Polymorphic Forms of Valinomycin Investigated by NMR Crystallography
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
LTAUSA18011
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32664570
PubMed Central
PMC7404035
DOI
10.3390/ijms21144907
PII: ijms21144907
Knihovny.cz E-resources
- Keywords
- 2019-nCoV, DFT, GIPAW, NMR crystallography, antiviral, solid-state NMR, valinomycin,
- MeSH
- Betacoronavirus chemistry isolation & purification metabolism MeSH
- COVID-19 MeSH
- Nitrogen Isotopes chemistry MeSH
- Carbon Isotopes chemistry MeSH
- Coronavirus Infections pathology virology MeSH
- Crystallography MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Pandemics MeSH
- SARS-CoV-2 MeSH
- Valinomycin chemistry metabolism MeSH
- Pneumonia, Viral pathology virology MeSH
- Hydrogen Bonding MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Carbon-13 MeSH Browser
- Nitrogen Isotopes MeSH
- Carbon Isotopes MeSH
- Nitrogen-15 MeSH Browser
- Valinomycin MeSH
A dodecadepsipeptide valinomycin (VLM) has been most recently reported to be a potential anti-coronavirus drug that could be efficiently produced on a large scale. It is thus of importance to study solid-phase forms of VLM in order to be able to ensure its polymorphic purity in drug formulations. The previously available solid-state NMR (SSNMR) data are combined with the plane-wave DFT computations in the NMR crystallography framework. Structural/spectroscopical predictions (the PBE functional/GIPAW method) are obtained to characterize four polymorphs of VLM. Interactions which confer a conformational stability to VLM molecules in these crystalline forms are described in detail. The way how various structural factors affect the values of SSNMR parameters is thoroughly analyzed, and several SSNMR markers of the respective VLM polymorphs are identified. The markers are connected to hydrogen bonding effects upon the corresponding (13C/15N/1H) isotropic chemical shifts of (CO, Namid, Hamid, Hα) VLM backbone nuclei. These results are expected to be crucial for polymorph control of VLM and in probing its interactions in dosage forms.
See more in PubMed
Wang X., Xia S., Wang Q., Xu W., Li W., Lu L., Jiang S. Broad-Spectrum Coronavirus Fusion Inhibitors to Combat COVID-19 and Other Emerging Coronavirus Diseases. Int. J. Mol. Sci. 2020;21:3843. doi: 10.3390/ijms21113843. PubMed DOI PMC
Morse J.S., Lalonde T., Xu S., Liu W.R. Learning from the Past: Possible Urgent Prevention and Treatment Options for Severe Acute Respiratory Infections Caused by 2019-nCoV. ChemBioChem. 2020;21:730–738. doi: 10.1002/cbic.202000047. PubMed DOI PMC
Martinez M.A. Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus. Antimicrob. Agents Chem. 2020;64:e00399-20. doi: 10.1128/AAC.00399-20. PubMed DOI PMC
Yao T.-T., Qian J.-D., Zhu W.-Y., Wang Y., Wang G.-Q. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible for coronavirus disease-19 treatment options. J. Med. Virol. 2020;92:556–563. doi: 10.1002/jmv.25729. PubMed DOI PMC
Northwestern University Super-charging drug development for COVID-19: Cell-free production method scales up yield by 5000 times. [(accessed on 10 July 2020)];ScienceDaily. 2020 Apr 13; Available online: www.sciencedaily.com/releases/2020/04/200413140505.htm.
Sivanathan S., Scherkenbeck J. Cyclodepsipeptides: A Rich Source of Biologically Active Compounds for Drug Research. Molecules. 2014;19:12368–12420. doi: 10.3390/molecules190812368. PubMed DOI PMC
Zhuang L., Huang S., Liu W.-Q., Karim A.S., Jewett M.C., Li J. Total in vitro biosynthesis of the nonribosomal macrolactone peptide valinomycin. Metab. Eng. 2020;60:37–44. doi: 10.1016/j.ymben.2020.03.009. PubMed DOI PMC
Cheng Y.-Q. Deciphering the Biosynthetic Codes for the Potent Anti-SARS-CoV Cyclodepsipeptide Valinomycin in Streptomyces tsusimaensis ATCC 15141. ChemBioChem. 2006;7:471–477. doi: 10.1002/cbic.200500425. PubMed DOI PMC
Su Z.F., Ran X.Q., Leitch J.J., Schwan A.L., Faragher R., Lipkowski J. How Valinomycin Ionophores Enter and Transport K+ across Model Lipid Bilayer Membranes. Langmuir. 2019;35:16935–16943. doi: 10.1021/acs.langmuir.9b03064. PubMed DOI
Hilfkier R., Von Raumer M. Polymorphism in the Pharmaceutical Industry: Solid Form and Drug Development. Wiley-VCH; Hoboken, NJ, USA: 2019.
Harris R.K., Wasylishen R.E., Duer M.J. NMR Crystallography. Wiley; Chichester, UK: 2009.
Hodgkinson P. NMR Crystallography of Molecular Organics. Prog. Nucl. Mag. Res. Sp. 2020;118:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI
Bonhomme C., Gervais C., Babonneau F., Coelho C., Pourpoint F., Azais T., Asbrook S.E., Griffin J.M., Yates J.R., Pickard J.C. First-Principles Calculation of NMR Parameters Using the Gauge Including Projector Augmented Wave Method: A Chemist’s Point of View. Chem. Rev. 2012;112:5733–5779. doi: 10.1021/cr300108a. PubMed DOI
Karle I.L. Conformation of Valinomycin in a Triclinic Crystal Form. J. Am. Chem. Soc. 1975;97:4379–4386. doi: 10.1021/ja00848a041. PubMed DOI
Smith G.D., Duax D.L., Langs D.A., DeTitta G.T., Edmonds J.W., Rohrer D.C., Weeks C.M. The Crystal and Molecular Structure of the Triclinic and Monoclinic Forms of Valinomycin, C54H90N6O18. J. Am. Chem. Soc. 1975;97:7242–7247. doi: 10.1021/ja00858a008. PubMed DOI
Kameda T., McGeorge G., Orendt A., Grant D.M. 13C NMR chemical shifts of the triclinic and monoclinic crystal forms of valinomycin. J. Biomol. NMR. 2004;29:281–288. doi: 10.1023/B:JNMR.0000032557.71691.a2. PubMed DOI
Neupert-Laves K., Dobler M. The Crystal Structure of a K+ Complex of Valinomycin. Helv. Chim. Acta. 1975;58:432–442. doi: 10.1002/hlca.19750580212. PubMed DOI
Karle I.L., Flippen-Anderson J.L. New conformation exhibiting near three-fold symmetry for uncomplexed valinomycin in crystals from dimethyl sulfoxide. J. Am. Chem. Soc. 1988;110:3253–3257. doi: 10.1021/ja00218a040. DOI
Wu K., Gore A., Graham R. A New Hydrate of Cyclosporin: Structural and Physicochemical Characterization. J. Pharm. Sci. 2018;107:3070–3079. doi: 10.1016/j.xphs.2018.08.002. PubMed DOI
Carnevale D., Grosjean B., Bodenhausen G. Dipolar couplings in solid polypeptides probed by 14N NMR spectroscopy. Chem. Sci. 2018;1:1–9. doi: 10.1038/s42004-018-0072-5. DOI
Paruzzo F.M., Hofstetter A., Musil F., De S., Ceriotti M., Emsley L. Chemical shifts in molecular solids by machine learning. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-06972-x. PubMed DOI PMC
Czernek J., Brus J. Monitoring the Site-Specific Solid-State NMR Data in Oligopeptides. Int. J. Mol. Sci. 2020;21:2700. doi: 10.3390/ijms21082700. PubMed DOI PMC
Czernek J., Pawlak T., Potrzebowski M.J. Benchmarks for the 13C NMR chemical shielding tensors in peptides in the solid state. Chem. Phys. Lett. 2012;527:31–35. doi: 10.1016/j.cplett.2012.01.013. DOI
Xu Y., Szell P.M.J., Kumar V., Bryce D.L. Solid-state NMR spectroscopy for the analysis of element-based non-covalent interactions. Coord. Chem. Rev. 2020;411:213237. doi: 10.1016/j.ccr.2020.213237. DOI
Czernek J., Urbanova M., Brus J. NMR Crystallography of the Polymorphs of Metergoline. Crystals. 2018;8:378. doi: 10.3390/cryst8100378. DOI
Ahn J.-M., Kassees K., Lee T.-K., Manadhar B., Yousif A.M. Strategy and Tactics for Designing Analogs: Biochemical Characterization of the Large Molecules. In: Chackalamannil S., Rotella E., Ward S.E., editors. Comprehensive Medicinal Chemistry. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2017. pp. 66–115.
Tatton A.S., Pham T.N., Vogt F.G., Iuga D., Edwards A.J., Brown S.P. Probing Hydrogen Bonding in Cocrystals and Amorphous Dispersions Using 14N–1H HMQC Solid-State NMR. Mol. Pharm. 2013;10:999–1007. doi: 10.1021/mp300423r. PubMed DOI
Kong X.Q., Shan M., Terskikh V., Hung I., Gan Z.H., Wu G. Solid-State 17O NMR of Pharmaceutical Compounds: Salicylic Acid and Aspirin. J. Phys. Chem. B. 2013;117:9643–9654. doi: 10.1021/jp405233f. PubMed DOI
Lu J.S., Hung I., Brinkmann A., Gan Z.H., Kong X.Q., Wu G. Solid-State 17O NMR Reveals Hydrogen-Bonding Energetics: Not All Low-Barrier Hydrogen Bonds Are Strong. Angew. Chem. 2017;129:6262–6266. doi: 10.1002/ange.201700488. PubMed DOI
Vibhute A.M., Priyakumar U.D., Ravi A., Sureshan K.M. Model molecules to classify C–H…O hydrogen-bonds. Chem. Commun. 2018;54:4629–4632. doi: 10.1039/C8CC01653D. PubMed DOI
Wu G. 17O NMR studies of organic and biological molecules in aqueous solution and in the solid state. Prog. Nucl. Mag. Res. Sp. 2019;114:135–191. doi: 10.1016/j.pnmrs.2019.06.002. PubMed DOI
Awosanya E.O., Lapin J., Nevzorov A.A. NMR “crystallography” for uniformly (13C, 15N)-labeled oriented membrane proteins. Angew. Chem. 2020;59:3554–3557. doi: 10.1002/anie.201915110. PubMed DOI
Rossi F., Duong N.T., Pandey M.K., Chierotti M.R., Gobetto R., Nishiyama Y. Determination of the 15N chemical shift anisotropy in natural abundance samples by proton-detected 3D solid-state NMR under ultrafast MAS of 70 kHz. Magn. Reson. Chem. 2019;57:294–303. doi: 10.1002/mrc.4841. PubMed DOI
Czernek J., Brus J. Exploring Accuracy Limits of Predictions of the 1H NMR Chemical Shielding Anisotropy in the Solid State. Molecules. 2019;24:1731. doi: 10.3390/molecules24091731. PubMed DOI PMC
Kraus J., Gupta R., Lu M., Gronenborn A.M., Akke M., Polenova T. Accurate Backbone 13C and 15N Chemical Shift Tensors in Galectin-3 Determined by MAS NMR and QM/MM: Details of Structure and Environment Matter. ChemPhysChem. 2020;21:1436–1443. doi: 10.1002/cphc.202000249. PubMed DOI PMC
Quinn C.M., Wang M., Polenova T. NMR of Macromolecular Assemblies and Machines at 1 GHz and Beyond: New Transformative Opportunities for Molecular Structural Biology. Methods Mol. Biol. 2018;1688:1–35. doi: 10.1007/978-1-4939-7386-6_1. PubMed DOI PMC
Bonhomme C., Wang X.L., Hung I., Gan Z.H., Gervais C., Sassoye C., Rimsza J., Du J.C., Smith M.E., Hanna J.V., et al. Pushing the limits of sensitivity and resolution for natural abundance 43Ca NMR using ultra-high magnetic field (35.2 T) Chem. Commun. 2018;54:9591–9594. doi: 10.1039/C8CC05193C. PubMed DOI
Paulino J., Yi M., Hung I., Gan Z.H., Wang X.L., Chekmenev E.Y., Zhou H.X., Cross T.A. Functional stability of water wire-carbonyl interactions in an ion channel. Proc. Natl. Acad. Sci. USA. 2020;117:11908–11915. doi: 10.1073/pnas.2001083117. PubMed DOI PMC
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M.D., Lindan P.J.D., Probert M.J., Pickard C.J., Hasnip P.J., Clark S.J., Payne M.C. First principles simulation: Ideas, illustrations, and the CASTEP code. J. Phys. Condens. Matter. 2002;14:2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Kristallogr. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Dassault Systèmes, Vélizy-Villacoublay; Paris, France: [(accessed on 10 July 2020)]. BIOVIA Materials Studio. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Tkatchenko A., Scheffler M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009;102:073005. doi: 10.1103/PhysRevLett.102.073005. PubMed DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B. 2001;63:245101. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard C.J., Mauri F. Calculations of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:024401. doi: 10.1103/PhysRevB.76.024401. DOI
Profeta M., Mauri F., Pickard C.J. Accurate First Principles Predictions of 17O NMR Parameters in SiO2: Assignment of the Zeolite Ferrierite Spectrum. J. Am. Chem. Soc. 2003;125:541–548. doi: 10.1021/ja027124r. PubMed DOI
Boys S.F., Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970;19:553–556. doi: 10.1080/00268977000101561. DOI
Vahtras O., Almlof J., Feyereisen M.W. Integral Approximations for LCAO-SCF Calculations. Chem. Phys. Lett. 1993;213:514–518. doi: 10.1016/0009-2614(93)89151-7. DOI
Eichkorn K., Weigend F., Treutler O., Ahlrichs R. Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997;97:119–124. doi: 10.1007/s002140050244. DOI
Ahlrichs R., Bär M., Häser M., Horn H., Kŏlmel C. Electronic-Structure Calculations on Workstation Computers: The Program System Turbomole. Chem. Phys. Lett. 1989;162:165–169. doi: 10.1016/0009-2614(89)85118-8. DOI
Peterson K.A., Woon D.E., Dunnig T.J., Jr. Benchmark calculations with correlated wave functions. J. Chem. Phys. 1994;100:7410–7415. doi: 10.1063/1.466884. DOI
Ditchfield R. Self-consistent perturbation theory of diamagnetism. Mol. Phys. 1974;27:789–807. doi: 10.1080/00268977400100711. DOI
Wolinski K., Hinton J.F., Pulay P. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculation. J. Am. Chem. Soc. 1990;112:8251–8260. doi: 10.1021/ja00179a005. DOI
Frish M.J., Trucks J.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., et al. Gaussian 09. Gaussian, Inc.; Wallingford, UK: 2013. Revision D.01.
Quantifying the Intrinsic Strength of C-H⋯O Intermolecular Interactions
Modeling the Structure of Crystalline Alamethicin and Its NMR Chemical Shift Tensors
Parametrizing the Spatial Dependence of 1H NMR Chemical Shifts in π-Stacked Molecular Fragments