TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34131137
PubMed Central
PMC8206348
DOI
10.1038/s41467-021-23934-y
PII: 10.1038/s41467-021-23934-y
Knihovny.cz E-resources
- MeSH
- Down-Regulation MeSH
- Peptide Elongation Factors MeSH
- DNA Repair Enzymes metabolism MeSH
- HeLa Cells MeSH
- Protein Interaction Domains and Motifs MeSH
- Nuclear Proteins metabolism MeSH
- Humans MeSH
- Ribonucleoprotein, U5 Small Nuclear chemistry metabolism MeSH
- Tumor Suppressor Proteins chemistry genetics metabolism MeSH
- Protein Domains MeSH
- RNA-Binding Proteins metabolism MeSH
- Recombinant Fusion Proteins MeSH
- Ribonucleoproteins, Small Nuclear chemistry metabolism MeSH
- RNA Splicing MeSH
- RNA Splicing Factors metabolism MeSH
- Spliceosomes metabolism MeSH
- Transcription Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- EFTUD2 protein, human MeSH Browser
- Peptide Elongation Factors MeSH
- DNA Repair Enzymes MeSH
- Nuclear Proteins MeSH
- Ribonucleoprotein, U5 Small Nuclear MeSH
- Tumor Suppressor Proteins MeSH
- RNA-Binding Proteins MeSH
- PRPF19 protein, human MeSH Browser
- PRPF6 protein, human MeSH Browser
- PRPF8 protein, human MeSH Browser
- Recombinant Fusion Proteins MeSH
- Ribonucleoproteins, Small Nuclear MeSH
- RNA Splicing Factors MeSH
- SNRNP200 protein, human MeSH Browser
- Transcription Factors MeSH
- TSSC4 protein, human MeSH Browser
U5 snRNP is a complex particle essential for RNA splicing. U5 snRNPs undergo intricate biogenesis that ensures that only a fully mature particle assembles into a splicing competent U4/U6•U5 tri-snRNP and enters the splicing reaction. During splicing, U5 snRNP is substantially rearranged and leaves as a U5/PRPF19 post-splicing particle, which requires re-generation before the next round of splicing. Here, we show that a previously uncharacterized protein TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. We provide evidence that TSSC4 associates with U5 snRNP chaperones, U5 snRNP and the U5/PRPF19 particle. Specifically, TSSC4 interacts with U5-specific proteins PRPF8, EFTUD2 and SNRNP200. We also identified TSSC4 domains critical for the interaction with U5 snRNP and the PRPF19 complex, as well as for TSSC4 function in tri-snRNP assembly. TSSC4 emerges as a specific chaperone that acts in U5 snRNP de novo biogenesis as well as post-splicing recycling.
Equipe labélisée Ligue Nationale Contre le Cancer Montpellier France
Institut de Génétique Humaine Montpellier France
Institut de Génétique Moléculaire de Montpellier University of Montpellier CNRS Montpellier France
Institut de Génomique Fonctionnelle University of Montpellier CNRS INSERM Montpellier France
Institute of Molecular Genetics Czech Academy of Sciences Prague Czech Republic
See more in PubMed
Kastner, B., Will, C. L., Stark, H. & Luhrmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb Perspect. Biol. 11, a032417 (2019). PubMed PMC
Tycowski, K. T., Kolev, N. G., Conrad, N. K., Fok, V. & Steitz, J. A. The ever-growing world of small nuclear ribonucleoproteins. in The RNA world (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 327–368 (Cold Spring Harbor Laboratory Press, 2006).
Neuenkirchen N, et al. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. EMBO J. 2015;34:1925–1941. doi: 10.15252/embj.201490350. PubMed DOI PMC
Chari A, et al. An assembly chaperone collaborates with the SMN complex to generate spliceosomal snRNPs. Cell. 2008;135:497–509. doi: 10.1016/j.cell.2008.09.020. PubMed DOI
Grimm C, et al. Structural basis of assembly chaperone-mediated snRNP formation. Mol. Cell. 2013;49:692–703. doi: 10.1016/j.molcel.2012.12.009. PubMed DOI
Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly. Science. 2002;298:1775–1779. doi: 10.1126/science.1074962. PubMed DOI
Novotny I, et al. SART3-dependent accumulation of incomplete spliceosomal snRNPs in Cajal bodies. Cell Rep. 2015;10:429–440. doi: 10.1016/j.celrep.2014.12.030. PubMed DOI
Achsel T, Ahrens K, Brahms H, Teigelkamp S, Luhrmann R. The human U5-220kD protein (hPrp8) forms a stable RNA-free complex with several U5-specific proteins, including an RNA unwindase, a homologue of ribosomal elongation factor EF-2, and a novel WD-40 protein. Mol. Cell Biol. 1998;18:6756–6766. doi: 10.1128/MCB.18.11.6756. PubMed DOI PMC
Weber G, et al. Mechanism for Aar2p function as a U5 snRNP assembly factor. Genes Dev. 2011;25:1601–1612. doi: 10.1101/gad.635911. PubMed DOI PMC
Weber G, et al. Structural basis for dual roles of Aar2p in U5 snRNP assembly. Genes Dev. 2013;27:525–540. doi: 10.1101/gad.213207.113. PubMed DOI PMC
Santos K, Preussner M, Heroven AC, Weber G. Crystallization and biochemical characterization of the human spliceosomal Aar2-Prp8RNaseH complex. Acta Crystallogr. Section: F Struct. Biol. Commun. 2015;71:1421–1428. PubMed PMC
Malinova A, et al. Assembly of the U5 snRNP component PRPF8 is controlled by the HSP90/R2TP chaperones. J. Cell Biol. 2017;216:1579–1596. doi: 10.1083/jcb.201701165. PubMed DOI PMC
Boon K-L, et al. prp8 mutations that cause human retinitis pigmentosa lead to a U5 snRNP maturation defect in yeast. Nat. Struct. Mol. Biol. 2007;14:1077–1083. doi: 10.1038/nsmb1303. PubMed DOI PMC
Nguyen TH, et al. Structural basis of Brr2-Prp8 interactions and implications for U5 snRNP biogenesis and the spliceosome active site. Structure. 2013;21:910–919. doi: 10.1016/j.str.2013.04.017. PubMed DOI PMC
Cloutier P, et al. R2TP/Prefoldin-like component RUVBL1/RUVBL2 directly interacts with ZNHIT2 to regulate assembly of U5 small nuclear ribonucleoprotein. Nat. Commun. 2017;8:15615. doi: 10.1038/ncomms15615. PubMed DOI PMC
Horejsi Z, et al. Phosphorylation-dependent PIH1D1 interactions define substrate specificity of the R2TP cochaperone complex. Cell Rep. 2014;7:19–26. doi: 10.1016/j.celrep.2014.03.013. PubMed DOI PMC
Erkelenz, S. et al. Ecd promotes U5 snRNP maturation and Prp8 stability. Nucleic Acids Res.49, 1688–1707 (2021). PubMed PMC
Laggerbauer B, et al. The human U5 snRNP 52K protein (CD2BP2) interacts with U5-102K (hPrp6), a U4/U6.U5 tri-snRNP bridging protein, but dissociates upon tri-snRNP formation. RNA. 2005;11:598–608. doi: 10.1261/rna.2300805. PubMed DOI PMC
Liu S, Rauhut R, Vornlocher HP, Luhrmann R. The network of protein-protein interactions within the human U4/U6.U5 tri-snRNP. RNA. 2006;12:1418–1430. doi: 10.1261/rna.55406. PubMed DOI PMC
Nielsen TK, Liu S, Luhrmann R, Ficner R. Structural basis for the bifunctionality of the U5 snRNP 52K protein (CD2BP2) J. Mol. Biol. 2007;369:902–908. doi: 10.1016/j.jmb.2007.03.077. PubMed DOI
Fetzer S, Lauber J, Will CL, Luhrmann R. The [U4/U6.U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase. Rna. 1997;3:344–355. PubMed PMC
Makarova OV, Makarov EM, Luhrmann R. The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 2001;20:2553–2563. doi: 10.1093/emboj/20.10.2553. PubMed DOI PMC
Makarov EM, Makarova OV, Achsel T, Luhrmann R. The human homologue of the yeast splicing factor prp6p contains multiple TPR elements and is stably associated with the U5 snRNP via protein-protein interactions. J. Mol. Biol. 2000;298:567–575. doi: 10.1006/jmbi.2000.3685. PubMed DOI
Schaffert N, Hossbach M, Heintzmann R, Achsel T, Luhrmann R. RNAi knockdown of hPrp31 leads to an accumulation of U4/U6 di-snRNPs in Cajal bodies. EMBO J. 2004;23:3000–3009. doi: 10.1038/sj.emboj.7600296. PubMed DOI PMC
Agafonov DE, et al. Molecular architecture of the human U4/U6.U5 tri-snRNP. Science. 2016;351:1416–1420. doi: 10.1126/science.aad2085. PubMed DOI
Novotny I, Blazikova M, Stanek D, Herman P, Malinsky J. In vivo kinetics of U4/U6.U5 tri-snRNP formation in Cajal bodies. Mol. Biol. Cell. 2011;22:513–523. doi: 10.1091/mbc.e10-07-0560. PubMed DOI PMC
Company M, Arenas J, Abelson J. Requirement of the RNA helicase-like protein PRP22 for release of messenger RNA from spliceosomes. Nature. 1991;349:487–493. doi: 10.1038/349487a0. PubMed DOI
Zhang X, et al. Structures of the human spliceosomes before and after release of the ligated exon. Cell Res. 2019;29:274–285. doi: 10.1038/s41422-019-0143-x. PubMed DOI PMC
Arenas JE, Abelson JN. Prp43: An RNA helicase-like factor involved in spliceosome disassembly. Proc. Natl Acad. Sci. USA. 1997;94:11798–11802. doi: 10.1073/pnas.94.22.11798. PubMed DOI PMC
Wan R, Bai R, Shi Y. Molecular choreography of pre-mRNA splicing by the spliceosome. Curr. Opin. Struct. Biol. 2019;59:124–133. doi: 10.1016/j.sbi.2019.07.010. PubMed DOI
Makarov EM, et al. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 2002;298:2205–2208. doi: 10.1126/science.1077783. PubMed DOI
Makarova OV, Makarov EM. The 35S U5 snRNP is generated from the activated spliceosome during in vitro splicing. PLoS ONE. 2015;10:e0128430. doi: 10.1371/journal.pone.0128430. PubMed DOI PMC
Claudius AK, Romani P, Lamkemeyer T, Jindra M, Uhlirova M. Unexpected role of the steroid-deficiency protein ecdysoneless in pre-mRNA splicing. PLoS Genet. 2014;10:e1004287. doi: 10.1371/journal.pgen.1004287. PubMed DOI PMC
Mir RA, et al. A novel interaction of ecdysoneless (ECD) protein with R2TP complex component RUVBL1 is required for the functional role of ECD in cell cycle progression. Mol. Cell Biol. 2015;36:886–899. doi: 10.1128/MCB.00594-15. PubMed DOI PMC
Huttlin EL, et al. Architecture of the human interactome defines protein communities and disease networks. Nature. 2017;545:505–509. doi: 10.1038/nature22366. PubMed DOI PMC
Lee MP, et al. Two novel genes in the center of the 11p15 imprinted domain escape genomic imprinting. Hum. Mol. Genet. 1999;8:683–690. doi: 10.1093/hmg/8.4.683. PubMed DOI
Kim JJ, et al. Exome sequencing and subsequent association studies identify five amino acid-altering variants influencing human height. Hum. Genet. 2012;131:471–478. doi: 10.1007/s00439-011-1096-4. PubMed DOI
Ong SE, et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 2002;1:376–386. doi: 10.1074/mcp.M200025-MCP200. PubMed DOI
Trinkle-Mulcahy L, et al. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J. Cell Biol. 2008;183:223–239. doi: 10.1083/jcb.200805092. PubMed DOI PMC
Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 2000;302:205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Paulsen M, et al. Sequence conservation and variability of imprinting in the Beckwith-Wiedemann syndrome gene cluster in human and mouse. Hum. Mol. Genet. 2000;9:1829–1841. doi: 10.1093/hmg/9.12.1829. PubMed DOI
Kozlowski LP, Bujnicki JM. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinforma. 2012;13:111. doi: 10.1186/1471-2105-13-111. PubMed DOI PMC
Nielsen JT, Mulder FAA. Quality and bias of protein disorder predictors. Sci. Rep. 2019;9:5137. doi: 10.1038/s41598-019-41644-w. PubMed DOI PMC
Boulon S, et al. HSP90 and its R2TP/Prefoldin-like cochaperone are involved in the cytoplasmic assembly of RNA polymerase II. Mol. Cell. 2010;39:912–924. doi: 10.1016/j.molcel.2010.08.023. PubMed DOI PMC
Stanek D, et al. Spliceosomal small nuclear ribonucleoprotein particles repeatedly cycle through Cajal bodies. Mol. Biol. Cell. 2008;19:2534–2543. doi: 10.1091/mbc.e07-12-1259. PubMed DOI PMC
Makarova OV, Makarov EM, Liu S, Vornlocher HP, Luhrmann R. Protein 61K, encoded by a gene (PRPF31) linked to autosomal dominant retinitis pigmentosa, is required for U4/U6center dotU5 tri-snRNP formation and pre-mRNA splicing. EMBO J. 2002;21:1148–1157. doi: 10.1093/emboj/21.5.1148. PubMed DOI PMC
Huranova M, et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 2010;191:75–86. doi: 10.1083/jcb.201004030. PubMed DOI PMC
Agafonov DE, et al. Semiquantitative proteomic analysis of the human spliceosome via a novel two-dimensional gel electrophoresis method. Mol. Cell Biol. 2011;31:2667–2682. doi: 10.1128/MCB.05266-11. PubMed DOI PMC
Gottschalk A, Kastner B, Luhrmann R, Fabrizio P. The yeast U5 snRNP coisolated with the U1 snRNP has an unexpected protein composition and includes the splicing factor Aar2p. RNA. 2001;7:1554–1565. PubMed PMC
Poser I, et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat. Methods. 2008;5:409–415. doi: 10.1038/nmeth.1199. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Botti V, et al. Cellular differentiation state modulates the mRNA export activity of SR proteins. J. Cell Biol. 2017;216:1993–2009. doi: 10.1083/jcb.201610051. PubMed DOI PMC
Pandey RR, et al. The mammalian cap-specific m(6)Am RNA methyltransferase PCIF1 regulates transcript levels in mouse tissues. Cell Rep. 2020;32:108038. doi: 10.1016/j.celrep.2020.108038. PubMed DOI
Maurizy C, et al. The RPAP3-Cterminal domain identifies R2TP-like quaternary chaperones. Nat. Commun. 2018;9:2093. doi: 10.1038/s41467-018-04431-1. PubMed DOI PMC
Perez-Riverol Y, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–D450. doi: 10.1093/nar/gky1106. PubMed DOI PMC
Dynamic interaction of spliceosomal snRNPs with coilin explains Cajal body characteristics
Retinitis pigmentosa-linked mutation in DHX38 modulates its splicing activity