Monoclonal Antibodies and Antibody Drug Conjugates in Multiple Myeloma

. 2021 Mar 29 ; 13 (7) : . [epub] 20210329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33805481

Grantová podpora
MH CZ - DRO (UHHK, 00179906) Ministerstvo Zdravotnictví Ceské Republiky
PROGRES Q40/8 Univerzita Karlova v Praze

Multiple myeloma is the second most common hematologic malignancy. Current treatment strategies are mainly based on immunomodulatory drugs, proteasome inhibitors or combination of both. Novel agents added to these backbone treatments represent a promising strategy in treatment of newly diagnosed as well as relapsed and refractory multiple myeloma patients. In this respect, the incorporation of monoclonal antibodies into standard-of-care regimens markedly improved prognosis of myeloma patients during the last years. More specifically, monoclonal anti-CD38 antibodies, daratumumab and isatuximab, have been implemented into treatment strategies from first-line treatment to refractory disease. In addition, the monoclonal anti-SLAM-F7 antibody elotuzumab in combination with immunomodulatory drugs has improved the clinical outcomes of patients with relapsed/refractory disease. Belantamab mafodotin is the first approved antibody drug conjugate directed against B cell maturation antigen and is currently used as a monotherapy for patients with advanced disease. This review focuses on clinical efficacy and safety of monoclonal antibodies as well as antibody drug conjugates in multiple myeloma.

Zobrazit více v PubMed

Palumbo A., Avet-Loiseau H., Oliva S., Lokhorst H.M., Goldschmidt H., Rosinol L., Richardson P., Caltagirone S., Lahuerta J.J., Facon T., et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015;33:2863–2869. doi: 10.1200/JCO.2015.61.2267. PubMed DOI PMC

Reinherz E.L., Kung P.C., Goldstein G., Levey R.H., Schlossman S.F. Discrete Stages of Human Intrathymic Differentiation: Analysis of Normal Thymocytes and Leukemic Lymphoblasts of T-Cell Lineage. Proc. Natl. Acad. Sci. USA. 1980;77:1588–1592. doi: 10.1073/pnas.77.3.1588. PubMed DOI PMC

Malavasi F., Deaglio S., Funaro A., Ferrero E., Horenstein A.L., Ortolan E., Vaisitti T., Aydin S. Evolution and Function of the ADP Ribosyl Cyclase/CD38 Gene Family in Physiology and Pathology. Physiol. Rev. 2008;88:841–886. doi: 10.1152/physrev.00035.2007. PubMed DOI

Krejcik J., Casneuf T., Nijhof I.S., Verbist B., Bald J., Plesner T., Syed K., Liu K., van de Donk N.W.C.J., Weiss B.M., et al. Daratumumab Depletes CD38+ Immune Regulatory Cells, Promotes T-Cell Expansion, and Skews T-Cell Repertoire in Multiple Myeloma. Blood. 2016;128:384–394. doi: 10.1182/blood-2015-12-687749. PubMed DOI PMC

Stocker N., Gaugler B., Ricard L., de Vassoigne F., Marjanovic Z., Mohty M., Malard F. Daratumumab Prevents Programmed Death Ligand-1 Expression on Antigen-Presenting Cells in de Novo Multiple Myeloma. Cancer Med. 2020;9:2077–2084. doi: 10.1002/cam4.2827. PubMed DOI PMC

Chauhan D., Singh A.V., Brahmandam M., Carrasco R., Bandi M., Hideshima T., Bianchi G., Podar K., Tai Y.-T., Mitsiades C., et al. Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell. 2009;16:309–323. doi: 10.1016/j.ccr.2009.08.019. PubMed DOI PMC

Morandi F., Airoldi I., Marimpietri D., Bracci C., Faini A.C., Gramignoli R. CD38, a Receptor with Multifunctional Activities: From Modulatory Functions on Regulatory Cell Subsets and Extracellular Vesicles, to a Target for Therapeutic Strategies. Cells. 2019;8:1527. doi: 10.3390/cells8121527. PubMed DOI PMC

Horenstein A.L., Quarona V., Toscani D., Costa F., Chillemi A., Pistoia V., Giuliani N., Malavasi F. Adenosine Generated in the Bone Marrow Niche Through a CD38-Mediated Pathway Correlates With Progression of Human Myeloma. Mol. Med. 2016;22:694–704. doi: 10.2119/molmed.2016.00198. PubMed DOI PMC

Marlein C.R., Piddock R.E., Mistry J.J., Zaitseva L., Hellmich C., Horton R.H., Zhou Z., Auger M.J., Bowles K.M., Rushworth S.A. CD38-Driven Mitochondrial Trafficking Promotes Bioenergetic Plasticity in Multiple Myeloma. Cancer Res. 2019;79:2285–2297. doi: 10.1158/0008-5472.CAN-18-0773. PubMed DOI

Partida-Sánchez S., Cockayne D.A., Monard S., Jacobson E.L., Oppenheimer N., Garvy B., Kusser K., Goodrich S., Howard M., Harmsen A., et al. Cyclic ADP-Ribose Production by CD38 Regulates Intracellular Calcium Release, Extracellular Calcium Influx and Chemotaxis in Neutrophils and Is Required for Bacterial Clearance in Vivo. Nat. Med. 2001;7:1209–1216. doi: 10.1038/nm1101-1209. PubMed DOI

Partida-Sánchez S., Goodrich S., Kusser K., Oppenheimer N., Randall T.D., Lund F.E. Regulation of Dendritic Cell Trafficking by the ADP-Ribosyl Cyclase CD38: Impact on the Development of Humoral Immunity. Immunity. 2004;20:279–291. doi: 10.1016/S1074-7613(04)00048-2. PubMed DOI

Raab M.S., Engelhardt M., Blank A., Goldschmidt H., Agis H., Blau I.W., Einsele H., Ferstl B., Schub N., Röllig C., et al. MOR202, a Novel Anti-CD38 Monoclonal Antibody, in Patients with Relapsed or Refractory Multiple Myeloma: A First-in-Human, Multicentre, Phase 1-2a Trial. Lancet Haematol. 2020;7:e381–e394. doi: 10.1016/S2352-3026(19)30249-2. PubMed DOI

Fedyk E.R., Zhao L., Koch A., Smithson G., Estevam J., Chen G., Lahu G., Roepcke S., Lin J., Mclean L. Safety, Tolerability, Pharmacokinetics and Pharmacodynamics of the Anti-CD38 Cytolytic Antibody TAK-079 in Healthy Subjects. Br. J. Clin. Pharmacol. 2020;86:1314–1325. doi: 10.1111/bcp.14241. PubMed DOI PMC

Van de Donk N.W.C.J., Richardson P.G., Malavasi F. CD38 Antibodies in Multiple Myeloma: Back to the Future. Blood. 2018;131:13–29. doi: 10.1182/blood-2017-06-740944. PubMed DOI

De Weers M., Tai Y.-T., van der Veer M.S., Bakker J.M., Vink T., Jacobs D.C.H., Oomen L.A., Peipp M., Valerius T., Slootstra J.W., et al. Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Multiple Myeloma and Other Hematological Tumors. J. Immunol. 2011;186:1840–1848. doi: 10.4049/jimmunol.1003032. PubMed DOI

Overdijk M.B., Verploegen S., Bögels M., van Egmond M., Lammerts van Bueren J.J., Mutis T., Groen R.W.J., Breij E., Martens A.C.M., Bleeker W.K., et al. Antibody-Mediated Phagocytosis Contributes to the Anti-Tumor Activity of the Therapeutic Antibody Daratumumab in Lymphoma and Multiple Myeloma. mAbs. 2015;7:311–321. doi: 10.1080/19420862.2015.1007813. PubMed DOI PMC

Zhu C., Song Z., Wang A., Srinivasan S., Yang G., Greco R., Theilhaber J., Shehu E., Wu L., Yang Z.-Y., et al. Isatuximab Acts Through Fc-Dependent, Independent, and Direct Pathways to Kill Multiple Myeloma Cells. Front. Immunol. 2020;11:1771. doi: 10.3389/fimmu.2020.01771. PubMed DOI PMC

Deckert J., Wetzel M.-C., Bartle L.M., Skaletskaya A., Goldmacher V.S., Vallée F., Zhou-Liu Q., Ferrari P., Pouzieux S., Lahoute C., et al. SAR650984, a Novel Humanized CD38-Targeting Antibody, Demonstrates Potent Antitumor Activity in Models of Multiple Myeloma and Other CD38+ Hematologic Malignancies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014;20:4574–4583. doi: 10.1158/1078-0432.CCR-14-0695. PubMed DOI

Moreno L., Perez C., Zabaleta A., Manrique I., Alignani D., Ajona D., Blanco L., Lasa M., Maiso P., Rodriguez I., et al. The Mechanism of Action of the Anti-CD38 Monoclonal Antibody Isatuximab in Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019;25:3176–3187. doi: 10.1158/1078-0432.CCR-18-1597. PubMed DOI

Sahinbegovic H., Jelinek T., Hrdinka M., Bago J.R., Turi M., Sevcikova T., Kurtovic-Kozaric A., Hajek R., Simicek M. Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers. 2020;12:1787. doi: 10.3390/cancers12071787. PubMed DOI PMC

Krejcik J., Frerichs K.A., Nijhof I.S., van Kessel B., van Velzen J.F., Bloem A.C., Broekmans M.E.C., Zweegman S., van Meerloo J., Musters R.J.P., et al. Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2017;23:7498–7511. doi: 10.1158/1078-0432.CCR-17-2027. PubMed DOI PMC

Adams H.C., Stevenaert F., Krejcik J., der Borght K.V., Smets T., Bald J., Abraham Y., Ceulemans H., Chiu C., Vanhoof G., et al. High-Parameter Mass Cytometry Evaluation of Relapsed/Refractory Multiple Myeloma Patients Treated with Daratumumab Demonstrates Immune Modulation as a Novel Mechanism of Action. Cytom. A. 2019;95:279–289. doi: 10.1002/cyto.a.23693. PubMed DOI PMC

Lokhorst H.M., Plesner T., Laubach J.P., Nahi H., Gimsing P., Hansson M., Minnema M.C., Lassen U., Krejcik J., Palumbo A., et al. Targeting CD38 with Daratumumab Monotherapy in Multiple Myeloma. N. Engl. J. Med. 2015;373:1207–1219. doi: 10.1056/NEJMoa1506348. PubMed DOI

Lonial S., Weiss B.M., Usmani S.Z., Singhal S., Chari A., Bahlis N.J., Belch A., Krishnan A., Vescio R.A., Mateos M.V., et al. Daratumumab Monotherapy in Patients with Treatment-Refractory Multiple Myeloma (SIRIUS): An Open-Label, Randomised, Phase 2 Trial. Lancet Lond. Engl. 2016;387:1551–1560. doi: 10.1016/S0140-6736(15)01120-4. PubMed DOI

Usmani S.Z., Weiss B.M., Plesner T., Bahlis N.J., Belch A., Lonial S., Lokhorst H.M., Voorhees P.M., Richardson P.G., Chari A., et al. Clinical Efficacy of Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma. Blood. 2016;128:37–44. doi: 10.1182/blood-2016-03-705210. PubMed DOI PMC

Usmani S.Z., Nahi H., Plesner T., Weiss B.M., Bahlis N.J., Belch A., Voorhees P.M., Laubach J.P., van de Donk N.W.C.J., Ahmadi T., et al. Daratumumab Monotherapy in Patients with Heavily Pretreated Relapsed or Refractory Multiple Myeloma: Final Results from the Phase 2 GEN501 and SIRIUS Trials. Lancet Haematol. 2020;7:e447–e455. doi: 10.1016/S2352-3026(20)30081-8. PubMed DOI

Dimopoulos M.A., Bringhen S., Anttila P.M., Capra M., Cavo M., Cole C.E., Gasparetto C., Hungria V.T., Jenner M.W., Vorobyev V.I., et al. Isatuximab as Monotherapy and Combined with Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2020 doi: 10.1182/blood.2020008209. PubMed DOI PMC

Krishnan A.Y., Patel K.K., Hari P., Jagannath S., Niesvizky R., Silbermann R.W., Berg D., Lin J., Fedyk E.R., Palumbo A., et al. Preliminary Results from a Phase 1b Study of TAK-079, an Investigational Anti-CD38 Monoclonal Antibody (MAb) in Patients with Relapsed/ Refractory Multiple Myeloma (RRMM) Blood. 2019;134:140. doi: 10.1182/blood-2019-128007. DOI

Lagrue K., Carisey A., Morgan D.J., Chopra R., Davis D.M. Lenalidomide Augments Actin Remodeling and Lowers NK-Cell Activation Thresholds. Blood. 2015;126:50–60. doi: 10.1182/blood-2015-01-625004. PubMed DOI PMC

Nijhof I.S., Groen R.W.J., Noort W.A., van Kessel B., de Jong-Korlaar R., Bakker J., van Bueren J.J.L., Parren P.W.H.I., Lokhorst H.M., van de Donk N.W.C.J., et al. Preclinical Evidence for the Therapeutic Potential of CD38-Targeted Immuno-Chemotherapy in Multiple Myeloma Patients Refractory to Lenalidomide and Bortezomib. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015;21:2802–2810. doi: 10.1158/1078-0432.CCR-14-1813. PubMed DOI

Van de Donk N.W.C.J., Usmani S.Z. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance. Front. Immunol. 2018;9 doi: 10.3389/fimmu.2018.02134. PubMed DOI PMC

Van der Veer M.S., de Weers M., van Kessel B., Bakker J.M., Wittebol S., Parren P.W.H.I., Lokhorst H.M., Mutis T. Towards Effective Immunotherapy of Myeloma: Enhanced Elimination of Myeloma Cells by Combination of Lenalidomide with the Human CD38 Monoclonal Antibody Daratumumab. Haematologica. 2011;96:284–290. doi: 10.3324/haematol.2010.030759. PubMed DOI PMC

Dimopoulos M.A., Oriol A., Nahi H., San-Miguel J., Bahlis N.J., Usmani S.Z., Rabin N., Orlowski R.Z., Komarnicki M., Suzuki K., et al. Daratumumab, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016;375:1319–1331. doi: 10.1056/NEJMoa1607751. PubMed DOI

Bahlis N.J., Dimopoulos M.A., White D.J., Benboubker L., Cook G., Leiba M., Ho P.J., Kim K., Takezako N., Moreau P., et al. Daratumumab plus Lenalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma: Extended Follow-up of POLLUX, a Randomized, Open-Label, Phase 3 Study. Leukemia. 2020;34:1875–1884. doi: 10.1038/s41375-020-0711-6. PubMed DOI PMC

Dimopoulos M.A., San-Miguel J., Belch A., White D., Benboubker L., Cook G., Leiba M., Morton J., Ho P.J., Kim K., et al. Daratumumab plus Lenalidomide and Dexamethasone versus Lenalidomide and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Updated Analysis of POLLUX. Haematologica. 2018;103:2088–2096. doi: 10.3324/haematol.2018.194282. PubMed DOI PMC

Dimopoulos M.A., Terpos E., Boccadoro M., Delimpasi S., Beksac M., Katodritou E., Moreau P., Baldini L., Symeonidis A., Bila J., et al. Apollo: Phase 3 Randomized Study of Subcutaneous Daratumumab Plus Pomalidomide and Dexamethasone (D-Pd) Versus Pomalidomide and Dexamethasone (Pd) Alone in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM) Blood. 2020;136:5–6. doi: 10.1182/blood-2020-135874. DOI

Attal M., Richardson P.G., Rajkumar S.V., San-Miguel J., Beksac M., Spicka I., Leleu X., Schjesvold F., Moreau P., Dimopoulos M.A., et al. Isatuximab plus Pomalidomide and Low-Dose Dexamethasone versus Pomalidomide and Low-Dose Dexamethasone in Patients with Relapsed and Refractory Multiple Myeloma (ICARIA-MM): A Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2019;394:2096–2107. doi: 10.1016/S0140-6736(19)32556-5. PubMed DOI

Dimopoulos M.A., Leleu X., Moreau P., Richardson P.G., Liberati A.M., Harrison S.J., Miles Prince H., Ocio E.M., Assadourian S., Campana F., et al. Isatuximab plus Pomalidomide and Dexamethasone in Relapsed/Refractory Multiple Myeloma Patients with Renal Impairment: ICARIA-MM Subgroup Analysis. Leukemia. 2021;35:562–572. doi: 10.1038/s41375-020-0868-z. PubMed DOI PMC

Schjesvold F.H., Richardson P.G., Facon T., Alegre A., Spencer A., Jurczyszyn A., Sunami K., Frenzel L., Min C.-K., Guillonneau S., et al. Isatuximab plus Pomalidomide and Dexamethasone in Elderly Patients with Relapsed/Refractory Multiple Myeloma: ICARIA-MM Subgroup Analysis. Haematologica. 2020 doi: 10.3324/haematol.2020.253450. PubMed DOI PMC

Serrano-del Valle A., Anel A., Naval J., Marzo I. Immunogenic Cell Death and Immunotherapy of Multiple Myeloma. Front. Cell Dev. Biol. 2019;7 doi: 10.3389/fcell.2019.00050. PubMed DOI PMC

Palumbo A., Chanan-Khan A., Weisel K., Nooka A.K., Masszi T., Beksac M., Spicka I., Hungria V., Munder M., Mateos M.V., et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038. PubMed DOI

Spencer A., Lentzsch S., Weisel K., Avet-Loiseau H., Mark T.M., Spicka I., Masszi T., Lauri B., Levin M.-D., Bosi A., et al. Daratumumab plus Bortezomib and Dexamethasone versus Bortezomib and Dexamethasone in Relapsed or Refractory Multiple Myeloma: Updated Analysis of CASTOR. Haematologica. 2018;103:2079–2087. doi: 10.3324/haematol.2018.194118. PubMed DOI PMC

Dimopoulos M., Quach H., Mateos M.-V., Landgren O., Leleu X., Siegel D., Weisel K., Yang H., Klippel Z., Zahlten-Kumeli A., et al. Carfilzomib, Dexamethasone, and Daratumumab versus Carfilzomib and Dexamethasone for Patients with Relapsed or Refractory Multiple Myeloma (CANDOR): Results from a Randomised, Multicentre, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2020;396:186–197. doi: 10.1016/S0140-6736(20)30734-0. PubMed DOI

Dimopoulos M.A., Quach H., Mateos M.-V., Landgren O., Leleu X., Siegel D.S., Weisel K., Gavriatopoulou M., Oriol A., Rabin N.K., et al. Carfilzomib, Dexamethasone, and Daratumumab Versus Carfilzomib and Dexamethasone in Re-lapsed or Refractory Multiple Myeloma: Updated Efficacy and Safety Results of the Phase 3 Candor Study. Blood. 2020;136:26–27. doi: 10.1182/blood-2020-137602. DOI

Moreau P., Dimopoulos M.A., Mikhael J., Yong K., Capra M., Facon T., Hajek R., Spicka I., Risse M.-L., Asset G., et al. Isatuximab Plus Carfilzomib And Dexamethasone vs Carfilzomib And Dexame-Thasone in Relapsed/Refractory Multiple Myeloma (Ikema): Interim Analysis of a Phase 3, Randomized, Open-Label Study. [(accessed on 9 February 2021)]; Available online: https://library.ehaweb.org/eha/2020/eha25th/303392/philippe.moreau.isatuximab.plus.carfilzomib.and.dexamethasone.vs.carfilzomib.html.

Martin T., Mikhael J., Hajek R., Kim K., Suzuki K., Hulin C., Garg M., Quach H., Sia H., George A., et al. Depth of Response and Response Kinetics of Isatuximab Plus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma: Ikema Interim Analysis. Blood. 2020;136:7–8. doi: 10.1182/blood-2020-137681. PubMed DOI PMC

Capra M., Martin T., III, Moreau P., Baker R., Pour L., Min C.-K., Leleu X., Mohty M., Reinoso Segura M., Turgut M., et al. Isatuximab Plus Carfilzomib and Dexamethasone Versus Carfilzomib and Dexamethasone in Relapsed Multiple Myeloma Patients with Renal Impairment: Ikema Subgroup Analysis. Blood. 2020;136:46–47. doi: 10.1182/blood-2020-136415. PubMed DOI PMC

Nijhof I.S., Casneuf T., van Velzen J., van Kessel B., Axel A.E., Syed K., Groen R.W.J., van Duin M., Sonneveld P., Minnema M.C., et al. CD38 Expression and Complement Inhibitors Affect Response and Resistance to Daratumumab Therapy in Myeloma. Blood. 2016;128:959–970. doi: 10.1182/blood-2016-03-703439. PubMed DOI

Mateos M.-V., Richardson P.G., Schlag R., Khuageva N.K., Dimopoulos M.A., Shpilberg O., Kropff M., Spicka I., Petrucci M.T., Palumbo A., et al. Bortezomib plus Melphalan and Prednisone Compared with Melphalan and Prednisone in Previously Untreated Multiple Myeloma: Updated Follow-up and Impact of Subsequent Therapy in the Phase III VISTA Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2010;28:2259–2266. doi: 10.1200/JCO.2009.26.0638. PubMed DOI

Mateos M.-V., Cavo M., Blade J., Dimopoulos M.A., Suzuki K., Jakubowiak A., Knop S., Doyen C., Lucio P., Nagy Z., et al. Overall Survival with Daratumumab, Bortezomib, Melphalan, and Prednisone in Newly Diagnosed Multiple Myeloma (ALCYONE): A Randomised, Open-Label, Phase 3 Trial. Lancet Lond. Engl. 2020;395:132–141. doi: 10.1016/S0140-6736(19)32956-3. PubMed DOI

Mateos M.-V., Dimopoulos M.A., Cavo M., Suzuki K., Jakubowiak A., Knop S., Doyen C., Lucio P., Nagy Z., Kaplan P., et al. Daratumumab plus Bortezomib, Melphalan, and Prednisone for Untreated Myeloma. N. Engl. J. Med. 2018;378:518–528. doi: 10.1056/NEJMoa1714678. PubMed DOI

Kumar S.K., Facon T., Usmani S.Z., Plesner T., Orlowski R.Z., Touzeau C., Basu S., Bahlis N.J., Goldschmidt H., O’Dwyer M.E., et al. Updated Analysis of Daratumumab Plus Lenalidomide and Dexamethasone (D-Rd) Versus Le-nalidomide and Dexamethasone (Rd) in Patients with Transplant-Ineligible Newly Diagnosed Multiple Myeloma (NDMM): The Phase 3 Maia Study. Blood. 2020;136:24–26. doi: 10.1182/blood-2020-134847. PubMed DOI

Facon T., Kumar S., Plesner T., Orlowski R.Z., Moreau P., Bahlis N., Basu S., Nahi H., Hulin C., Quach H., et al. Daratumumab plus Lenalidomide and Dexamethasone for Untreated Myeloma. N. Engl. J. Med. 2019;380:2104–2115. doi: 10.1056/NEJMoa1817249. PubMed DOI PMC

Giri S., Grimshaw A., Bal S., Godby K., Kharel P., Djulbegovic B., Dimopoulos M.A., Facon T., Usmani S.Z., Mateos M.-V., et al. Evaluation of Daratumumab for the Treatment of Multiple Myeloma in Patients With High-Risk Cytogenetic Factors: A Systematic Review and Meta-Analysis. JAMA Oncol. 2020 doi: 10.1001/jamaoncol.2020.4338. PubMed DOI PMC

Moreau P., Attal M., Hulin C., Arnulf B., Belhadj K., Benboubker L., Béné M.C., Broijl A., Caillon H., Caillot D., et al. Bortezomib, Thalidomide, and Dexamethasone with or without Daratumumab before and after Autologous Stem-Cell Transplantation for Newly Diagnosed Multiple Myeloma (CASSIOPEIA): A Randomised, Open-Label, Phase 3 Study. Lancet Lond. Engl. 2019;394:29–38. doi: 10.1016/S0140-6736(19)31240-1. PubMed DOI

Fokkema C., van der Holt B., van Duin M., Wester R., Cupedo T., Moreau P., Vermeulen J., Broyl A., Sonneveld P. Peripheral Neuropathy in the Cassiopeia Study. Blood. 2020;136:48. doi: 10.1182/blood-2020-137400. DOI

Voorhees P.M., Kaufman J.L., Laubach J., Sborov D.W., Reeves B., Rodriguez C., Chari A., Silbermann R., Costa L.J., Anderson L.D., et al. Daratumumab, Lenalidomide, Bortezomib, and Dexamethasone for Transplant-Eligible Newly Diagnosed Multiple Myeloma: The GRIFFIN Trial. Blood. 2020;136:936–945. doi: 10.1182/blood.2020005288. PubMed DOI PMC

Kaufman J.L., Laubach J.P., Sborov D., Reeves B., Rodriguez C., Chari A., Silbermann R.W., Costa L.J., Anderson L.D., Jr., Nathwani N., et al. Daratumumab (DARA) Plus Lenalidomide, Bortezomib, and Dexamethasone (RVd) in Pa-tients with Transplant-Eligible Newly Diagnosed Multiple Myeloma (NDMM): Updated Analysis of Griffin after 12 Months of Maintenance Therapy. Blood. 2020;136:45–46. doi: 10.1182/blood-2020-137109. PubMed DOI PMC

Sonneveld P., Broijl A., Gay F., Boccadoro M., Einsele H., Blade J., Dimopoulos M.A., Delforge M., Spencer A., Hajek R., et al. Bortezomib, Lenalidomide, and Dexamethasone (VRd) ± Daratumumab (DARA) in Patients (Pts) with Transplant-Eligible (TE) Newly Diagnosed Multiple Myeloma (NDMM): A Multicenter, Randomized, Phase III Study (PERSEUS) J. Clin. Oncol. 2019;37:TPS8055. doi: 10.1200/JCO.2019.37.15_suppl.TPS8055. DOI

Kambhampati S., Wong S.W., Martin T., III, Wolf J.L., Choudhry P., Karlon W., Wiita A.P., Shah N. Phase II Study of Daratumumab in Combination with Azacitidine and Dexamethasone in Relapsed/Refractory Multiple Myeloma Pa-tients Previously Treated with Daratumumab: Darazadex. Blood. 2020;136:27–28. doi: 10.1182/blood-2020-138869. DOI

Nooka A.K., Gleason C., Sargeant M.O., Walker M., Watson M., Panjic E.H., Lonial S. Managing Infusion Reactions to New Monoclonal Antibodies in Multiple Myeloma: Daratumumab and Elotuzumab. J. Oncol. Pract. 2018;14:414–422. doi: 10.1200/JOP.18.00143. PubMed DOI

Barr H., Dempsey J., Waller A., Huang Y., Williams N., Sharma N., Benson D.M., Rosko A.E., Efebera Y.A., Hofmeister C.C. Ninety-Minute Daratumumab Infusion Is Safe in Multiple Myeloma. Leukemia. 2018;32:2495–2518. doi: 10.1038/s41375-018-0120-2. PubMed DOI PMC

Lombardi J., Boulin M., Devaux M., Cransac A., Pistre P., Pernot C., Payssot A., Lafon I., Caillot D., Gueneau P. Safety of Ninety-Minute Daratumumab Infusion. J. Oncol. Pharm. Pract. 2020:1078155220951231. doi: 10.1177/1078155220951231. PubMed DOI

Terpos E., Engelhardt M., Cook G., Gay F., Mateos M.-V., Ntanasis-Stathopoulos I., van de Donk N.W.C.J., Avet-Loiseau H., Hajek R., Vangsted A.J., et al. Management of Patients with Multiple Myeloma in the Era of COVID-19 Pandemic: A Consensus Paper from the European Myeloma Network (EMN) Leukemia. 2020;34:2000–2011. doi: 10.1038/s41375-020-0876-z. PubMed DOI PMC

Mateos M.-V., Nahi H., Legiec W., Grosicki S., Vorobyev V., Spicka I., Hungria V., Korenkova S., Bahlis N., Flogegard M., et al. Subcutaneous versus Intravenous Daratumumab in Patients with Relapsed or Refractory Multiple Myeloma (COLUMBA): A Multicentre, Open-Label, Non-Inferiority, Randomised, Phase 3 Trial. Lancet Haematol. 2020;7:e370–e380. doi: 10.1016/S2352-3026(20)30070-3. PubMed DOI

Chari A., Rodriguez-Otero P., McCarthy H., Suzuki K., Hungria V., Sureda Balari A., Perrot A., Hulin C., Magen H., Iida S., et al. Subcutaneous Daratumumab plus Standard Treatment Regimens in Patients with Multiple Myeloma across Lines of Therapy (PLEIADES): An Open-Label Phase II Study. Br. J. Haematol. 2020 doi: 10.1111/bjh.16980. PubMed DOI

Manjappa S., Fox R., Reese J., Firoozamand A., Schmikla H., Nall S., Kolk M., Caimi P.F., Driscoll J.J., de Lima M., et al. Impact of Daratumumab on Stem Cell Collection, Graft Composition and Engraftment Among Multiple Myeloma Patients Undergoing Autologous Stem Cell Transplant. Blood. 2020;136:35–37. doi: 10.1182/blood-2020-142115. DOI

Ma X., Wong S.W., Zhou P., Chaulagain C.P., Doshi P., Klein A.K., Sprague K., Kugelmass A., Toskic D., Warner M., et al. Daratumumab Binds to Mobilized CD34+ Cells of Myeloma Patients in Vitro without Cytotoxicity or Impaired Progenitor Cell Growth. Exp. Hematol. Oncol. 2018;7 doi: 10.1186/s40164-018-0119-4. PubMed DOI PMC

Luan D., Christos P.J., Ancharski M., Guarneri D., Pearse R., Rossi A.C., Shore T.B., Mayer S., Phillips A.A., Hsu J., et al. Timing of Daratumumab Administered Pre-Mobilization in Multiple Myeloma Impacts Pre-Harvest Peripheral Blood CD34+ Cell Counts and Plerixafor Use. Blood. 2020;136:15–16. doi: 10.1182/blood-2020-140811. DOI

Nahi H., Chrobok M., Gran C., Lund J., Gruber A., Gahrton G., Ljungman P., Wagner A.K., Alici E. Infectious Complications and NK Cell Depletion Following Daratumumab Treatment of Multiple Myeloma. PLoS ONE. 2019;14:e0211927. doi: 10.1371/journal.pone.0211927. PubMed DOI PMC

Drgona L., Gudiol C., Lanini S., Salzberger B., Ippolito G., Mikulska M. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the Safety of Targeted and Biological Therapies: An Infectious Diseases Perspective (Agents Targeting Lymphoid or Myeloid Cells Surface Antigens [II]: CD22, CD30, CD33, CD38, CD40, SLAMF-7 and CCR4) Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2018;24(Suppl. 2):S83–S94. doi: 10.1016/j.cmi.2018.03.022. PubMed DOI

Khan S., Vaisman A., Hota S.S., Bennett S., Trudel S., Reece D., Tiedemann R.E. Listeria Susceptibility in Patients With Multiple Myeloma Receiving Daratumumab-Based Therapy. JAMA Oncol. 2020;6:293–294. doi: 10.1001/jamaoncol.2019.5098. PubMed DOI PMC

Tai M.-H., Ammann E.M., Kaila S., Pericone C., Singh A., Lin T.S., Davies F.E. Use of Anti-Infective Prophylaxis in Newly Diagnosed and Relapsed/Refractory Multiple Myeloma Patients Initiating Treatment with Daratumumab. Blood. 2020;136:23–24. doi: 10.1182/blood-2020-134086. DOI

Ludwig H., Boccadoro M., Moreau P., San-Miguel J., Cavo M., Pawlyn C., Zweegman S., Facon T., Driessen C., Hajek R., et al. Recommendations for Vaccination in Multiple Myeloma: A Consensus of the European Myeloma Network. Leukemia. 2021;35:31–44. doi: 10.1038/s41375-020-01016-0. PubMed DOI PMC

Mohyuddin G.R., Aziz M., McClune B., Abdallah A.-O., Qazilbash M. Antibiotic Prophylaxis for Patients with Newly Diagnosed Multiple Myeloma: Systematic Review and Meta-Analysis. Eur. J. Haematol. 2020;104:420–426. doi: 10.1111/ejh.13374. PubMed DOI

Gavriatopoulou M., Ntanasis-Stathopoulos I., Korompoki E., Terpos E., Dimopoulos M.A. SARS-CoV-2 Vaccines in Patients With Multiple Myeloma. HemaSphere. 2021;5:e547. doi: 10.1097/HS9.0000000000000547. PubMed DOI PMC

Van de Donk N.W.C.J., Otten H.G., El Haddad O., Axel A., Sasser A.K., Croockewit S., Jacobs J.F.M. Interference of Daratumumab in Monitoring Multiple Myeloma Patients Using Serum Immunofixation Electrophoresis Can Be Abrogated Using the Daratumumab IFE Reflex Assay (DIRA) Clin. Chem. Lab. Med. 2016;54:1105–1109. doi: 10.1515/cclm-2015-0888. PubMed DOI

Thoren K.L., Pianko M.J., Maakaroun Y., Landgren C.O., Ramanathan L.V. Distinguishing Drug from Disease by Use of the Hydrashift 2/4 Daratumumab Assay. J. Appl. Lab. Med. 2019;3:857–863. doi: 10.1373/jalm.2018.026476. PubMed DOI PMC

Finn G., Macé S., Campana F., Le-Guennec S., Muccio S., Tavernier A., Rouchon M.-C., Roccon A., Dai S., Boutet V., et al. Evaluating Isatuximab Interference with Monoclonal Protein Detection By Immuno-Capture and Liquid Chromatography Coupled to High Resolution Mass Spectrometry in the Pivotal Phase 3 Multiple Myeloma Trial, Icaria-MM. Blood. 2019;134:3143. doi: 10.1182/blood-2019-129963. DOI

Sullivan H.C., Gerner-Smidt C., Nooka A.K., Arthur C.M., Thompson L., Mener A., Patel S.R., Yee M., Fasano R.M., Josephson C.D., et al. Daratumumab (Anti-CD38) Induces Loss of CD38 on Red Blood Cells. Blood. 2017;129:3033–3037. doi: 10.1182/blood-2016-11-749432. PubMed DOI PMC

Oostendorp M., Lammerts van Bueren J.J., Doshi P., Khan I., Ahmadi T., Parren P.W.H.I., van Solinge W.W., de Vooght K.M.K. When Blood Transfusion Medicine Becomes Complicated Due to Interference by Monoclonal Antibody Therapy. Transfusion. 2015;55:1555–1562. doi: 10.1111/trf.13150. PubMed DOI

Chapuy C.I., Aguad M.D., Nicholson R.T., AuBuchon J.P., Cohn C.S., Delaney M., Fung M.K., Unger M., Doshi P., Murphy M.F., et al. International Validation of a Dithiothreitol (DTT)-Based Method to Resolve the Daratumumab Interference with Blood Compatibility Testing. Transfusion. 2016;56:2964–2972. doi: 10.1111/trf.13789. PubMed DOI

Chari A., Arinsburg S., Jagannath S., Satta T., Treadwell I., Catamero D., Morgan G., Feng H., Uhlar C., Khan I., et al. Blood Transfusion Management and Transfusion-Related Outcomes in Daratumumab-Treated Patients With Relapsed or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2018;18:44–51. doi: 10.1016/j.clml.2017.09.002. PubMed DOI

Weisel K. Spotlight on Elotuzumab in the Treatment of Multiple Myeloma: The Evidence to Date. OncoTargets Ther. 2016;9:6037–6048. doi: 10.2147/OTT.S94531. PubMed DOI PMC

Cruz-Munoz M.-E., Dong Z., Shi X., Zhang S., Veillette A. Influence of CRACC, a SLAM Family Receptor Coupled to the Adaptor EAT-2, on Natural Killer Cell Function. Nat. Immunol. 2009;10:297–305. doi: 10.1038/ni.1693. PubMed DOI

Hsi E.D., Steinle R., Balasa B., Szmania S., Draksharapu A., Shum B.P., Huseni M., Powers D., Nanisetti A., Zhang Y., et al. CS1, a Potential New Therapeutic Antibody Target for the Treatment of Multiple Myeloma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008;14:2775–2784. doi: 10.1158/1078-0432.CCR-07-4246. PubMed DOI PMC

Pérez-Quintero L.-A., Roncagalli R., Guo H., Latour S., Davidson D., Veillette A. EAT-2, a SAP-like Adaptor, Controls NK Cell Activation through Phospholipase Cγ, Ca++, and Erk, Leading to Granule Polarization. J. Exp. Med. 2014;211:727–742. doi: 10.1084/jem.20132038. PubMed DOI PMC

Ishibashi M., Soeda S., Sasaki M., Handa H., Imai Y., Tanaka N., Tanosaki S., Ito S., Odajima T., Sugimori H., et al. Clinical Impact of Serum Soluble SLAMF7 in Multiple Myeloma. Oncotarget. 2018;9:34784–34793. doi: 10.18632/oncotarget.26196. PubMed DOI PMC

Kikuchi J., Hori M., Iha H., Toyama-Sorimachi N., Hagiwara S., Kuroda Y., Koyama D., Izumi T., Yasui H., Suzuki A., et al. Soluble SLAMF7 Promotes the Growth of Myeloma Cells via Homophilic Interaction with Surface SLAMF7. Leukemia. 2020;34:180–195. doi: 10.1038/s41375-019-0525-6. PubMed DOI

Collins S.M., Bakan C.E., Swartzel G.D., Hofmeister C.C., Efebera Y.A., Kwon H., Starling G.C., Ciarlariello D., Bhaskar S., Briercheck E.L., et al. Elotuzumab Directly Enhances NK Cell Cytotoxicity against Myeloma via CS1 Ligation: Evidence for Augmented NK Cell Function Complementing ADCC. Cancer Immunol. Immunother. 2013;62:1841–1849. doi: 10.1007/s00262-013-1493-8. PubMed DOI PMC

Liu Y.-C., Szmania S., van Rhee F. Profile of Elotuzumab and Its Potential in the Treatment of Multiple Myeloma. Blood Lymphat. Cancer Targets Ther. 2014;2014:15–27. doi: 10.2147/BLCTT.S49780. PubMed DOI PMC

Kurdi A.T., Glavey S.V., Bezman N.A., Jhatakia A., Guerriero J.L., Manier S., Moschetta M., Mishima Y., Roccaro A., Detappe A., et al. Antibody-Dependent Cellular Phagocytosis by Macrophages Is a Novel Mechanism of Action of Elotuzumab. Mol. Cancer Ther. 2018;17:1454–1463. doi: 10.1158/1535-7163.MCT-17-0998. PubMed DOI PMC

Zonder J.A., Mohrbacher A.F., Singhal S., van Rhee F., Bensinger W.I., Ding H., Fry J., Afar D.E.H., Singhal A.K. A Phase 1, Multicenter, Open-Label, Dose Escalation Study of Elotuzumab in Patients with Advanced Multiple Myeloma. Blood. 2012;120:552–559. doi: 10.1182/blood-2011-06-360552. PubMed DOI PMC

Lonial S., Dimopoulos M., Palumbo A., White D., Grosicki S., Spicka I., Walter-Croneck A., Moreau P., Mateos M.-V., Magen H., et al. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2015;373:621–631. doi: 10.1056/NEJMoa1505654. PubMed DOI

Dimopoulos M.A., Lonial S., White D., Moreau P., Weisel K., San-Miguel J., Shpilberg O., Grosicki S., Špička I., Walter-Croneck A., et al. Elotuzumab, Lenalidomide, and Dexamethasone in RRMM: Final Overall Survival Results from the Phase 3 Randomized ELOQUENT-2 Study. Blood Cancer J. 2020;10:1–10. doi: 10.1038/s41408-020-00357-4. PubMed DOI PMC

Dimopoulos M.A., Dytfeld D., Grosicki S., Moreau P., Takezako N., Hori M., Leleu X., LeBlanc R., Suzuki K., Raab M.S., et al. Elotuzumab plus Pomalidomide and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2018;379:1811–1822. doi: 10.1056/NEJMoa1805762. PubMed DOI

Thomas S.K., Shah J.J., Morin A., Morphey A.N., Lee H.C., Manasanch E.E., Patel K.K., Kaufman G.P., Iyer S.P., Feng L., et al. Update of a Phase II Study of Lenalidomide-Elotuzumab As Maintenance Therapy Post-Autologous Stem Cell Transplant (AuSCT) in Patients (Pts) with Multiple Myeloma (MM) Blood. 2020;136:46–47. doi: 10.1182/blood-2020-139934. DOI

Usmani S.Z., Hoering A., Ailawadhi S., Sexton R., Lipe B., Hita S.F., Valent J., Rosenzweig M., Zonder J.A., Dhodapkar M., et al. Bortezomib, Lenalidomide, and Dexamethasone with or without Elotuzumab in Patients with Untreated, High-Risk Multiple Myeloma (SWOG-1211): Primary Analysis of a Randomised, Phase 2 Trial. Lancet Haematol. 2021;8:e45–e54. doi: 10.1016/S2352-3026(20)30354-9. PubMed DOI PMC

Goldschmidt H., Mai E.K., Salwender H., Bertsch U., Miah K., Kunz C., Fenk R., Blau I., Scheid C., Martin H., et al. Bortezomib, Lenalidomide and Dexa-Methasone with or without. [(accessed on 21 February 2021)]; Available online: https://library.ehaweb.org/eha/2020/eha25th/295023/hartmut.goldschmidt.bortezomib.lenalidomide.and.dexamethasone.with.or.without.

Jakubowiak A., Offidani M., Pégourie B., de La Rubia J., Garderet L., Laribi K., Bosi A., Marasca R., Laubach J., Mohrbacher A., et al. Randomized Phase 2 Study: Elotuzumab plus Bortezomib/Dexamethasone vs Bortezomib/Dexamethasone for Relapsed/Refractory MM. Blood. 2016;127:2833–2840. doi: 10.1182/blood-2016-01-694604. PubMed DOI PMC

Salwender H., Bertsch U., Weisel K., Duerig J., Kunz C., Benner A., Blau I.W., Raab M.S., Hillengass J., Hose D., et al. Rationale and Design of the German-Speaking Myeloma Multicenter Group (GMMG) Trial HD6: A Randomized Phase III Trial on the Effect of Elotuzumab in VRD Induction/Consolidation and Lenalidomide Maintenance in Patients with Newly Diagnosed Myeloma. BMC Cancer. 2019;19:504. doi: 10.1186/s12885-019-5600-x. PubMed DOI PMC

McMillan A., Warcel D., Popat R. Antibody-Drug Conjugates for Multiple Myeloma. Expert Opin. Biol. Ther. 2020:1–13. doi: 10.1080/14712598.2020.1802422. PubMed DOI

Wolska-Washer A., Smolewski P., Robak T. Advances in the Pharmacotherapeutic Options for Primary Nodal Peripheral T-Cell Lymphoma. Expert Opin. Pharmacother. 2021 doi: 10.1080/14656566.2021.1882997. PubMed DOI

Ladha A., Hui G., Cheung E., Berube C., Coutre S.E., Gotlib J., Liedtke M., Zhang T.Y., Muffly L., Mannis G.N. Routine Use of Gemtuzumab Ozogamicin in 7 + 3-Based Inductions for All “non-Adverse” Risk AML. Leuk. Lymphoma. 2021:1–6. doi: 10.1080/10428194.2021.1876869. PubMed DOI

Khongorzul P., Ling C.J., Khan F.U., Ihsan A.U., Zhang J. Antibody–Drug Conjugates: A Comprehensive Review. Mol. Cancer Res. 2020;18:3–19. doi: 10.1158/1541-7786.MCR-19-0582. PubMed DOI

Gerratana B. Biosynthesis, Synthesis, and Biological Activities of Pyrrolobenzodiazepines. Med. Res. Rev. 2012;32:254–293. doi: 10.1002/med.20212. PubMed DOI PMC

Doronina S.O., Mendelsohn B.A., Bovee T.D., Cerveny C.G., Alley S.C., Meyer D.L., Oflazoglu E., Toki B.E., Sanderson R.J., Zabinski R.F., et al. Enhanced Activity of Monomethylauristatin F through Monoclonal Antibody Delivery: Effects of Linker Technology on Efficacy and Toxicity. Bioconjug. Chem. 2006;17:114–124. doi: 10.1021/bc0502917. PubMed DOI

Demel I., Bago J.R., Hajek R., Jelinek T. Focus on Monoclonal Antibodies Targeting B-Cell Maturation Antigen (BCMA) in Multiple Myeloma: Update 2020. Br. J. Haematol. 2020 doi: 10.1111/bjh.17235. PubMed DOI

Tai Y.-T., Mayes P.A., Acharya C., Zhong M.Y., Cea M., Cagnetta A., Craigen J., Yates J., Gliddon L., Fieles W., et al. Novel Anti-B-Cell Maturation Antigen Antibody-Drug Conjugate (GSK2857916) Selectively Induces Killing of Multiple Myeloma. Blood. 2014;123:3128–3138. doi: 10.1182/blood-2013-10-535088. PubMed DOI PMC

Trudel S., Lendvai N., Popat R., Voorhees P.M., Reeves B., Libby E.N., Richardson P.G., Anderson L.D., Sutherland H.J., Yong K., et al. Targeting B-Cell Maturation Antigen with GSK2857916 Antibody-Drug Conjugate in Relapsed or Refractory Multiple Myeloma (BMA117159): A Dose Escalation and Expansion Phase 1 Trial. Lancet Oncol. 2018;19:1641–1653. doi: 10.1016/S1470-2045(18)30576-X. PubMed DOI PMC

Trudel S., Lendvai N., Popat R., Voorhees P.M., Reeves B., Libby E.N., Richardson P.G., Hoos A., Gupta I., Bragulat V., et al. Antibody-Drug Conjugate, GSK2857916, in Relapsed/Refractory Multiple Myeloma: An Update on Safety and Efficacy from Dose Expansion Phase I Study. Blood Cancer J. 2019;9:37. doi: 10.1038/s41408-019-0196-6. PubMed DOI PMC

Lonial S., Lee H.C., Badros A., Trudel S., Nooka A.K., Chari A., Abdallah A.-O., Callander N., Lendvai N., Sborov D., et al. Belantamab Mafodotin for Relapsed or Refractory Multiple Myeloma (DREAMM-2): A Two-Arm, Randomised, Open-Label, Phase 2 Study. Lancet Oncol. 2020;21:207–221. doi: 10.1016/S1470-2045(19)30788-0. PubMed DOI

Farooq A.V., Degli Esposti S., Popat R., Thulasi P., Lonial S., Nooka A.K., Jakubowiak A., Sborov D., Zaugg B.E., Badros A.Z., et al. Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody-Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study. Ophthalmol. Ther. 2020;9:889–911. doi: 10.1007/s40123-020-00280-8. PubMed DOI PMC

Lonial S., Nooka A., Thulasi P., Badros A.Z., Jeng B.H., Callander N.S., Sborov D., Zaugg B.E., Popat R., Degli Esposti S., et al. Recovery of Ocular Events with Longer-Term Follow-up in the DREAMMM-2 Study of Single-Agent Belantamab Mafodotin (Belamaf) in Patients with Relapsed or Refractory Multiple Myeloma (RRMM) Blood. 2020;136:26–27. doi: 10.1182/blood-2020-140078. DOI

Lee H.C., Raje N.S., Landgren O., Upreti V.V., Wang J., Avilion A.A., Hu X., Rasmussen E., Ngarmchamnanrith G., Fujii H., et al. Phase 1 Study of the Anti-BCMA Antibody-Drug Conjugate AMG 224 in Patients with Relapsed/Refractory Multiple Myeloma. Leukemia. 2021;35:255–258. doi: 10.1038/s41375-020-0834-9. PubMed DOI

Kumar S.K., Migkou M., Bhutani M., Spencer A., Ailawadhi S., Kalff A., Walcott F., Pore N., Gibson D., Wang F., et al. Phase 1, First-in-Human Study of MEDI2228, a BCMA-Targeted ADC in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2020;136:26–27. doi: 10.1182/blood-2020-136375. DOI

Jagannath S., Heffner L.T., Ailawadhi S., Munshi N.C., Zimmerman T.M., Rosenblatt J., Lonial S., Chanan-Khan A., Ruehle M., Rharbaoui F., et al. Indatuximab Ravtansine (BT062) Monotherapy in Patients With Relapsed and/or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019;19:372–380. doi: 10.1016/j.clml.2019.02.006. PubMed DOI

Kelly K.R., Siegel D.S., Chanan-Khan A.A., Somlo G., Heffner L.T., Jagannath S., Zimmerman T., Munshi N.C., Madan S., Mohrbacher A., et al. Indatuximab Ravtansine (BT062) in Combination with Low-Dose Dexamethasone and Lenalidomide or Pomalidomide: Clinical Activity in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2016;128:4486. doi: 10.1182/blood.V128.22.4486.4486. DOI

Ailawadhi S., Kelly K.R., Vescio R.A., Jagannath S., Wolf J., Gharibo M., Sher T., Bojanini L., Kirby M., Chanan-Khan A. A Phase I Study to Assess the Safety and Pharmacokinetics of Single-Agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD-56-Positive Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019;19:29–34. doi: 10.1016/j.clml.2018.08.018. PubMed DOI PMC

Bruins W.S.C., Zheng W., Higgins J.P., Willert E.K., Newcomb J., Dash A.B., van de Donk N.W.C.J., Zweegman S., Mutis T. TAK-169, a Novel Recombinant Immunotoxin Specific for CD38, Induces Powerful Preclinical Activity Against Patient-Derived Multiple Myeloma Cells. Blood. 2020;136:11–12. doi: 10.1182/blood-2020-136928. PubMed DOI

Vogl D.T., Kaufman J.L., Holstein S.A., Nadeem O., O’Donnell E., Suryanarayan K., Collins S., Parot X., Chaudhry M. TAK-573, an Anti-CD38/Attenuated Ifnα Fusion Protein, Has Clinical Activity and Modulates the Ifnα Receptor (IFNAR) Pathway in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2020;136:37–38. doi: 10.1182/blood-2020-141219. DOI

Strassz A., Raab M.S., Orlowski R.Z., Kulke M., Schiedner G., Pahl A. A First in Human Study Planned to Evaluate Hdp-101, an Anti-BCMA Amanitin Antibody-Drug Conjugate with a New Payload and a New Mode of Action, in Multiple Myeloma. Blood. 2020;136:34. doi: 10.1182/blood-2020-142285. DOI

Gandhi U.H., Cornell R.F., Lakshman A., Gahvari Z.J., McGehee E., Jagosky M.H., Gupta R., Varnado W., Fiala M.A., Chhabra S., et al. Outcomes of Patients with Multiple Myeloma Refractory to CD38-Targeted Monoclonal Antibody Therapy. Leukemia. 2019;33:2266–2275. doi: 10.1038/s41375-019-0435-7. PubMed DOI PMC

Gavriatopoulou M., Kastritis E., Ntanasis-Stathopoulos I., Fotiou D., Roussou M., Migkou M., Ziogas D.C., Kanellias N., Terpos E., Dimopoulos M.A. The Addition of IMiDs for Patients with Daratumumab-Refractory Multiple Myeloma Can Overcome Refractoriness to Both Agents. Blood. 2018;131:464–467. doi: 10.1182/blood-2017-10-809293. PubMed DOI

Oostvogels R., Jak M., Raymakers R., Mous R., Minnema M.C. Efficacy of Retreatment with Immunomodulatory Drugs and Proteasome Inhibitors Following Daratumumab Monotherapy in Relapsed and Refractory Multiple Myeloma Patients. Br. J. Haematol. 2018;183:60–67. doi: 10.1111/bjh.15504. PubMed DOI PMC

Mateos M.-V., Spencer A., Nooka A.K., Pour L., Weisel K., Cavo M., Laubach J.P., Cook G., Iida S., Benboubker L., et al. Daratumumab-Based Regimens are Highly Effective and Well Tolerated in Relapsed or Refractory Multiple Myeloma Regardless of Patient Age: Subgroup Analysis of the Phase 3 CASTOR and POLLUX Studies. Haematologica. 2020;105:468–477. doi: 10.3324/haematol.2019.217448. PubMed DOI PMC

Nooka A.K., Joseph N.S., Kaufman J.L., Heffner L.T., Gupta V.A., Gleason C., Boise L.H., Lonial S. Clinical Efficacy of Daratumumab, Pomalidomide, and Dexamethasone in Patients with Relapsed or Refractory Myeloma: Utility of Re-Treatment with Daratumumab among Refractory Patients. Cancer. 2019;125:2991–3000. doi: 10.1002/cncr.32178. PubMed DOI

Becnel M.R., Horowitz S.B., Thomas S.K., Iyer S.P., Patel K.K., Manasanch E.E., Weber D.M., Kaufman G.P., Lee H.C., Orlowski R.Z. Descriptive Analysis of Isatuximab Use Following Prior Daratumumab in Patients with Relapsed/Refractory Multiple Myeloma. Blood. 2020;136:20–21. doi: 10.1182/blood-2020-140526. DOI

Shah N., Aiello J., Avigan D.E., Berdeja J.G., Borrello I.M., Chari A., Cohen A.D., Ganapathi K., Gray L., Green D., et al. The Society for Immunotherapy of Cancer Consensus Statement on Immunotherapy for the Treatment of Multiple Myeloma. J. Immunother. Cancer. 2020;8 doi: 10.1136/jitc-2020-000734. PubMed DOI PMC

Hoylman E., Brown A., Perissinotti A.J., Marini B.L., Pianko M., Ye J.C., Campagnaro E., Nachar V.R. Optimal Sequence of Daratumumab and Elotuzumab in Relapsed and Refractory Multiple Myeloma. Leuk. Lymphoma. 2020;61:691–698. doi: 10.1080/10428194.2019.1688324. PubMed DOI

Frerichs K.A., Minnema M.C., Levin M.-D., Broyl A., Bos G., Kersten M.J., Mutis T., Verkleij C.P.M., Bosman P.W.C., Klein S.K., et al. Efficacy and Safety of Daratumumab Combined with All-Trans Retinoic Acid in Relapsed/Refractory Multiple Myeloma; Results of the Phase 1/2 Dara/ATRA Study. Blood. 2019;134:1826. doi: 10.1182/blood-2019-123383. PubMed DOI

García-Guerrero E., Götz R., Doose S., Sauer M., Rodríguez-Gil A., Nerreter T., Kortüm K.M., Pérez-Simón J.A., Einsele H., Hudecek M., et al. Upregulation of CD38 Expression on Multiple Myeloma Cells by Novel HDAC6 Inhibitors Is a Class Effect and Augments the Efficacy of Daratumumab. Leukemia. 2021;35:201–214. doi: 10.1038/s41375-020-0840-y. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...