Bordetella Type III Secretion Injectosome and Effector Proteins
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Review
PubMed
33014891
PubMed Central
PMC7498569
DOI
10.3389/fcimb.2020.00466
Knihovny.cz E-resources
- Keywords
- BopN, Bordetella, BteA/BopC, effector protein, pertussis, type III secretion system,
- MeSH
- Bacterial Proteins genetics MeSH
- Bordetella bronchiseptica * MeSH
- Bordetella pertussis genetics MeSH
- Virulence Factors genetics MeSH
- Bordetella Infections * MeSH
- Sheep MeSH
- Type III Secretion Systems genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Names of Substances
- Bacterial Proteins MeSH
- Virulence Factors MeSH
- Type III Secretion Systems MeSH
Pertussis, also known as whooping cough, is a resurging acute respiratory disease of humans primarily caused by the Gram-negative coccobacilli Bordetella pertussis, and less commonly by the human-adapted lineage of B. parapertussisHU. The ovine-adapted lineage of B. parapertussisOV infects only sheep, while B. bronchiseptica causes chronic and often asymptomatic respiratory infections in a broad range of mammals but rarely in humans. A largely overlapping set of virulence factors inflicts the pathogenicity of these bordetellae. Their genomes also harbor a pathogenicity island, named bsc locus, that encodes components of the type III secretion injectosome, and adjacent btr locus with the type III regulatory proteins. The Bsc injectosome of bordetellae translocates the cytotoxic BteA effector protein, also referred to as BopC, into the cells of the mammalian hosts. While the role of type III secretion activity in the persistent colonization of the lower respiratory tract by B. bronchiseptica is well recognized, the functionality of the type III secretion injectosome in B. pertussis was overlooked for many years due to the adaptation of laboratory-passaged B. pertussis strains. This review highlights the current knowledge of the type III secretion system in the so-called classical Bordetella species, comprising B. pertussis, B. parapertussis, and B. bronchiseptica, and discusses its functional divergence. Comparison with other well-studied bacterial injectosomes, regulation of the type III secretion on the transcriptional and post-transcriptional level, and activities of BteA effector protein and BopN protein, homologous to the type III secretion gatekeepers, are addressed.
See more in PubMed
Abe A., Nishimura R., Kuwae A. (2017). Bordetella effector BopN is translocated into host cells via its N-terminal residues. Microbiol. Immunol. 61, 206–214. 10.1111/1348-0421.12489 PubMed DOI
Ahuja U., Liu M., Tomida S., Park J., Souda P., Whitelegge J., et al. . (2012). Phenotypic and genomic analysis of hypervirulent human-associated Bordetella bronchiseptica. BMC Microbiol. 12:167. 10.1186/1471-2180-12-167 PubMed DOI PMC
Ahuja U., Shokeen B., Cheng N., Cho Y., Blum C., Coppola G., et al. . (2016). Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-sigma factor. Proc. Natl. Acad. Sci. U.S.A. 113, 2341–2348. 10.1073/pnas.1600320113 PubMed DOI PMC
Archuleta T. L., Du Y., English C. A., Lory S., Lesser C., Ohi M. D., et al. . (2011). The Chlamydia effector chlamydial outer protein N (CopN) sequesters tubulin and prevents microtubule assembly. J. Biol. Chem. 286, 33992–33998. 10.1074/jbc.M111.258426 PubMed DOI PMC
Arico B., Rappuoli R. (1987). Bordetella parapertussis and Bordetella bronchiseptica contain transcriptionally silent pertussis toxin genes. J. Bacteriol. 169, 2847–2853. 10.1128/JB.169.6.2847-2853.1987 PubMed DOI PMC
Bayram J., Malcova I., Sinkovec L., Holubova J., Streparola G., Jurnecka D., et al. . (2020). Cytotoxicity of the effector protein BteA was attenuated in Bordetella pertussis by insertion of an alanine residue. PLoS Pathog. 10.1371/journal.ppat.1008512 PubMed DOI PMC
Bergfors E., Trollfors B., Taranger J., Lagergard T., Sundh V., Zackrisson G. (1999). Parapertussis and pertussis: differences and similarities in incidence, clinical course, and antibody responses. Int. J. Infect. Dis. 3, 140–146. 10.1016/S1201-9712(99)90035-8 PubMed DOI
Bibova I., Hot D., Keidel K., Amman F., Slupek S., Cerny O., et al. . (2015). Transcriptional profiling of Bordetella pertussis reveals requirement of RNA chaperone Hfq for Type III secretion system functionality. RNA Biol. 12, 175–185. 10.1080/15476286.2015.1017237 PubMed DOI PMC
Botteaux A., Sory M. P., Biskri L., Parsot C., Allaoui A. (2009). MxiC is secreted by and controls the substrate specificity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 71, 449–460. 10.1111/j.1365-2958.2008.06537.x PubMed DOI
Brickman T. J., Cummings C. A., Liew S. Y., Relman D. A., Armstrong S. K. (2011). Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J. Bacteriol. 193, 4798–4812. 10.1128/JB.05136-11 PubMed DOI PMC
Brockmeier S. L., Register K. B., Magyar T., Lax A. J., Pullinger G. D., Kunkle R. A. (2002). Role of the dermonecrotic toxin of Bordetella bronchiseptica in the pathogenesis of respiratory disease in swine. Infect. Immun. 70, 481–490. 10.1128/IAI.70.2.481-490.2002 PubMed DOI PMC
Buboltz A. M., Nicholson T. L., Weyrich L. S., Harvill E. T. (2009). Role of the type III secretion system in a hypervirulent lineage of Bordetella bronchiseptica. Infect. Immun. 77, 3969–3977. 10.1128/IAI.01362-08 PubMed DOI PMC
Burns D. L., Meade B. D., Messionnier N. E. (2014). Pertussis resurgence: perspectives from the Working Group Meeting on pertussis on the causes, possible paths forward, and gaps in our knowledge. J. Infect. Dis. 209 (Suppl 1), S32–S35. 10.1093/infdis/jit491 PubMed DOI
Carbonetti N. H. (2010). Pertussis toxin and adenylate cyclase toxin: key virulence factors of Bordetella pertussis and cell biology tools. Future Microbiol. 5, 455–469. 10.2217/fmb.09.133 PubMed DOI PMC
Chao Y., Vogel J. (2010). The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13, 24–33. 10.1016/j.mib.2010.01.001 PubMed DOI
Chen Q., Stibitz S. (2019). The BvgASR virulence regulon of Bordetella pertussis. Curr. Opin. Microbiol. 47, 74–81. 10.1016/j.mib.2019.01.002 PubMed DOI
Cheng L. W., Kay O., Schneewind O. (2001). Regulated secretion of YopN by the type III machinery of Yersinia enterocolitica. J. Bacteriol. 183, 5293–5301. 10.1128/JB.183.18.5293-5301.2001 PubMed DOI PMC
Cherry J. D. (2019). The 112-year odyssey of pertussis and pertussis vaccines-mistakes made and implications for the future. J. Pediatric Infect. Dis. Soc. 8, 334–341. 10.1093/jpids/piz005 PubMed DOI
Cherry J. D., Seaton B. L. (2012). Patterns of Bordetella parapertussis respiratory illnesses: 2008-2010. Clin. Infect. Dis 54, 534–537. 10.1093/cid/cir860 PubMed DOI
Cleary J., Lai L. C., Shaw R. K., Straatman-Iwanowska A., Donnenberg M. S., Frankel G., et al. . (2004). Enteropathogenic Escherichia coli (EPEC) adhesion to intestinal epithelial cells: role of bundle-forming pili (BFP), EspA filaments and intimin. Microbiology (Reading,. Engl) 150, 527–538. 10.1099/mic.0.26740-0 PubMed DOI
Cotter P. A., Miller J. F. (1994). BvgAS-mediated signal transduction: analysis of phase-locked regulatory mutants of Bordetella bronchiseptica in a rabbit model. Infect. Immun. 62, 3381–3390. 10.1128/IAI.62.8.3381-3390.1994 PubMed DOI PMC
Cummings C. A., Bootsma H. J., Relman D. A., Miller J. F. (2006). Species- and strain-specific control of a complex, flexible regulon by Bordetella BvgAS. J. Bacteriol. 188, 1775–1785. 10.1128/JB.188.5.1775-1785.2006 PubMed DOI PMC
Cummings C. A., Brinig M. M., Lepp P. W., Van De Pas S., Relman D. A. (2004). Bordetella species are distinguished by patterns of substantial gene loss and host adaptation. J. Bacteriol. 186, 1484–1492. 10.1128/JB.186.5.1484-1492.2004 PubMed DOI PMC
Daniell S. J., Takahashi N., Wilson R., Friedberg D., Rosenshine I., Booy F. P., et al. . (2001). The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell. Microbiol. 3, 865–871. 10.1046/j.1462-5822.2001.00168.x PubMed DOI
Deng W., Li Y., Hardwidge P. R., Frey E. A., Pfuetzner R. A., Lee S., et al. . (2005). Regulation of type III secretion hierarchy of translocators and effectors in attaching and effacing bacterial pathogens. Infect. Immun. 73, 2135–2146. 10.1128/IAI.73.4.2135-2146.2005 PubMed DOI PMC
Dewoody R. S., Merritt P. M., Marketon M. M. (2013). Regulation of the Yersinia type III secretion system: traffic control. Front. Cell. Infect. Microbiol. 3:4. 10.3389/fcimb.2013.00004 PubMed DOI PMC
Diavatopoulos D. A., Cummings C. A., Schouls L. M., Brinig M. M., Relman D. A., Mooi F. R. (2005). Bordetella pertussis, the causative agent of whooping cough, evolved from a distinct, human-associated lineage of B. bronchiseptica. PLoS Pathog. 1:e45. 10.1371/journal.ppat.0010045 PubMed DOI PMC
Dienstbier A., Amman F., Stipl D., Petrackova D., Vecerek B. (2019). Comparative integrated omics analysis of the Hfq regulon in Bordetella pertussis. Int. J. Mol. Sci. 20:3073. 10.3390/ijms20123073 PubMed DOI PMC
Diepold A., Wagner S. (2014). Assembly of the bacterial type III secretion machinery. FEMS Microbiol. Rev. 38, 802–822. 10.1111/1574-6976.12061 PubMed DOI
Diepold A., Wiesand U., Amstutz M., Cornelis G. R. (2012). Assembly of the Yersinia injectisome: the missing pieces. Mol. Microbiol. 85, 878–892. 10.1111/j.1365-2958.2012.08146.x PubMed DOI
Fabianova K., Benes C., Kriz B. (2010). A steady rise in incidence of pertussis since nineties in the Czech Republic. Epidemiol. Mikrobiol. Imunol. 59, 25–33. PubMed
Fauconnier A., Veithen A., Gueirard P., Antoine R., Wacheul L., Locht C., et al. . (2001). Characterization of the type III secretion locus of Bordetella pertussis. Int. J. Med. Microbiol. 290, 693–705. 10.1016/S1438-4221(01)80009-6 PubMed DOI
Fedele G., Schiavoni I., Adkins I., Klimova N., Sebo P. (2017). Invasion of dendritic cells, macrophages and neutrophils by the bordetella adenylate cyclase toxin: a subversive move to fool host immunity. Toxins (Basel) 9. 10.3390/toxins9100293 PubMed DOI PMC
Fennelly N. K., Sisti F., Higgins S. C., Ross P. J., Van Der Heide H., Mooi F. R., et al. . (2008). Bordetella pertussis expresses a functional type III secretion system that subverts protective innate and adaptive immune responses. Infect. Immun. 76, 1257–1266. 10.1128/IAI.00836-07 PubMed DOI PMC
French C. T., Panina E. M., Yeh S. H., Griffith N., Arambula D. G., Miller J. F. (2009). The Bordetella type III secretion system effector BteA contains a conserved N-terminal motif that guides bacterial virulence factors to lipid rafts. Cell. Microbiol. 11, 1735–1749. 10.1111/j.1462-5822.2009.01361.x PubMed DOI PMC
Fry N. K., Duncan J., Malnick H., Cockcroft P. M. (2007). The first UK isolate of 'Bordetella ansorpii' from an immunocompromised patient. J. Med. Microbiol. 56, 993–995. 10.1099/jmm.0.47078-0 PubMed DOI
Fry N. K., Duncan J., Malnick H., Warner M., Smith A. J., Jackson M. S., et al. . (2005). Bordetella petrii clinical isolate. Emerging Infect. Dis. 11, 1131–1133. 10.3201/eid1107.050046 PubMed DOI PMC
Gaillard M. E., Bottero D., Castuma C. E., Basile L. A., Hozbor D. (2011). Laboratory adaptation of Bordetella pertussis is associated with the loss of type three secretion system functionality. Infect. Immun. 79, 3677–3682. 10.1128/IAI.00136-11 PubMed DOI PMC
Galan J. E., Lara-Tejero M., Marlovits T. C., Wagner S. (2014). Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68, 415–438. 10.1146/annurev-micro-092412-155725 PubMed DOI PMC
Galan J. E., Waksman G. (2018). Protein-injection machines in bacteria. Cell 172, 1306–1318. 10.1016/j.cell.2018.01.034 PubMed DOI PMC
Geissler B. (2012). Bacterial toxin effector-membrane targeting: outside in, then back again. Front. Cell. Infect. Microbiol. 2:75. 10.3389/fcimb.2012.00075 PubMed DOI PMC
Gestal M. C., Howard L. K., Dewan K., Johnson H. M., Barbier M., Bryant C., et al. . (2019). Enhancement of immune response against Bordetella spp. by disrupting immunomodulation. Sci. Rep. 9:20261. 10.1038/s41598-019-56652-z PubMed DOI PMC
Gestal M. C., Rivera I., Howard L. K., Dewan K. K., Soumana I. H., Dedloff M., et al. (2018). Blood or serum exposure induce global transcriptional changes, altered antigenic profile, and increased cytotoxicity by classical bordetellae. Front. Microbiol 9:1969 10.3389/fmicb.2018.01969 PubMed DOI PMC
Goodnow R. A. (1980). Biology of Bordetella bronchiseptica. Microbiol. Rev. 44, 722–738. 10.1128/MMBR.44.4.722-738.1980 PubMed DOI PMC
Gueirard P., Weber C., Le Coustumier A., Guiso N. (1995). Human Bordetella bronchiseptica infection related to contact with infected animals: persistence of bacteria in host. J. Clin. Microbiol. 33, 2002–2006. 10.1128/JCM.33.8.2002-2006.1995 PubMed DOI PMC
Gurung J. M., Amer A. A., Francis M. K., Costa T. R. D., Chen S., Zavialov A. V., et al. . (2018). Heterologous complementation studies with the YscX and YscY protein families reveals a specificity for Yersinia pseudotuberculosis type III secretion. Front. Cell. Infect. Microbiol. 8:80. 10.3389/fcimb.2018.00080 PubMed DOI PMC
Guttman C., Davidov G., Yahalom A., Shaked H., Kolusheva S., Bitton R., et al. . (2013). BtcA, A class IA type III chaperone, interacts with the BteA N-terminal domain through a globular/non-globular mechanism. PLoS ONE 8:e81557. 10.1371/journal.pone.0081557 PubMed DOI PMC
Hacker J., Kaper J. B. (2000). Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679. 10.1146/annurev.micro.54.1.641 PubMed DOI
Hamidou Soumana I., Linz B., Harvill E. T. (2017). Environmental origin of the genus bordetella. Front. Microbiol 8:28. 10.3389/fmicb.2017.00028 PubMed DOI PMC
Han H. J., Kuwae A., Abe A., Arakawa Y., Kamachi K. (2011). Differential expression of type III effector BteA protein due to IS481 insertion in Bordetella pertussis. PLoS ONE 6:e17797. 10.1371/journal.pone.0017797 PubMed DOI PMC
Hanawa T., Kamachi K., Yonezawa H., Fukutomi T., Kawakami H., Kamiya S. (2016). Glutamate limitation, BvgAS activation, and (p)ppGpp regulate the expression of the bordetella pertussis Type 3 secretion system. J. Bacteriol. 198, 343–351. 10.1128/JB.00596-15 PubMed DOI PMC
Hayward R. D., Cain R. J., Mcghie E. J., Phillips N., Garner M. J., Koronakis V. (2005). Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. Mol. Microbiol. 56, 590–603. 10.1111/j.1365-2958.2005.04568.x PubMed DOI
Hegerle N., Rayat L., Dore G., Zidane N., Bedouelle H., Guiso N. (2013). In-vitro and in-vivo analysis of the production of the Bordetella type three secretion system effector A in Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Microbes Infect. 15, 399–408. 10.1016/j.micinf.2013.02.006 PubMed DOI
Hester S. E., Lui M., Nicholson T., Nowacki D., Harvill E. T. (2012). Identification of a CO2 responsive regulon in Bordetella. PLoS ONE 7:e47635. 10.1371/journal.pone.0047635 PubMed DOI PMC
Hot D., Antoine R., Renauld-Mongenie G., Caro V., Hennuy B., Levillain E., et al. . (2003). Differential modulation of Bordetella pertussis virulence genes as evidenced by DNA microarray analysis. Mol. Genet. Genomics 269, 475–486. 10.1007/s00438-003-0851-1 PubMed DOI
Hovingh E. S., Van Den Broek B., Kuipers B., Pinelli E., Rooijakkers S. H. M., Jongerius I. (2017). Acquisition of C1 inhibitor by Bordetella pertussis virulence associated gene 8 results in C2 and C4 consumption away from the bacterial surface. PLoS Pathog. 13:e1006531. 10.1371/journal.ppat.1006531 PubMed DOI PMC
Hu B., Lara-Tejero M., Kong Q., Galan J. E., Liu J. (2017). In situ molecular architecture of the salmonella Type III secretion machine. Cell 168, 1065–1074. 10.1016/j.cell.2017.02.022 PubMed DOI PMC
Huang J., Lesser C. F., Lory S. (2008). The essential role of the CopN protein in Chlamydia pneumoniae intracellular growth. Nature 456, 112–115. 10.1038/nature07355 PubMed DOI PMC
Hueck C. J. (1998). Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379–433. 10.1128/MMBR.62.2.379-433.1998 PubMed DOI PMC
Ivanov Y. V., Linz B., Register K. B., Newman J. D., Taylor D. L., Boschert K. R., et al. . (2016). Identification and taxonomic characterization of Bordetella pseudohinzii sp. nov. isolated from laboratory-raised mice. Int. J. Syst. Evol. Microbiol. 66, 5452–5459. 10.1099/ijsem.0.001540 PubMed DOI PMC
Kapil P., Merkel T. J. (2019). Pertussis vaccines and protective immunity. Curr. Opin. Immunol. 59, 72–78. 10.1016/j.coi.2019.03.006 PubMed DOI PMC
Kerr J. R., Rigg G. P., Matthews R. C., Burnie J. P. (1999). The Bpel locus encodes type III secretion machinery in Bordetella pertussis. Microb. Pathog 27, 349–367. 10.1006/mpat.1999.0307 PubMed DOI
Kersters K., Hinz K.-H., Hertle A., Segers P., Lievens A., Siegmann O., et al. (1984). Bordetella avium sp. nov., isolated from the respiratory tracts of turkeys and other birds. Intern. J. System. Evol. Microbiol. 34, 56–70. 10.1099/00207713-34-1-56 DOI
Kirimanjeswara G. S., Mann P. B., Harvill E. T. (2003). Role of antibodies in immunity to Bordetella infections. Infect. Immun. 71, 1719–1724. 10.1128/IAI.71.4.1719-1724.2003 PubMed DOI PMC
Knutton S., Rosenshine I., Pallen M. J., Nisan I., Neves B. C., Bain C., et al. . (1998). A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17, 2166–2176. 10.1093/emboj/17.8.2166 PubMed DOI PMC
Ko K. S., Peck K. R., Oh W. S., Lee N. Y., Lee J. H., Song J. H. (2005). New species of Bordetella, Bordetella ansorpii sp. nov., isolated from the purulent exudate of an epidermal cyst. J. Clin. Microbiol. 43, 2516–2519. 10.1128/JCM.43.5.2516-2519.2005 PubMed DOI PMC
Kozak N. A., Mattoo S., Foreman-Wykert A. K., Whitelegge J. P., Miller J. F. (2005). Interactions between partner switcher orthologs BtrW and BtrV regulate type III secretion in Bordetella. J. Bacteriol. 187, 5665–5676. 10.1128/JB.187.16.5665-5676.2005 PubMed DOI PMC
Kurushima J., Kuwae A., Abe A. (2012a). Btc22 chaperone is required for secretion and stability of the type III secreted protein Bsp22 in Bordetella bronchiseptica. FEMS Microbiol. Lett. 331, 144–151. 10.1111/j.1574-6968.2012.02561.x PubMed DOI
Kurushima J., Kuwae A., Abe A. (2012b). Iron starvation regulates the type III secretion system in Bordetella bronchiseptica. Microbiol. Immunol. 56, 356–362. 10.1111/j.1348-0421.2012.00442.x PubMed DOI
Kurushima J., Kuwae A., Abe A. (2012c). The type III secreted protein BspR regulates the virulence genes in Bordetella bronchiseptica. PLoS ONE 7:e38925. 10.1371/journal.pone.0038925 PubMed DOI PMC
Kuwae A., Matsuzawa T., Ishikawa N., Abe H., Nonaka T., Fukuda H., et al. . (2006). BopC is a novel type III effector secreted by Bordetella bronchiseptica and has a critical role in type III-dependent necrotic cell death. J. Biol. Chem. 281, 6589–6600. 10.1074/jbc.M512711200 PubMed DOI
Kuwae A., Momose F., Nagamatsu K., Suyama Y., Abe A. (2016). BteA secreted from the Bordetella bronchiseptica type III secetion system induces necrosis through an actin cytoskeleton signaling pathway and inhibits phagocytosis by macrophages. PLoS ONE 11:e0148387. 10.1371/journal.pone.0148387 PubMed DOI PMC
Kuwae A., Ohishi M., Watanabe M., Nagai M., Abe A. (2003). BopB is a type III secreted protein in Bordetella bronchiseptica and is required for cytotoxicity against cultured mammalian cells. Cell. Microbiol. 5, 973–983. 10.1046/j.1462-5822.2003.00341.x PubMed DOI
Le Coustumier A., Njamkepo E., Cattoir V., Guillot S., Guiso N. (2011). Bordetella petrii infection with long-lasting persistence in human. Emerging Infect. Dis. 17, 612–618. 10.3201/eid1704.101480 PubMed DOI PMC
Legarda D., Klein-Patel M. E., Yim S., Yuk M. H., Diamond G. (2005). Suppression of NF-kappaB-mediated beta-defensin gene expression in the mammalian airway by the Bordetella type III secretion system. Cell. Microbiol. 7, 489–497. 10.1111/j.1462-5822.2004.00473.x PubMed DOI PMC
Lilic M., Vujanac M., Stebbins C. E. (2006). A common structural motif in the binding of virulence factors to bacterial secretion chaperones. Mol. Cell 21, 653–664. 10.1016/j.molcel.2006.01.026 PubMed DOI
Linz B., Ivanov Y. V., Preston A., Brinkac L., Parkhill J., Kim M., et al. . (2016). Acquisition and loss of virulence-associated factors during genome evolution and speciation in three clades of Bordetella species. BMC Genomics 17:767. 10.1186/s12864-016-3112-5 PubMed DOI PMC
Linz B., Ma L., Rivera I., Harvill E. T. (2019). Genotypic and phenotypic adaptation of pathogens: lesson from the genus Bordetella. Curr. Opin. Infect. Dis. 32, 223–230. 10.1097/QCO.0000000000000549 PubMed DOI PMC
Mattoo S., Cherry J. D. (2005). Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to Bordetella pertussis and other Bordetella subspecies. Clin. Microbiol. Rev. 18, 326–382. 10.1128/CMR.18.2.326-382.2005 PubMed DOI PMC
Mattoo S., Foreman-Wykert A. K., Cotter P. A., Miller J. F. (2001). Mechanisms of Bordetella pathogenesis. Front. Biosci. 6:741. 10.2741/Mattoo PubMed DOI
Mattoo S., Yuk M. H., Huang L. L., Miller J. F. (2004). Regulation of type III secretion in Bordetella. Mol. Microbiol. 52, 1201–1214. 10.1111/j.1365-2958.2004.04053.x PubMed DOI
Medhekar B., Shrivastava R., Mattoo S., Gingery M., Miller J. F. (2009). Bordetella Bsp22 forms a filamentous type III secretion system tip complex and is immunoprotective in vitro and in vivo. Mol. Microbiol. 71, 492–504. 10.1111/j.1365-2958.2008.06543.x PubMed DOI PMC
Mooi F. R., Van Der Maas N. A., De Melker H. E. (2014). Pertussis resurgence: waning immunity and pathogen adaptation - two sides of the same coin. Epidemiol. Infect. 142, 685–694. 10.1017/S0950268813000071 PubMed DOI PMC
Moon K., Bonocora R. P., Kim D. D., Chen Q., Wade J. T., Stibitz S., et al. . (2017). The BvgAS regulon of Bordetella pertussis. MBio 8, 1–15. 10.1128/mBio.01526-17 PubMed DOI PMC
Moreira C. G., Palmer K., Whiteley M., Sircili M. P., Trabulsi L. R., Castro A. F., et al. . (2006). Bundle-forming pili and EspA are involved in biofilm formation by enteropathogenic Escherichia coli. J. Bacteriol. 188, 3952–3961. 10.1128/JB.00177-06 PubMed DOI PMC
Musser J. M., Hewlett E. L., Peppler M. S., Selander R. K. (1986). Genetic diversity and relationships in populations of Bordetella spp. J. Bacteriol. 166, 230–237. 10.1128/JB.166.1.230-237.1986 PubMed DOI PMC
Nagamatsu K., Kuwae A., Konaka T., Nagai S., Yoshida S., Eguchi M., et al. . (2009). Bordetella evades the host immune system by inducing IL-10 through a type III effector, BopN. J. Exp. Med. 206, 3073–3088. 10.1084/jem.20090494 PubMed DOI PMC
Nawrotek A., Guimaraes B. G., Velours C., Subtil A., Knossow M., Gigant B. (2014). Biochemical and structural insights into microtubule perturbation by CopN from Chlamydia pneumoniae. J. Biol. Chem. 289, 25199–25210. 10.1074/jbc.M114.568436 PubMed DOI PMC
Nicholson T. L. (2007). Construction and validation of a first-generation Bordetella bronchiseptica long-oligonucleotide microarray by transcriptional profiling the Bvg regulon. BMC Genomics 8:220. 10.1186/1471-2164-8-220 PubMed DOI PMC
Nicholson T. L., Brockmeier S. L., Loving C. L., Register K. B., Kehrli M. E., Jr., et al. . (2014). The Bordetella bronchiseptica type III secretion system is required for persistence and disease severity but not transmission in swine. Infect. Immun. 82, 1092–1103. 10.1128/IAI.01115-13 PubMed DOI PMC
Nishimura R., Abe A., Sakuma Y., Kuwae A. (2018). Bordetella bronchiseptica Bcr4 antagonizes the negative regulatory function of BspR via its role in type III secretion. Microbiol. Immunol. 62, 743–754. 10.1111/1348-0421.12659 PubMed DOI
Nogawa H., Kuwae A., Matsuzawa T., Abe A. (2004). The type III secreted protein BopD in Bordetella bronchiseptica is complexed with BopB for pore formation on the host plasma membrane. J. Bacteriol. 186, 3806–3813. 10.1128/JB.186.12.3806-3813.2004 PubMed DOI PMC
Notti R. Q., Stebbins C. E. (2016). The structure and function of type III secretion systems. Microbiol. Spectr 4, 1–18. 10.1128/9781555819286.ch9 PubMed DOI PMC
Pallen M. J., Beatson S. A., Bailey C. M. (2005). Bioinformatics, genomics and evolution of non-flagellar type-III secretion systems: a Darwinian perspective. FEMS Microbiol. Rev 29, 201–229. 10.1016/j.femsre.2005.01.001 PubMed DOI
Panina E. M. (2007). Identification and Characterization of Type III Secretion Effector Proteins in Gram-negative Bacteria. [dissertation thesis]. Los Angeles, CA: University of California Los Angeles.
Panina E. M., Mattoo S., Griffith N., Kozak N. A., Yuk M. H., Miller J. F. (2005). A genome-wide screen identifies a Bordetella type III secretion effector and candidate effectors in other species. Mol. Microbiol. 58, 267–279. 10.1111/j.1365-2958.2005.04823.x PubMed DOI
Park J., Zhang Y., Buboltz A. M., Zhang X., Schuster S. C., Ahuja U., et al. . (2012). Comparative genomics of the classical Bordetella subspecies: the evolution and exchange of virulence-associated diversity amongst closely related pathogens. BMC Genomics 13:545. 10.1186/1471-2164-13-545 PubMed DOI PMC
Park D., Lara-Tejero M., Waxham M. N., Li W., Hu B., Galan J. E., et al. . (2018). Visualization of the type III secretion mediated Salmonella-host cell interface using cryo-electron tomography. Elife 7, 1–15. 10.7554/eLife.39514.018 PubMed DOI PMC
Parkhill J., Sebaihia M., Preston A., Murphy L. D., Thomson N., Harris D. E., et al. . (2003). Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica. Nat. Genet. 35, 32–40. 10.1038/ng1227 PubMed DOI
Petrackova D., Farman M. R., Amman F., Linhartova I., Dienstbier A., Kumar D., et al. . (2020). Transcriptional profiling of human macrophages during infection with Bordetella pertussis. RNA Biol. 17, 731–742. 10.1080/15476286.2020.1727694 PubMed DOI PMC
Pierce C., Klein N., Peters M. (2000). Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med. 26, 1512–1514. 10.1007/s001340000587 PubMed DOI
Pilione M. R., Harvill E. T. (2006). The Bordetella bronchiseptica type III secretion system inhibits gamma interferon production that is required for efficient antibody-mediated bacterial clearance. Infect. Immun. 74, 1043–1049. 10.1128/IAI.74.2.1043-1049.2006 PubMed DOI PMC
Pinto M. V., Merkel T. J. (2017). Pertussis disease and transmission and host responses: insights from the baboon model of pertussis. J. Infect. (74 Suppl 1), S114–S119. 10.1016/S0163-4453(17)30201-3 PubMed DOI
Portaliou A. G., Tsolis K. C., Loos M. S., Balabanidou V., Rayo J., Tsirigotaki A., et al. . (2017). Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J. 36, 3517–3531. 10.15252/embj.201797515 PubMed DOI PMC
Portaliou A. G., Tsolis K. C., Loos M. S., Zorzini V., Economou A. (2016). Type III secretion: building and operating a remarkable nanomachine. Trends Biochem. Sci. 41, 175–189. 10.1016/j.tibs.2015.09.005 PubMed DOI
Porter J. F., Connor K., Donachie W. (1994). Isolation and characterization of Bordetella parapertussis-like bacteria from ovine lungs. Microbiology 140 (Pt 2), 255–261. 10.1099/13500872-140-2-255 PubMed DOI
Preston A., Parkhill J., Maskell D. J. (2004). The bordetellae: lessons from genomics. Nat. Rev. Microbiol 2, 379–390. 10.1038/nrmicro886 PubMed DOI
Register K. B., Ivanov Y. V., Harvill E. T., Brinkac L., Kim M., Losada L. (2015). Draft genome sequences of six bordetella hinzii isolates acquired from avian and mammalian hosts. Genome Announc. 3, 1–2. 10.1128/genomeA.00081-15 PubMed DOI PMC
Reissinger A., Skinner J. A., Yuk M. H. (2005). Downregulation of mitogen-activated protein kinases by the Bordetella bronchiseptica Type III secretion system leads to attenuated nonclassical macrophage activation. Infect. Immun. 73, 308–316. 10.1128/IAI.73.1.308-316.2005 PubMed DOI PMC
Rivera I., Linz B., Dewan K. K., Ma L., Rice C. A., Kyle D. E., et al. . (2019). Conservation of ancient genetic pathways for intracellular persistence among animal pathogenic bordetellae. Front. Microbiol. 10:2839. 10.3389/fmicb.2019.02839 PubMed DOI PMC
Rodgers L., Martin S. W., Cohn A., Budd J., Marcon M., Terranella A., et al. . (2013). Epidemiologic and laboratory features of a large outbreak of pertussis-like illnesses associated with cocirculating Bordetella holmesii and Bordetella pertussis–Ohio, 2010-2011. Clin. Infect. Dis. 56, 322–331. 10.1093/cid/cis888 PubMed DOI
Ryan L. K., Wu J., Schwartz K., Yim S., Diamond G. (2018). beta-defensins coordinate in vivo to inhibit bacterial infections of the trachea. Vaccines (Basel) 6:57. 10.3390/vaccines6030057 PubMed DOI PMC
Schubot F. D., Jackson M. W., Penrose K. J., Cherry S., Tropea J. E., Plano G. V., et al. . (2005). Three-dimensional structure of a macromolecular assembly that regulates type III secretion in Yersinia pestis. J. Mol. Biol. 346, 1147–1161. 10.1016/j.jmb.2004.12.036 PubMed DOI
Sealey K. L., Belcher T., Preston A. (2016). Bordetella pertussis epidemiology and evolution in the light of pertussis resurgence. Infect. Genet. Evol. 40, 136–143. 10.1016/j.meegid.2016.02.032 PubMed DOI
Sekiya K., Ohishi M., Ogino T., Tamano K., Sasakawa C., Abe A. (2001). Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. U.S.A. 98, 11638–11643. 10.1073/pnas.191378598 PubMed DOI PMC
Siciliano N. A., Skinner J. A., Yuk M. H. (2006). Bordetella bronchiseptica modulates macrophage phenotype leading to the inhibition of CD4+ T cell proliferation and the initiation of a Th17 immune response. J. Immunol. 177, 7131–7138. 10.4049/jimmunol.177.10.7131 PubMed DOI
Skinner J. A., Pilione M. R., Shen H., Harvill E. T., Yuk M. H. (2005). Bordetella type III secretion modulates dendritic cell migration resulting in immunosuppression and bacterial persistence. J. Immunol. 175, 4647–4652. 10.4049/jimmunol.175.7.4647 PubMed DOI
Skinner J. A., Reissinger A., Shen H., Yuk M. H. (2004). Bordetella type III secretion and adenylate cyclase toxin synergize to drive dendritic cells into a semimature state. J. Immunol. 173, 1934–1940. 10.4049/jimmunol.173.3.1934 PubMed DOI
Spokes P. J., Quinn H. E., Mcanulty J. M. (2010). Review of the 2008-2009 pertussis epidemic in NSW: notifications and hospitalisations. N. S. W. Public Health Bull. 21, 167–173. 10.1071/NB10031 PubMed DOI
Stockbauer K. E., Foreman-Wykert A. K., Miller J. F. (2003). Bordetella type III secretion induces caspase 1-independent necrosis. Cell. Microbiol. 5, 123–132. 10.1046/j.1462-5822.2003.00260.x PubMed DOI
Tandhavanant S., Matsuda S., Hiyoshi H., Iida T., Kodama T. (2018). Vibrio parahaemolyticus Senses Intracellular K(+) To Translocate Type III secretion system 2 effectors Effectively. MBio 9, 1–14. 10.1128/mBio.01366-18 PubMed DOI PMC
Tazato N., Handa Y., Nishijima M., Kigawa R., Sano C., Sugiyama J. (2015). Novel environmental species isolated from the plaster wall surface of mural paintings in the Takamatsuzuka tumulus: Bordetella muralis sp. nov., Bordetella tumulicola sp. nov. and Bordetella tumbae sp. nov. Int. J. Syst. Evol. Microbiol. 65, 4830–4838. 10.1099/ijsem.0.000655 PubMed DOI
Teruya S., Hiramatsu Y., Nakamura K., Fukui-Miyazaki A., Tsukamoto K., Shinoda N., et al. . (2020). Bordetella dermonecrotic toxin is a neurotropic virulence factor that uses CaV3.1 as the cell surface receptor. MBio 11, 1–15. 10.1128/mBio.03146-19 PubMed DOI PMC
Troisfontaines P., Cornelis G. R. (2005). Type III secretion: more systems than you think. Physiology (Bethesda) 20, 326–339. 10.1152/physiol.00011.2005 PubMed DOI
Van Beek L. F., De Gouw D., Eleveld M. J., Bootsma H. J., De Jonge M. I., Mooi F. R., et al. . (2018). Adaptation of Bordetella pertussis to the respiratory tract. J. Infect. Dis. 217, 1987–1996. 10.1093/infdis/jiy125 PubMed DOI
Van Der Zee A., Groenendijk H., Peeters M., Mooi F. R. (1996). The differentiation of Bordetella parapertussis and Bordetella bronchiseptica from humans and animals as determined by DNA polymorphism mediated by two different insertion sequence elements suggests their phylogenetic relationship. Int. J. Syst. Bacteriol. 46, 640–647. 10.1099/00207713-46-3-640 PubMed DOI
Van Der Zee A., Mooi F., Van Embden J., Musser J. (1997). Molecular evolution and host adaptation of Bordetella spp.: phylogenetic analysis using multilocus enzyme electrophoresis and typing with three insertion sequences. J. Bacteriol. 179, 6609–6617. 10.1128/JB.179.21.6609-6617.1997 PubMed DOI PMC
Vandamme P., Heyndrickx M., Vancanneyt M., Hoste B., De Vos P., Falsen E., et al. . (1996). Bordetella trematum sp. nov., isolated from wounds and ear infections in humans, and reassessment of Alcaligenes denitrificans Ruger and Tan 1983. Int. J. Syst. Bacteriol. 46, 849–858. 10.1099/00207713-46-4-849 PubMed DOI
Vandamme P., Hommez J., Vancanneyt M., Monsieurs M., Hoste B., Cookson B., et al. . (1995). Bordetella hinzii sp. nov., isolated from poultry and humans. Int. J. Syst. Bacteriol. 45, 37–45. 10.1099/00207713-45-1-37 PubMed DOI
Vandamme P. A., Peeters C., Cnockaert M., Inganas E., Falsen E., Moore E. R. B., et al. . (2015). Bordetella bronchialis sp. nov., Bordetella flabilis sp. nov. and Bordetella sputigena sp. nov., isolated from human respiratory specimens, and reclassification of Achromobacter sediminum Zhang et al. 2014 as Verticia sediminum gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 65, 3674–3682. 10.1099/ijsem.0.000473 PubMed DOI
Villarino Romero R., Bibova I., Cerny O., Vecerek B., Wald T., Benada O., et al. . (2013). The Bordetella pertussis type III secretion system tip complex protein Bsp22 is not a protective antigen and fails to elicit serum antibody responses during infection of humans and mice. Infect. Immun. 81, 2761–2767. 10.1128/IAI.00353-13 PubMed DOI PMC
Von Wintzingerode F., Schattke A., Siddiqui R. A., Rosick U., Gobel U. B., Gross R. (2001). Bordetella petrii sp. nov., isolated from an anaerobic bioreactor, and emended description of the genus Bordetella. Int. J. Syst. Evol. Microbiol. 51, 1257–1265. 10.1099/00207713-51-4-1257 PubMed DOI
Wagner S., Grin I., Malmsheimer S., Singh N., Torres-Vargas C. E., Westerhausen S. (2018). Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol. Lett. 365, 1–13. 10.1093/femsle/fny201 PubMed DOI PMC
Wang Y. A., Yu X., Yip C., Strynadka N. C., Egelman E. H. (2006). Structural polymorphism in bacterial EspA filaments revealed by cryo-EM and an improved approach to helical reconstruction. Structure 14, 1189–1196. 10.1016/j.str.2006.05.018 PubMed DOI
Weigand M. R., Peng Y., Batra D., Burroughs M., Davis J. K., Knipe K., et al. . (2019). Conserved patterns of symmetric inversion in the genome evolution of bordetella respiratory pathogens. mSystems 4, 1–15. 10.1128/mSystems.00702-19 PubMed DOI PMC
Weyant R. S., Hollis D. G., Weaver R. E., Amin M. F., Steigerwalt A. G., O'connor S. P., et al. . (1995). Bordetella holmesii sp. nov., a new gram-negative species associated with septicemia. J. Clin. Microbiol. 33, 1–7. 10.1128/JCM.33.1.1-7.1995 PubMed DOI PMC
Wong T. Y., Hall J. M., Nowak E. S., Boehm D. T., Gonyar L. A., Hewlett E. L., et al. . (2019). Analysis of the in vivo transcriptome of bordetella pertussis during infection of mice. mSphere 4, 1–14. 10.1128/mSphereDirect.00154-19 PubMed DOI PMC
Yahalom A., Davidov G., Kolusheva S., Shaked H., Barber-Zucker S., Zarivach R., et al. . (2019). Structure and membrane-targeting of a Bordetella pertussis effector N-terminal domain. Biochim Biophys Acta Biomembr 1861:183054. 10.1016/j.bbamem.2019.183054 PubMed DOI
Yih W. K., Silva E. A., Ida J., Harrington N., Lett S. M., George H. (1999). Bordetella holmesii-like organisms isolated from Massachusetts patients with pertussis-like symptoms. Emerging Infect. Dis. 5, 441–443. 10.3201/eid0503.990317 PubMed DOI PMC
Yu X. J., Mcgourty K., Liu M., Unsworth K. E., Holden D. W. (2010). pH sensing by intracellular Salmonella induces effector translocation. Science 328, 1040–1043. 10.1126/science.1189000 PubMed DOI PMC
Yu X. J., Grabe G. J., Liu M., Mota L. J., Holden D. W. (2018). SsaV interacts with SsaL to control the translocon-to-effector switch in the Salmonella SPI-2 type three secretion system. MBio 9, 1–16. 10.1128/mBio.01149-18 PubMed DOI PMC
Yuk M. H., Harvill E. T., Cotter P. A., Miller J. F. (2000). Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type III secretion system. Mol. Microbiol. 35, 991–1004. 10.1046/j.1365-2958.2000.01785.x PubMed DOI
Yuk M. H., Harvill E. T., Miller J. F. (1998). The BvgAS virulence control system regulates type III secretion in Bordetella bronchiseptica. Mol. Microbiol. 28, 945–959. 10.1046/j.1365-2958.1998.00850.x PubMed DOI
Zimmerman L. I., Papin J. F., Warfel J., Wolf R. F., Kosanke S. D., Merkel T. J. (2018). Histopathology of Bordetella pertussis in the Baboon Model. Infect. Immun. 86, 1–14. 10.1128/IAI.00511-18 PubMed DOI PMC
The Bordetella effector protein BteA induces host cell death by disruption of calcium homeostasis
BopN is a Gatekeeper of the Bordetella Type III Secretion System