• This record comes from PubMed

Cutaneous melanoma dissemination is dependent on the malignant cell properties and factors of intercellular crosstalk in the cancer microenvironment (Review)

. 2020 Sep ; 57 (3) : 619-630. [epub] 20200626

Language English Country Greece Media print-electronic

Document type Journal Article, Review

The incidence of cutaneous malignant melanoma has been steadily increasing worldwide for several decades. This phenomenon seems to follow the trend observed in many types of malignancies caused by multiple significant factors, including ageing. Despite the progress in cutaneous malignant melanoma therapeutic options, the curability of advanced disease after metastasis represents a serious challenge for further research. In this review, we summarise data on the microenvironment of cutaneous malignant melanoma with emphasis on intercellular signalling during the disease progression. Malignant melanocytes with features of neural crest stem cells interact with non‑malignant populations within this microenvironment. We focus on representative bioactive factors regulating this intercellular crosstalk. We describe the possible key factors and signalling cascades responsible for the high complexity of the melanoma microenvironment and its premetastatic niches. Furthermore, we present the concept of melanoma early becoming a systemic disease. This systemic effect is presented as a background for the new horizons in the therapy of cutaneous melanoma.

See more in PubMed

Sacchetto L, Zanetti R, Comber H, Bouchardy C, Brewster DH, Broganelli P, Chirlaque MD, Coza D, Galceran J, Gavin A, et al. Trends in incidence of thick, thin and in situ melanoma in Europe. Eur J Cancer. 2018;92:108–118. doi: 10.1016/j.ejca.2017.12.024. PubMed DOI

Rabbie R, Ferguson P, Molina-Aguilar C, Adams DJ, Robles-Espinoza CD. Melanoma subtypes: Genomic profiles, prognostic molecular markers and therapeutic possibilities. J Pathol. 2019;247:539–551. doi: 10.1002/path.5213. PubMed DOI PMC

Lorentzen HF. Targeted therapy for malignant melanoma. Curr Opin Pharmacol. 2019;46:116–121. doi: 10.1016/j.coph.2019.05.010. PubMed DOI

Paget S. The distribution of secondary growths in cancer of the breast. Lancet. 1889;133:571–573. doi: 10.1016/S0140-6736(00)49915-0. PubMed DOI

Faries MB, Thompson JF, Cochran AJ, Andtbacka RH, Mozzillo N, Zager JS, Jahkola T, Bowles TL, Testori A, Beitsch PD, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. N Engl J Med. 2017;376:2211–2222. doi: 10.1056/NEJMoa1613210. PubMed DOI PMC

Nathanson SD. Insights into the mechanisms of lymph node metastasis. Cancer. 2003;98:413–423. doi: 10.1002/cncr.11464. PubMed DOI

Barth A, Wanek LA, Morton DL. Prognostic factors in 1,521 melanoma patients with distant metastases. J Am Coll Surg. 1995;181:193–201. PubMed

Damsky WE, Jr, Bosenberg M. Mouse melanoma models and cell lines. Pigment Cell Melanoma Res. 2010;23:853–859. doi: 10.1111/j.1755-148X.2010.00777.x. PubMed DOI

Abdel-Ghany M, Cheng HC, Elble RC, Pauli BU. The breast cancer ß 4 integrin and endothelial human CLCA2 mediate lung metastasis. J Biol Chem. 2001;276:25438–25446. doi: 10.1074/jbc.M100478200. PubMed DOI

Tawbi HA, Boutros C, Kok D, Robert C, McArthur G. New era in the management of melanoma brain metastases. Am Soc Clin Oncol Educ Book. 2018;38:741–750. doi: 10.1200/EDBK_200819. PubMed DOI

Menter DG, Herrmann JL, Nicolson GL. The role of trophic factors and autocrine/paracrine growth factors in brain metastasis. Clin Exp Metastasis. 1995;13:67–88. doi: 10.1007/BF00133612. PubMed DOI

Balch CM, Houghton AN, Sober AJ, Soong S. Cutaneous Melanoma, 4th Edition. Dermatologic Surg. 2005;31:1715–1715. doi: 10.2310/6350.2005.31316. DOI

Murakami T, Cardones AR, Hwang ST. Chemokine receptors and melanoma metastasis. J Dermatol Sci. 2004;36:71–78. doi: 10.1016/j.jdermsci.2004.03.002. PubMed DOI

Martinez-Rodriguez M, Thompson AK, Monteagudo C. High CCL27 immunoreactivity in 'supratumoral' epidermis correlates with better prognosis in patients with cutaneous malignant melanoma. J Clin Pathol. 2017;70:15–19. doi: 10.1136/jclinpath-2015-203537. PubMed DOI

Ben-Baruch A. Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clin Exp Metastasis. 2008;25:345–356. doi: 10.1007/s10585-007-9097-3. PubMed DOI

Marcoval J, Ferreres JR, Martrn C, Gomez S, Penrn RM, Ochoa de Olza M, Fabra À. Patterns of Visceral Metastasis in Cutaneous Melanoma: A Descriptive Study. Actas Dermosifiliog. 2013;104:593–597. doi: 10.1016/j.ad.2012.12.012. PubMed DOI

Adler NR, Wolfe R, Kelly JW, Haydon A, McArthur GA, McLean CA, Mar VJ. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer. 2017;117:1026–1035. doi: 10.1038/bjc.2017.254. PubMed DOI PMC

Holt JB, Sangueza OP, Levine EA, Shen P, Bergman S, Geisinger KR, Creager AJ. Nodal melanocytic nevi in sentinel lymph nodes. Correlation with melanoma-associated cutaneous nevi. Am J Clin Pathol. 2004;121:58–63. doi: 10.1309/Y5QAD623MYA21PUY. PubMed DOI

Ji Y, Hao H, Reynolds K, McMahon M, Zhou CJ. Wnt signaling in neural crest ontogenesis and oncogenesis. Cells. 2019;8:1173. doi: 10.3390/cells8101173. PubMed DOI PMC

Lim J, Thiery JP, Kassem Y, Kalcheim C, Moens CB, Burden SJ, Granato M. Epithelial-mesenchymal transitions: Insights from development. Development. 2012;139:3471–3486. doi: 10.1242/dev.071209. PubMed DOI

Mayor R, Theveneau E. The neural crest. Development. 2013;140:2247–2251. doi: 10.1242/dev.091751. PubMed DOI

Hall BK. The neural crest and neural crest cells: Discovery and significance for theories of embryonic organization. J Biosci. 2008;33:781–793. doi: 10.1007/s12038-008-0098-4. PubMed DOI

Mort RL, Jackson IJ, Patton EE. The melanocyte lineage in development and disease. Development. 2015;142:620–632. doi: 10.1242/dev.106567. PubMed DOI PMC

Duband JL, Monier F, Delannet M, Newgreen D. Epithelium-mesenchyme transition during neural crest development. Acta Anat (Basel) 1995;154:63–78. doi: 10.1159/000147752. PubMed DOI

Vega-Lopez GA, Cerrizuela S, Aybar MJ. Trunk neural crest cells: Formation, migration and beyond. Int J Dev Biol. 2017;61:5–15. doi: 10.1387/ijdb.160408gv. PubMed DOI

Larribère L, Utikal J. Stem cell-derived models of neural crest are essential to understand melanoma progression and therapy resistance. Front Mol Neurosci. 2019;12:111. doi: 10.3389/fnmol.2019.00111. PubMed DOI PMC

Gallik KL, Treffy RW, Nacke LM, Ahsan K, Rocha M, Green-Saxena A, Saxena A. Neural crest and cancer: Divergent travelers on similar paths. Mech Dev. 2017;148:89–99. doi: 10.1016/j.mod.2017.08.002. PubMed DOI PMC

Sieber-Blum M, Grim M. The adult hair follicle: Cradle for pluripotent neural crest stem cells. Birth Defects Res C Embryo Today. 2004;72:162–172. doi: 10.1002/bdrc.20008. PubMed DOI

Person F, Wilczak W, Hube-Magg C, Burdelski C, Moller-Koop C, Simon R, Noriega M, Sauter G, Steurer S, Burdak-Rothkamm S, et al. Prevalence of pIII-tubulin (TUBB3) expression in human normal tissues and cancers. Tumour Biol. 2017;39:1010428317712166. doi: 10.1177/1010428317712166. PubMed DOI

Stasiak M, Boncela J, Perreau C, Karamanou K, Chatron-Colliet A, Proult I, Przygodzka P, Chakravarti S, Maquart FX, Kowalska MA, et al. Lumican inhibits SNAIL-induced melanoma cell migration specifically by blocking MMP-14 activity. PLoS One. 2016;11:e0150226. doi: 10.1371/journal.pone.0150226. PubMed DOI PMC

Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res. 2019;38:17. doi: 10.1186/s13046-018-0998-6. PubMed DOI PMC

Lee H, Torres FX, McLean SA, Chen R, Lee MW. Immunophenotypic heterogeneity of primary sinonasal melanoma with aberrant expression of neuroendocrine markers and calponin. Appl Immunohistochem Mol Morphol. 2011;19:48–53. doi: 10.1097/PAI.0b013e3181ee8dcb. PubMed DOI

Tudrej KB, Czepielewska E, Kozlowska-Wojciechowska M. SOX10-MITF pathway activity in melanoma cells. Arch Med Sci. 2017;13:1493–1503. doi: 10.5114/aoms.2016.60655. PubMed DOI PMC

Iwakami Y, Yokoyama S, Watanabe K, Hayakawa Y. STAM-binding protein regulates melanoma metastasis through SLUG stabilization. Biochem Biophys Res Commun. 2018;507:484–488. doi: 10.1016/j.bbrc.2018.11.068. PubMed DOI

Goding CR, Arnheiter H. MITF-the first 25 years. Genes Dev. 2019;33:983–1007. doi: 10.1101/gad.324657.119. PubMed DOI PMC

Campbell K, Kumarapeli AR, Gokden N, Cox RM, Hutchins L, Gardner JM. Metastatic melanoma with dedifferentiation and extensive rhabdomyosarcomatous heterologous component. J Cutan Pathol. 2018;45:360–364. doi: 10.1111/cup.13122. PubMed DOI

Krejci E, Grim M. Isolation and characterization of neural crest stem cells from adult human hair follicles. Folia Biol (Praha) 2010;56:149–157. PubMed

Marzagalli M, Raimondi M, Fontana F, Montagnani Marelli M, Moretti RM, Limonta P. Cellular and molecular biology of cancer stem cells in melanoma: Possible therapeutic implications. Semin Cancer Biol. 2019;59:221–235. doi: 10.1016/j.semcancer.2019.06.019. PubMed DOI

Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor REB, Hendrix MJC, Kulesa PM. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn. 2008;237:2657–2666. doi: 10.1002/dvdy.21613. PubMed DOI PMC

Kaufman CK, Mosimann C, Fan ZP, Yang S, Thomas AJ, Ablain J, Tan JL, Fogley RD, van Rooijen E, Hagedorn EJ, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351:aad2197. doi: 10.1126/science.aad2197. PubMed DOI PMC

Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in circulating tumor cells: The relevance of the stem-cell subset. Cancers (Basel) 2019;11:11. doi: 10.3390/cancers11040483. PubMed DOI PMC

Gkountela S, Aceto N. Stem-like features of cancer cells on their way to metastasis. Biol Direct. 2016;11:33. doi: 10.1186/s13062-016-0135-4. PubMed DOI PMC

Empringham B, Chiang KY, Krueger J. Collection of hematopoietic stem cells and immune effector cells in small children. Transfus Apheresis Sci. 2018;57:614–618. doi: 10.1016/j.transci.2018.10.004. PubMed DOI

Feehan J, Nurgali K, Apostolopoulos V, Al Saedi A, Duque G. Circulating osteogenic precursor cells: Building bone from blood. EBioMedicine. 2019;39:603–611. doi: 10.1016/j.ebiom.2018.11.051. PubMed DOI PMC

Ratajczak MZ, Bujko K, Mack A, Kucia M, Ratajczak J. Cancer from the perspective of stem cells and misappropriated tissue regeneration mechanisms. Leukemia. 2018;32:2519–2526. doi: 10.1038/s41375-018-0294-7. PubMed DOI PMC

Lacina L, Plzak J, Kodet O, Szabo P, Chovanec M, Dvorankova B, Smetana K., Jr Cancer microenvironment: What can we learn from the stem cell niche. Int J Mol Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Hill BS, Pelagalli A, Passaro N, Zannetti A. Tumor-educated mesenchymal stem cells promote pro-metastatic phenotype. Oncotarget. 2017;8:73296–73311. doi: 10.18632/oncotarget.20265. PubMed DOI PMC

Plzak J, Boucek J, Bandurova V, Kolar M, Hradilova M, Szabo P, Lacina L, Chovanec M, Smetana K., Jr The head and neck squamous cell carcinoma microenvironment as a potential target for cancer therapy. Cancers (Basel) 2019;11:11. doi: 10.3390/cancers11040440. PubMed DOI PMC

Lacina L, Kodet O, Dvorankova B, Szabo P, Smetana K., Jr Ecology of melanoma cell. Histol Histopathol. 2018;33:247–254. PubMed

Preisner F, Leimer U, Sandmann S, Zoernig I, Germann G, Koellensperger E. Impact of human adipose tissue-derived stem cells on malignant melanoma cells in an in vitro co-culture model. Stem Cell Rev Rep. 2018;14:125–140. doi: 10.1007/s12015-017-9772-y. PubMed DOI

Dvorankova B, Smetana K, Jr, Rihova B, Kucera J, Mateu R, Szabo P. Cancer-associated fibroblasts are not formed from cancer cells by epithelial-to-mesenchymal transition in nu/nu mice. Histochem Cell Biol. 2015;143:463–469. doi: 10.1007/s00418-014-1293-z. PubMed DOI

Inada M, Takita M, Yokoyama S, Watanabe K, Tominari T, Matsumoto C, Hirata M, Maru Y, Maruyama T, Sugimoto Y, et al. Direct melanoma cell contact induces stromal cell autocrine prostaglandin E2-EP4 receptor signaling that drives tumor growth, angiogenesis, and metastasis. J Biol Chem. 2015;290:29781–29793. doi: 10.1074/jbc.M115.669481. PubMed DOI PMC

Ziani L, Safta-Saadoun TB, Gourbeix J, Cavalcanti A, Robert C, Favre G, Chouaib S, Thiery J. Melanoma-associated fibroblasts decrease tumor cell susceptibility to NK cell-mediated killing through matrix-metalloproteinases secretion. Oncotarget. 2017;8:19780–19794. doi: 10.18632/oncotarget.15540. PubMed DOI PMC

Kodet O, Lacina L, Krejci E, Dvorankova B, Grim M, Stork J, Kodetova D, Vlcek C, Sachova J, Kolar M, et al. Melanoma cells influence the differentiation pattern of human epidermal keratinocytes. Mol Cancer. 2015;14:1. doi: 10.1186/1476-4598-14-1. PubMed DOI PMC

Van Kilsdonk JWJ, Bergers M, Van Kempen LCLT, Schalkwijk J, Swart GWM. Keratinocytes drive melanoma invasion in a reconstructed skin model. Melanoma Res. 2010;20:372–380. PubMed

Ciolczyk-Wierzbicka D, Laidler P. The inhibition of invasion of human melanoma cells through N-cadherin knock-down. Med Oncol. 2018;35:42. doi: 10.1007/s12032-018-1104-9. PubMed DOI PMC

Chung H, Jung H, Jho EH, Multhaupt HAB, Couchman JR, Oh ES. Keratinocytes negatively regulate the N-cadherin levels of melanoma cells via contact-mediated calcium regulation. Biochem Biophys Res Commun. 2018;503:615–620. doi: 10.1016/j.bbrc.2018.06.050. PubMed DOI

Nikkola J, Vihinen P, Vlaykova T, Hahka-Kemppinen M, Heino J, Pyrhonen S. Integrin chains |31 and alphav as prognostic factors in human metastatic melanoma. Melanoma Res. 2004;14:29–37. doi: 10.1097/00008390-200402000-00005. PubMed DOI

Van Belle PA, Elenitsas R, Satyamoorthy K, Wolfe JT, Guerry D, IV, Schuchter L, Van Belle TJ, Albelda S, Tahin P, Herlyn M, et al. Progression-related expression of |33 integrin in melanomas and nevi. Hum Pathol. 1999;30:562–567. doi: 10.1016/S0046-8177(99)90202-2. PubMed DOI

Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M. Function and regulation of melanoma-stromal fibroblast interactions: When seeds meet soil. Oncogene. 2003;22:3162–3171. doi: 10.1038/sj.onc.1206455. PubMed DOI

Brandner JM, Haass NK. Melanoma's connections to the tumour microenvironment. Pathology. 2013;45:443–452. doi: 10.1097/PAT.0b013e328363b3bd. PubMed DOI

Peitsch WK, Doerflinger Y, Fischer-Colbrie R, Huck V, Bauer AT, Utikal J, Goerdt S, Schneider SW. Desmoglein 2 depletion leads to increased migration and upregulation of the chemoattractant secretoneurin in melanoma cells. PLoS One. 2014;9:e89491. doi: 10.1371/journal.pone.0089491. PubMed DOI PMC

Tan LY, Mintoff C, Johan MZ, Ebert BW, Fedele C, Zhang YF, Szeto P, Sheppard KE, McArthur GA, Foster-Smith E, et al. Desmoglein 2 promotes vasculogenic mimicry in melanoma and is associated with poor clinical outcome. Oncotarget. 2016;7:46492–46508. doi: 10.18632/oncotarget.10216. PubMed DOI PMC

Klemke M, Weschenfelder T, Konstandin MH, Samstag Y. High affinity interaction of integrin a4pi (VLA-4) and vascular cell adhesion molecule 1 (VCAM-1) enhances migration of human melanoma cells across activated endothelial cell layers. J Cell Physiol. 2007;212:368–374. doi: 10.1002/jcp.21029. PubMed DOI

Lacaria L, Lange JR, Goldmann WH, Rico F, Alonso JL. av|33 integrin expression increases elasticity in human melanoma cells. Biochem Biophys Res Commun. 2020;525:836–840. doi: 10.1016/j.bbrc.2020.02.156. PubMed DOI

Bedogni B. Notch signaling in melanoma: Interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res. 2014;27:162–168. doi: 10.1111/pcmr.12194. PubMed DOI

Jobe NP, Rosel D, Dvorankova B, Kodet O, Lacina L, Mateu R, Smetana K, Brabek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness. Histochem Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jobe NP, Zivicova V, Mifkova A, Rosel D, Dvorankova B, Kodet O, Strnad H, Kolar M, Sedo A, Smetana K, Jr, et al. Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes. Histochem Cell Biol. 2018;149:503–516. doi: 10.1007/s00418-018-1650-4. PubMed DOI

Strnadova K, Sandera V, Dvorankova B, Kodet O, Duskova M, Smetana K, Lacina L. Skin aging: The dermal perspective. Clin Dermatol. 2019;37:326–335. doi: 10.1016/j.clindermatol.2019.04.005. PubMed DOI

Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol. 2002;118:915–922. doi: 10.1046/j.1523-1747.2002.01725.x. PubMed DOI

Gebhardt C, Averbeck M, Viertel A, Kauer F, Saalbach A, Anderegg U, Simon JC. Ultraviolet-B irradiation enhances melanoma cell motility via induction of autocrine interleukin 8 secretion. Exp Dermatol. 2007;16:636–643. doi: 10.1111/j.1600-0625.2007.00572.x. PubMed DOI

Araki K, Shimura T, Yajima T, Tsutsumi S, Suzuki H, Okada K, Kobayashi T, Raz A, Kuwano H. Phosphoglucose isomerase/autocrine motility factor promotes melanoma cell migration through ERK activation dependent on autocrine production of interleukin-8. J Biol Chem. 2009;284:32305–32311. doi: 10.1074/jbc.M109.008250. PubMed DOI PMC

Kemp DM, Pidich A, Larijani M, Jonas R, Lash E, Sato T, Terai M, De Pizzol M, Allegretti M, Igoucheva O, et al. Ladarixin, a dual CXCR1/2 inhibitor, attenuates experimental melanomas harboring different molecular defects by affecting malignant cells and tumor microenvironment. Oncotarget. 2017;8:14428–14442. doi: 10.18632/oncotarget.14803. PubMed DOI PMC

Brennecke S, Deichmann M, Naeher H, Kurzen H. Decline in angiogenic factors, such as interleukin-8, indicates response to chemotherapy of metastatic melanoma. Melanoma Res. 2005;15:515–522. doi: 10.1097/00008390-200512000-00006. PubMed DOI

Gabellini C, Trisciuoglio D, Desideri M, Candiloro A, Ragazzoni Y, Orlandi A, Zupi G, Del Bufalo D. Functional activity of CXCL8 receptors, CXCR1 and CXCR2, on human malignant melanoma progression. Eur J Cancer. 2009;45:2618–2627. doi: 10.1016/j.ejca.2009.07.007. PubMed DOI

Nürnberg W, Tobias D, Otto F, Henz BM, Schadendorf D. Expression of interleukin-8 detected by in situ hybridization correlates with worse prognosis in primary cutaneous melanoma. J Pathol. 1999;189:546–551. doi: 10.1002/(SICI)1096-9896(199912)189:4<546::AID-PATH487>3.0.CO;2-L. PubMed DOI

Ortega-Bernal D, La Rosa CHG, Arechaga-Ocampo E, Alvarez-Avitia MA, Moreno NS, Rangel-Escareno C. A meta-analysis of transcriptome datasets characterizes malignant transformation from melanocytes and nevi to melanoma. Oncol Lett. 2018;16:1899–1911. PubMed PMC

Adamski V, Mentlein R, Lucius R, Synowitz M, Held-Feindt J, Hattermann K. The chemokine receptor CXCR6 evokes reverse signaling via the transmembrane chemokine CXCL16. Int J Mol Sci. 2017;18:18. doi: 10.3390/ijms18071468. PubMed DOI PMC

da Silva WC, Oshiro TM, de Sa DC, Franco DDGS, Festa Neto C, Pontillo A. Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet. 2016;209:474–480. doi: 10.1016/j.cancergen.2016.09.004. PubMed DOI

Lacina L, Brabek J, Kral V, Kodet O, Smetana K., Jr Interleukin-6: A molecule with complex biological impact in cancer. Histol Histopathol. 2019;34:125–136. PubMed

Armstrong CA, Murray N, Kennedy M, Koppula SV, Tara D, Ansel JC. Melanoma-derived interleukin 6 inhibits in vivo melanoma growth. J Invest Dermatol. 1994;102:278–284. doi: 10.1111/1523-1747.ep12371782. PubMed DOI

Lu C, Kerbel RS. Interleukin-6 undergoes transition from paracrine growth inhibitor to autocrine stimulator during human melanoma progression. J Cell Biol. 1993;120:1281–1288. doi: 10.1083/jcb.120.5.1281. PubMed DOI PMC

Elias EG, Hasskamp JH, Sharma BK. Cytokines and growth factors expressed by human cutaneous melanoma. Cancers (Basel) 2010;2:794–808. doi: 10.3390/cancers2020794. PubMed DOI PMC

Linnskog R, Jönsson G, Axelsson L, Prasad CP, Andersson T. Interleukin-6 drives melanoma cell motility through p38a-MAPK-dependent up-regulation of WNT5A expression. Mol Oncol. 2014;8:1365–1378. doi: 10.1016/j.molonc.2014.05.008. PubMed DOI PMC

Karst AM, Gao K, Nelson CC, Li G. Nuclear factor kappa B subunit p50 promotes melanoma angiogenesis by upregulating interleukin-6 expression. Int J Cancer. 2009;124:494–501. doi: 10.1002/ijc.23973. PubMed DOI

Nagai H, Oniki S, Fujiwara S, Xu M, Mizoguchi I, Yoshimoto T, Nishigori C. Antitumor activities of interleukin-27 on melanoma. Endocr Metab Immune Disord Drug Targets. 2010;10:41–46. doi: 10.2174/187153010790827920. PubMed DOI

Shinozaki Y, Wang S, Miyazaki Y, Miyazaki K, Yamada H, Yoshikai Y, Hara H, Yoshida H. Tumor-specific cytotoxic T cell generation and dendritic cell function are differentially regulated by interleukin 27 during development of anti-tumor immunity. Int J Cancer. 2009;124:1372–1378. doi: 10.1002/ijc.24107. PubMed DOI

Chiba Y, Mizoguchi I, Mitobe K, Higuchi K, Nagai H, Nishigori C, Mizuguchi J, Yoshimoto T. IL-27 enhances the expression of TRAIL and TLR3 in human melanomas and inhibits their tumor growth in cooperation with a TLR3 agonist poly(I:C) partly in a TRAIL-dependent manner. PLoS One. 2013;8:e76159. doi: 10.1371/journal.pone.0076159. PubMed DOI PMC

Bisevac JP, Stanojevic I, Mijuskovic Z, Banovic T, Djukic M, Vojvodic D. High interleukin 27 production is associated with early clinical stage and localized disease in patients with melanoma. J Med Biochem. 2016;35:443–450. doi: 10.1515/jomb-2016-0018. PubMed DOI PMC

Onoue K, Kusubashi H, Sato Y, Wakitani S, Takagi M. Quantitative correlation between production rate of melanoma inhibitory activity and aggrecan gene expression level during differentiation from mesenchymal stem cells to chondrocytes and redifferentiation of chondrocytes. J Biosci Bioeng. 2011;111:594–596. doi: 10.1016/j.jbiosc.2010.12.023. PubMed DOI

Decarlo K, Yang S, Emley A, Wajapeyee N, Green M, Mahalingam M. Oncogenic BRAF-positive dysplastic nevi and the tumor suppressor IGFBP7 - challenging the concept of dysplastic nevi as precursor lesions? Hum Pathol. 2010;41:886–894. doi: 10.1016/j.humpath.2009.12.002. PubMed DOI

Yotsumoto F, Yagi H, Suzuki SO, Oki E, Tsujioka H, Hachisuga T, Sonoda K, Kawarabayashi T, Mekada E, Miyamoto S. Validation of HB-EGF and amphiregulin as targets for human cancer therapy. Biochem Biophys Res Commun. 2008;365:555–561. doi: 10.1016/j.bbrc.2007.11.015. PubMed DOI

Marchetti D, Nicolson GL. Neurotrophin stimulation of human melanoma cell invasion: Selected enhancement of heparanase activity and heparanase degradation of specific heparan sulfate subpopulations. Adv Enzyme Regul. 1997;37:111–134. doi: 10.1016/S0065-2571(96)00019-2. PubMed DOI

Antunes LCM, Cartell A, de Farias CB, Bakos RM, Roesler R, Schwartsmann G. Tropomyosin-related kinase receptor and neurotrophin expression in cutaneous melanoma is associated with a poor prognosis and decreased survival. Oncology. 2019;97:26–37. doi: 10.1159/000499384. PubMed DOI

Li JR, Wang JQ, Gong Q, Fang RH, Guo YL. MicroRNA-328 inhibits proliferation of human melanoma cells by targeting TGFp2. Asian Pac J Cancer Prev. 2015;16:1575–1579. doi: 10.7314/APJCP.2015.16.4.1575. PubMed DOI

Hutchenreuther J, Vincent K, Norley C, Racanelli M, Gruber SB, Johnson TM, Fullen DR, Raskin L, Perbal B, Holdsworth DW, et al. Activation of cancer-associated fibroblasts is required for tumor neovascularization in a murine model of melanoma. Matrix Biol. 2018;74:52–61. doi: 10.1016/j.matbio.2018.06.003. PubMed DOI

Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR, Du J, Davis A, Mongare MM, Gould J, Frederick DT, et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature. 2012;487:500–504. doi: 10.1038/nature11183. PubMed DOI PMC

Capparelli C, Rosenbaum S, Berger AC, Aplin AE. Fibroblast-derived neuregulin 1 promotes compensatory ErbB3 receptor signaling in mutant BRAF melanoma. J Biol Chem. 2015;290:24267–24277. doi: 10.1074/jbc.M115.657270. PubMed DOI PMC

Ruivo CF, Adem B, Silva M, Melo SA. The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 2017;77:6480–6488. doi: 10.1158/0008-5472.CAN-17-0994. PubMed DOI

Hood JL. Melanoma exosome induction of endothelial cell GM-CSF in pre-metastatic lymph nodes may result in different M1 and M2 macrophage mediated angiogenic processes. Med Hypotheses. 2016;94:118–122. doi: 10.1016/j.mehy.2016.07.009. PubMed DOI PMC

Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, Qu J, McMasters KM, Hao H. Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. 2016;376:318–327. doi: 10.1016/j.canlet.2016.03.050. PubMed DOI PMC

Gowda R, Robertson BM, Iyer S, Barry J, Dinavahi SS, Robertson GP. The role of exosomes in metastasis and progression of melanoma. Cancer Treat Rev. 2020;85:101975. doi: 10.1016/j.ctrv.2020.101975. PubMed DOI

Gajos-Michniewicz A, Czyz M. Role of mirnas in melanoma metastasis. Cancers (Basel) 2019;11:11. doi: 10.3390/cancers11030326. PubMed DOI PMC

Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67:7458–7466. doi: 10.1158/0008-5472.CAN-06-3456. PubMed DOI

Gerloff D, Lützkendorf J, Moritz RKC, Wersig T, Mader K, Müller LP, Sunderkotter C. Melanoma-derived exosomal mir-125b-5p educates tumor associated macrophages (TAMs) by targeting lysosomal acid lipase A (LIPA) Cancers (Basel) 2020;12:12. doi: 10.3390/cancers12020464. PubMed DOI PMC

Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 2018;105:63–72. doi: 10.1016/j.cyto.2018.02.002. PubMed DOI PMC

Gershenwald JE, Scolyer RA. Melanoma Staging: American Joint Committee on Cancer (AJCC) 8th Edition and Beyond. Ann Surg Oncol. 2018;25:2105–2110. doi: 10.1245/s10434-018-6513-7. PubMed DOI

Michielin O, van Akkooi ACJ, Ascierto PA, Dummer R, Keilholz U, ESMO Guidelines Committee Electronic address: clinicalguidelines@esmo.org: Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2019;30:1884–1901. doi: 10.1093/annonc/mdz411. PubMed DOI

Riechers A, Bosserhoff AK. Melanoma inhibitory activity in melanoma diagnostics and therapy - a small protein is looming large. Exp Dermatol. 2014;23:12–14. doi: 10.1111/exd.12281. PubMed DOI

Forgber M, Trefzer U, Sterry W, Walden P. Proteome serological determination of tumor-associated antigens in melanoma. PLoS One. 2009;4:e5199. doi: 10.1371/journal.pone.0005199. PubMed DOI PMC

Muqaku B, Eisinger M, Meier SM, Tahir A, Pukrop T, Haferkamp S, Slany A, Reichle A, Gerner C. Multi-omics analysis of serum samples demonstrates reprogramming of organ functions via systemic calcium mobilization and platelet activation in metastatic melanoma. Mol Cell Proteomics. 2017;16:86–99. doi: 10.1074/mcp.M116.063313. PubMed DOI PMC

Weber JS, Sznol M, Sullivan RJ, Blackmon S, Boland G, Kluger HM, Halaban R, Bacchiocchi A, Ascierto PA, Capone M, et al. A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma. Cancer Immunol Res. 2018;6:79–86. doi: 10.1158/2326-6066.CIR-17-0412. PubMed DOI

Hoejberg L, Bastholt L, Johansen JS, Christensen IJ, Gehl J, Schmidt H. Serum interleukin-6 as a prognostic biomarker in patients with metastatic melanoma. Melanoma Res. 2012;22:287–293. doi: 10.1097/CMR.0b013e3283550aa5. PubMed DOI

Correa D, Somoza RA, Lin P, Schiemann WP, Caplan AI. Mesenchymal stem cells regulate melanoma cancer cells extravasation to bone and liver at their perivascular niche. Int J Cancer. 2016;138:417–427. doi: 10.1002/ijc.29709. PubMed DOI PMC

Gandalovicova A, Rosel D, Fernandes M, Vesely P, Heneberg P, Cermak V, Petruzelka L, Kumar S, Sanz-Moreno V, Brabek J. Migrastatics-anti-metastatic and anti-invasion Drugs: Promises and challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Herman H, Fazakas C, Hasko J, Molnar K, Mészaros A, Nyul-Toth A, Szabo G, Erdélyi F, Ardelean A, Hermenean A, et al. Paracellular and transcellular migration of metastatic cells through the cerebral endothelium. J Cell Mol Med. 2019;23:2619–2631. doi: 10.1111/jcmm.14156. PubMed DOI PMC

Kucera R, Topolcan O, Treskova I, Kinkorova J, Windrichova J, Fuchsova R, Svobodova S, Treska V, Babuska V, Novak J, et al. Evaluation of IL-2, IL-6, IL-8 and IL-10 in malignant melanoma diagnostics. Anticancer Res. 2015;35:3537–3541. PubMed

Sanmamed MF, Carranza-Rua O, Alfaro C, Onate C, Martin-Algarra S, Perez G, Landazuri SF, Gonzalez A, Gross S, Rodriguez I, et al. Serum interleukin-8 reflects tumor burden and treatment response across malignancies of multiple tissue origins. Clin Cancer Res. 2014;20:5697–5707. doi: 10.1158/1078-0432.CCR-13-3203. PubMed DOI

Kucera J, Strnadova K, Dvorankova B, Lacina L, Krajsova I, Stork J, Kovarova H, Skalmkova HK, Vodicka P, Motlik J, et al. Serum proteomic analysis of melanoma patients with immunohistochemical profiling of primary melanomas and cultured cells: Pilot study. Oncol Rep. 2019;42:1793–1804. PubMed PMC

Pelletier F, Bermont L, Puzenat E, Blanc D, Cairey-Remonnay S, Mougin C, Laurent R, Humbert P, Aubin F. Circulating vascular endothelial growth factor in cutaneous malignant melanoma. Br J Dermatol. 2005;152:685–689. doi: 10.1111/j.1365-2133.2005.06507.x. PubMed DOI

Ugurel S, Rappl G, Tilgen W, Reinhold U. Increased serum concentration of angiogenic factors in malignant melanoma patients correlates with tumor progression and survival. J Clin Oncol. 2001;19:577–583. doi: 10.1200/JCO.2001.19.2.577. PubMed DOI

Krasagakis K, Tholke D, Farthmann B, Eberle J, Mansmann U, Orfanos CE. Elevated plasma levels of transforming growth factor (TGF)-pi and TGF-|32 in patients with disseminated malignant melanoma. Br J Cancer. 1998;77:1492–1494. doi: 10.1038/bjc.1998.245. PubMed DOI PMC

Tuccitto A, Tazzari M, Beretta V, Rini F, Miranda C, Greco A, Santinami M, Patuzzo R, Vergani B, Villa A, et al. Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells. 2016;34:2449–2460. doi: 10.1002/stem.2413. PubMed DOI

Tung KH, Ernstoff MS, Allen C, Shu S. A Review of exosomes and their role in the tumor microenvironment and host-tumor 'macroenvironment'. J Immunol Sci. 2019;3:4–8. doi: 10.29245/2578-3009/2019/1.1165. PubMed DOI PMC

Shu S, Yang Y, Allen CL, Maguire O, Minderman H, Sen A, Ciesielski MJ, Collins KA, Bush PJ, Singh P, et al. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment. Sci Rep. 2018;8:12905. doi: 10.1038/s41598-018-31323-7. PubMed DOI PMC

Kodet O, Dvorankova B, Bendlova B, Sykorova V, Krajsova I, Stork J, Kucera J, Szabo P, Strnad H, Kolar M, et al. Microenvironment driven resistance to B Raf inhibition in a melanoma patient is accompanied by broad changes of gene methylation and expression in distal fibroblasts. Int J Mol Med. 2018;41:2687–2703. PubMed PMC

Jouve N, Bachelier R, Despoix N, Blin MG, Matinzadeh MK, Poitevin S, Aurrand-Lions M, Fallague K, Bardin N, Blot-Chabaud M, et al. CD146 mediates vEGF-induced melanoma cell extravasation through FAK activation. Int J Cancer. 2015;137:50–60. doi: 10.1002/ijc.29370. PubMed DOI

Hamilla SM, Stroka KM, Aranda-Espinoza H. VE-cadherin-independent cancer cell incorporation into the vascular endothelium precedes transmigration. PLoS One. 2014;9:e109748. doi: 10.1371/journal.pone.0109748. PubMed DOI PMC

Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, Lee EH, Ye SK, Cho CH. STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene. 2017;36:5445–5459. doi: 10.1038/onc.2017.148. PubMed DOI

Borgenström M, Wärri A, Hiilesvuo K, Käkönen R, Käkönen S, Nissinen L, Pihlavisto M, Marjamäki A, Vlodavsky I, Naggi A, et al. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis. Semin Thromb Hemost. 2007;33:547–556. doi: 10.1055/s-2007-982087. PubMed DOI

Dange MC, Srinivasan N, More SK, Bane SM, Upadhya A, Ingle AD, Gude RP, Mukhopadhyaya R, Kalraiya RD. Galectin-3 expressed on different lung compartments promotes organ specific metastasis by facilitating arrest, extravasation and organ colonization via high affinity ligands on melanoma cells. Clin Exp Metastasis. 2014;31:661–673. doi: 10.1007/s10585-014-9657-2. PubMed DOI

Desch A, Strozyk EA, Bauer AT, Huck V, Niemeyer V, Wieland T, Schneider SW. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A. Am J Pathol. 2012;181:693–705. doi: 10.1016/j.ajpath.2012.04.012. PubMed DOI

Tsukamoto H, Fujieda K, Miyashita A, Fukushima S, Ikeda T, Kubo Y, Senju S, Ihn H, Nishimura Y, Oshiumi H. Combined blockade of IL6 and PD-1/PD-L1 signaling abrogates mutual regulation of their immunosuppressive effects in the tumor microenvironment. Cancer Res. 2018;78:5011–5022. doi: 10.1158/0008-5472.CAN-18-0118. PubMed DOI

Anker MS, Holcomb R, Muscaritoli M, von Haehling S, Haverkamp W, Jatoi A, Morley JE, Strasser F, Landmesser U, Coats AJS, et al. Orphan disease status of cancer cachexia in the USA and in the European Union: A systematic review. J Cachexia Sarcopenia Muscle. 2019;10:22–34. doi: 10.1002/jcsm.12402. PubMed DOI PMC

Loumaye A, Thissen JP. Biomarkers of cancer cachexia. Clin Biochem. 2017;50:1281–1288. doi: 10.1016/j.clinbiochem.2017.07.011. PubMed DOI

Weidle UH, Klostermann S, Eggle D, Krüger A. Interleukin 6/interleukin 6 receptor interaction and its role as a therapeutic target for treatment of cachexia and cancer. Cancer Genomics Proteomics. 2010;7:287–302. PubMed

Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol. 2016;54:28–41. doi: 10.1016/j.semcdb.2016.02.009. PubMed DOI PMC

Cehreli R, Yavuzsen T, Ates H, Akman T, Ellidokuz H, Oztop I. Can inflammatory and nutritional serum markers predict chemotherapy outcomes and survival in advanced stage nonsmall cell lung cancer patients? BioMed Res Int. 2019;2019:1648072. doi: 10.1155/2019/1648072. PubMed DOI PMC

Johannes CM, Musser ML. Anorexia and the cancer patient. Vet Clin North Am Small Anim Pract. 2019;49:837–854. doi: 10.1016/j.cvsm.2019.04.008. PubMed DOI

Pisetsky DS, Trace SE, Brownley KA, Hamer RM, Zucker NL, Roux-Lombard P, Dayer JM, Bulik CM. The expression of cytokines and chemokines in the blood of patients with severe weight loss from anorexia nervosa: An exploratory study. Cytokine. 2014;69:110–115. doi: 10.1016/j.cyto.2014.05.018. PubMed DOI PMC

Rochfort KD, Cummins PM. The blood-brain barrier endothelium. A target for pro-inflammatory cytokines. Biochem Soc Trans. 2015;43:702–706. doi: 10.1042/BST20140319. PubMed DOI

Dwarkasing JT, Witkamp RF, Boekschoten MV, Ter Laak MC, Heins MS, van Norren K. Increased hypothalamic serotonin turnover in inflammation-induced anorexia. BMC Neurosci. 2016;17:26. doi: 10.1186/s12868-016-0260-0. PubMed DOI PMC

Liu WJ, Wang XD, Wu W, Huang X. Relationship between depression and blood cytokine levels in lung cancer patients. Med Sci (Paris) 2018;34(Focus issue F1):113–115. doi: 10.1051/medsci/201834f119. PubMed DOI

Lu YR, Rao YB, Mou YJ, Chen Y, Lou HF, Zhang Y, Zhang DX, Xie HY, Hu LW, Fang P. High concentrations of serum interleukin-6 and interleukin-8 in patients with bipolar disorder. Medicine (Baltimore) 2019;98:e14419. doi: 10.1097/MD.0000000000014419. PubMed DOI PMC

Ju RJ, Stehbens SJ, Haass NK. The role of melanoma cell-stroma interaction in cell motility, invasion, and metastasis. Front Med (Lausanne) 2018;5:307. doi: 10.3389/fmed.2018.00307. PubMed DOI PMC

Johnson DE, O'Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018;15:234–248. doi: 10.1038/nrclinonc.2018.8. PubMed DOI PMC

Donnelly D, III, Aung PP, Jour G. The '-OMICS' facet of melanoma: Heterogeneity of genomic, proteomic and metabolomic biomarkers. Semin Cancer Biol. 2019;59:165–174. doi: 10.1016/j.semcancer.2019.06.014. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...