/b806051g. PubMed DOI

Ko W.-K., Heo D.N., Moon H.-J., Lee S.J., Bae M.S., Lee J.B., Sun I.-C., Jeon H.B., Park H.K., Kwon I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci. 2015;438:68–76. doi: 10.1016/j.jcis.2014.08.058. PubMed DOI

Liu D., Zhang J., Yi C., Yang M. The effects of gold nanoparticles on the proliferation, differentiation, and mineralization function of MC3T3-E1 cells in vitro. Chin. Sci. Bull. 2010;55:1013–1019. doi: 10.1007/s11434-010-0046-1. DOI

Hasan A., Morshed M., Memic A., Hassan S., Webster T.J., Marei H.E.-S. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018;13:5637–5655. doi: 10.2147/IJN.S153758. PubMed DOI PMC

Suarasan S., Focsan M., Soritau O., Maniu D., Astilean S. One-pot, green synthesis of gold nanoparticles by gelatin and investigation of their biological effects on Osteoblast cells. Colloids Surf. B. 2015;132:122–131. doi: 10.1016/j.colsurfb.2015.05.009. PubMed DOI

Jaconi M. Nanomedicine: Gold nanowires to mend a heart. Nat. Nanotechnol. 2011;6:692–693. doi: 10.1038/nnano.2011.195. PubMed DOI

El Fray M., Boccaccini A.R. Novel hybrid PET/DFA–TiO2 nanocomposites by in situ polycondensation. Mater. Lett. 2005;59:2300–2304. doi: 10.1016/j.matlet.2005.03.008. DOI

Lim D., Lee E., Kim H., Park S., Baek S., Yoon J. Multi stimuli-responsive hydrogel microfibers containing magnetite nanoparticles prepared using microcapillary devices. Soft Matter. 2015;11:1606–1613. doi: 10.1039/C4SM02564D. PubMed DOI

Rane A.A., Christman K.L. Biomaterials for the treatment of myocardial infarction: A 5-year update. J. Am. Coll. Cardiol. 2011;58:2615–2629. doi: 10.1016/j.jacc.2011.11.001. PubMed DOI

Shi W., Zhang Z.-J., Yuan Y., Xing E.-M., Qin Y., Peng Z.-J., Zhang Z.-P., Yang K.-Y. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J. Huazhong Univ. Sci. Med. 2013;33:754–758. doi: 10.1007/s11596-013-1192-x. PubMed DOI

Shin S.R., Shin C., Memic A., Shadmehr S., Miscuglio M., Jung H.Y., Jung S.M., Bae H., Khademhosseini A., Tang X.S., et al. Aligned carbon nanotube-based flexible gel substrates for engineering bio-hybrid tissue actuators. Adv. Funct. Mater. 2015;25:4486–4495. doi: 10.1002/adfm.201501379. PubMed DOI PMC

Bei H.P., Yang Y., Zhang Q., Tian Y., Luo X., Yang M., Zhao X. Graphene-based nanocomposites for neural tissue engineering. Molecules. 2019;24:658. doi: 10.3390/molecules24040658. PubMed DOI PMC

Galiano K., Pleifer C., Engelhardt K., Brössner G., Lackner P., Huck C., Lass-Flörl C., Obwegeser A. Silver segregation and bacterial growth of intraventricular catheters impregnated with silver nanoparticles in cerebrospinal fluid drainages. Neurol. Res. 2008;30:285–287. doi: 10.1179/016164107X229902. PubMed DOI

Bindhu M.R., Umadevi M. Antibacterial activities of green synthesized gold nanoparticles. Mater. Lett. 2014;120:122–125. doi: 10.1016/j.matlet.2014.01.108. DOI

Tiwari M., Jain P., Chandrashekhar Hariharapura R., Narayanan K., Bhat K.U., Udupa N., Rao J.V. Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem. 2016;51:1348–1356. doi: 10.1016/j.procbio.2016.08.008. DOI

Nangmenyi G., Economy J. Nanotechnology Applications for Clean Water. Elsevier; Amsterdam, The Netherlands: 2009. Nanometallic particles for oligodynamic microbial disinfection; pp. 3–15.

Prasher P., Singh M., Mudila H. Oligodynamic effect of silver nanoparticles: A review. BioNanoScience. 2018;8:951–962. doi: 10.1007/s12668-018-0552-1. DOI

Li X., Wang L., Fan Y., Feng Q., Cui F.-Z. Biocompatibility and toxicity of nanoparticles and nanotubes. J. Nanomater. 2012;2012:548389. doi: 10.1155/2012/548389. DOI

Wang L., Hu C., Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017;12:1227–1249. doi: 10.2147/IJN.S121956. PubMed DOI PMC

Kolarova K., Samec D., Kvitek O., Reznickova A., Rimpelova S., Svorcik V. Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. JPN J. Appl. Phys. 2017;56:06GG09. doi: 10.7567/JJAP.56.06GG09. DOI

Jones R.S., Draheim R.R., Roldo M. Silver nanowires: Synthesis, antibacterial activity and biomedical applications. Appl. Sci.-Basel. 2018;8 doi: 10.3390/app8050673. DOI

Polivkova M., Valova M., Siegel J., Rimpelova S., Hubacek T., Lyutakov O., Svorcik V. Antibacterial properties of palladium nanostructures sputtered on polyethylene naphthalate. RSC Adv. 2015;5:73767–73774. doi: 10.1039/C5RA09297C. DOI

Rezaei-Zarchi S., Imani S., mohammad Zand A., Saadati M., Zaghari Z. Study of bactericidal properties of carbohydrate-stabilized platinum oxide nanoparticles. Int. Nano Lett. 2012;2:21. doi: 10.1186/2228-5326-2-21. DOI

Galarraga-Vinueza M.E., Passoni B., Benfatti C.A.M., Mesquita-Guimarães J., Henriques B., Magini R.S., Fredel M.C., Meerbeek B.V., Teughels W., Souza J.C.M. Inhibition of multi-species oral biofilm by bromide doped bioactive glass. J. Biomed. Mater. Res. A. 2017;105:1994–2003. doi: 10.1002/jbm.a.36056. PubMed DOI

Vasita R., Katti D. Nanofiber and their application in tissue engineering. Int. J. Nanomed. 2006;1:15. doi: 10.2147/nano.2006.1.1.15. PubMed DOI PMC

Liu X., Li X., Fan Y., Zhang G., Li D., Dong W., Sha Z., Yu X., Feng Q., Cui F., et al. Repairing goat tibia segmental bone defect using scaffold cultured with mesenchymal stem cells. J. Biomed. Mater. Res. B. 2010;94:44–52. doi: 10.1002/jbm.b.31622. PubMed DOI

Moore W.R., Graves S.E., Bain G.I. Synthetic bone graft substitutes. ANZ J. Surg. 2001;71:354–361. doi: 10.1046/j.1440-1622.2001.02128.x. PubMed DOI

Slepicka P., Siegel J., Lyutakov O., Kasalkova N.S., Kolska Z., Bacakova L., Svorcik V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018;36:839–855. doi: 10.1016/j.biotechadv.2017.12.011. PubMed DOI

Peterbauer T., Yakunin S., Siegel J., Hering S., Fahrner M., Romanin C., Heitz J. Dynamics of spreading and alignment of cells cultured in vitro on a grooved polymer surface. J. Nanomater. 2011;2011:413079. doi: 10.1155/2011/413079. DOI

Diez-Escudero A., Espanol M., Ginebra M.P. Synthetic bone graft substitutes: Calcium-based biomaterials. In: Alghamdi H., Jansen J., editors. Dental Implants and Bone Grafts: Materials and Biological Issues. Elsevier; Amsterdam, The Netherlands: 2019. pp. 125–157. DOI

Ribas R.G., Schatkoski V.M., Montanheiro T.L.D., de Menezes B.R.C., Stegemann C., Leite D.M.G., Thim G.P. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: A review. Ceram. Int. 2019;45:21051–21061. doi: 10.1016/j.ceramint.2019.07.096. DOI

Zhang J., Zhou H., Yang K., Yuan Y., Liu C. RhBMP-2-loaded calcium silicate/calcium phosphate cement scaffold with hierarchically porous structure for enhanced bone tissue regeneration. Biomaterials. 2013;34:9381–9392. doi: 10.1016/j.biomaterials.2013.08.059. PubMed DOI

Li X., van Blitterswijk C.A., Feng Q., Cui F., Watari F. The effect of calcium phosphate microstructure on bone-related cells in vitro. Biomaterials. 2008;29:3306–3316. doi: 10.1016/j.biomaterials.2008.04.039. PubMed DOI

Xiao J., Wan Y.Z., Yang Z.W., Huang Y., Zhu Y., Yao F.L., Luo H.L. Simvastatin-loaded nanotubular mesoporous bioactive glass scaffolds for bone tissue engineering. Microporous Mesoporous Mater. 2019;288:109570. doi: 10.1016/j.micromeso.2019.109570. DOI

Zhou P.H., Guan J.J., Xu P.P., Zhao J.W., Zhang C.C., Zhang B., Mao Y.J., Cui W.G. Cell therapeutic strategies for spinal cord injury. Adv. Wound Care. 2019;8:585–605. doi: 10.1089/wound.2019.1046. PubMed DOI PMC

Kam N.W.S., Jan E., Kotov N.A. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 2009;9:273–278. doi: 10.1021/nl802859a. PubMed DOI

Yang F., Murugan R., Ramakrishna S., Wang X., Ma Y.X., Wang S. Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials. 2004;25:1891–1900. doi: 10.1016/j.biomaterials.2003.08.062. PubMed DOI

Yang F., Murugan R., Wang S., Ramakrishna S. Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–2610. doi: 10.1016/j.biomaterials.2004.06.051. PubMed DOI

Wang L., Kisaalita W.S. Characterization of micropatterned nanofibrous scaffolds for neural network activity readout for high-throughput screening. J. Biomed. Mater. Res. B. 2010;94:238–249. doi: 10.1002/jbm.b.31646. PubMed DOI

Li W., Guo Y., Wang H., Shi D., Liang C., Ye Z., Qing F., Gong J. Electrospun nanofibers immobilized with collagen for neural stem cells culture. J. Mater. Sci. Mater. Med. 2008;19:847–854. doi: 10.1007/s10856-007-3087-5. PubMed DOI

Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., de Ferranti S., Despres J.P., Fullerton H.J., Howard V.J., et al. Heart disease and stroke statistics-2015 update A report from the american heart association. Circulation. 2015;131:29–322. PubMed

Nagaya N., Kangawa K., Itoh T., Iwase T., Murakami S., Miyahara Y., Fujii T., Uematsu M., Ohgushi H., Yamagishi M., et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation. 2005;112:1128–1135. doi: 10.1161/CIRCULATIONAHA.104.500447. PubMed DOI

Han J., Park J., Kim B.-S. Integration of mesenchymal stem cells with nanobiomaterials for the repair of myocardial infarction. Adv. Drug Deliv. Rev. 2015;95:15–28. doi: 10.1016/j.addr.2015.09.002. PubMed DOI

Wickham A.M., Islam M.M., Mondal D., Phopase J., Sadhu V., Tamás É., Polisetti N., Richter-Dahlfors A., Liedberg B., Griffith M. Polycaprolactone–thiophene-conjugated carbon nanotube meshes as scaffolds for cardiac progenitor cells. J. Biomed. Mater. Res. B. 2014;102:1553–1561. doi: 10.1002/jbm.b.33136. PubMed DOI

Martins A.M., Eng G., Caridade S.G., Mano J.F., Reis R.L., Vunjak-Novakovic G. Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering. Biomacromolecules. 2014;15:635–643. doi: 10.1021/bm401679q. PubMed DOI PMC

Kharaziha M., Shin S.R., Nikkhah M., Topkaya S.N., Masoumi N., Annabi N., Dokmeci M.R., Khademhosseini A. Tough and flexible CNT–polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials. 2014;35:7346–7354. doi: 10.1016/j.biomaterials.2014.05.014. PubMed DOI PMC

Singh A., AS A., Gade W., Vats T., Lenardi C., Milani P. Nanomaterials: New generation therapeutics in wound healing and tissue repair. Curr. Nanosci. 2010;6:577–586. doi: 10.2174/157341310793348632. DOI

Muthuvignesh V., Jaganathan S., Manikandan A. Nanomaterials as a game changer in the management and treatment of diabetic foot ulcers. RSC Adv. 2016;6:114859–114878.

Mohamed A., Xing M.M. Nanomaterials and nanotechnology for skin tissue engineering. Int. J. Burns Trauma. 2012;2:29–41. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...