To React or Not to React: The Dilemma of Fish Immune Systems Facing Myxozoan Infections
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S., Review
PubMed
34603313
PubMed Central
PMC8481699
DOI
10.3389/fimmu.2021.734238
Knihovny.cz E-resources
- Keywords
- B lymphocytes, RNAseq, T lymphocytes, adaptive immunity, immune evasion, immunoglobulin, parasite, teleost,
- MeSH
- Adaptive Immunity * MeSH
- Antiparasitic Agents pharmacology MeSH
- B-Lymphocytes immunology metabolism parasitology MeSH
- Immune Evasion MeSH
- Immunoglobulins immunology metabolism MeSH
- Host-Parasite Interactions MeSH
- Myxozoa drug effects immunology pathogenicity MeSH
- Fish Diseases immunology metabolism parasitology prevention & control MeSH
- Parasitic Diseases, Animal immunology metabolism parasitology prevention & control MeSH
- Immunity, Innate * MeSH
- Fishes immunology metabolism parasitology MeSH
- T-Lymphocytes immunology metabolism parasitology MeSH
- Vaccines pharmacology MeSH
- Aquaculture MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Names of Substances
- Antiparasitic Agents MeSH
- Immunoglobulins MeSH
- Vaccines MeSH
Myxozoans are microscopic, metazoan, obligate parasites, belonging to the phylum Cnidaria. In contrast to the free-living lifestyle of most members of this taxon, myxozoans have complex life cycles alternating between vertebrate and invertebrate hosts. Vertebrate hosts are primarily fish, although they are also reported from amphibians, reptiles, trematodes, mollusks, birds and mammals. Invertebrate hosts include annelids and bryozoans. Most myxozoans are not overtly pathogenic to fish hosts, but some are responsible for severe economic losses in fisheries and aquaculture. In both scenarios, the interaction between the parasite and the host immune system is key to explain such different outcomes of this relationship. Innate immune responses contribute to the resistance of certain fish strains and species, and the absence or low levels of some innate and regulatory factors explain the high pathogenicity of some infections. In many cases, immune evasion explains the absence of a host response and allows the parasite to proliferate covertly during the first stages of the infection. In some infections, the lack of an appropriate regulatory response results in an excessive inflammatory response, causing immunopathological consequences that are worse than inflicted by the parasite itself. This review will update the available information about the immune responses against Myxozoa, with special focus on T and B lymphocyte and immunoglobulin responses, how these immune effectors are modulated by different biotic and abiotic factors, and on the mechanisms of immune evasion targeting specific immune effectors. The current and future design of control strategies for myxozoan diseases is based on understanding this myxozoan-fish interaction, and immune-based strategies such as improvement of innate and specific factors through diets and additives, host genetic selection, passive immunization and vaccination, are starting to be considered.
Department of Microbiology Oregon State University Corvallis OR United States
Institute of Parasitology Biology Centre of the Czech Academy of Sciences České Budějovice Czechia
See more in PubMed
Okamura B, Hartigan A, Naldoni J. Extensive Uncharted Biodiversity: The Parasite Dimension. Integr Comp Biol (2018) 58:1132–45. doi: 10.1093/icb/icy039 PubMed DOI
Okamura B, Gruhl A, Bartholomew JL. An Introduction to Myxozoan Evolution, Ecology and Development. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development. Switzerland: Springer; (2015). p. 1–22. doi: 10.1007/978-3-319-14753-6 DOI
Álvarez-Pellitero P, Sitjà-Bobadilla A. Pathology of Myxosporea in Marine Fish Culture. Dis Aquat Organ (1993) 17:229–38. doi: 10.3354/dao017229 DOI
Moran JDW, Whitaker DJ, Kent ML. A Review of the Myxosporean Genus Kudoa Meglitsch, 1947, and its Impact on the International Aquaculture Industry and Commercial Fisheries. Aquaculture (1999) 172:163–96. doi: 10.1016/S0044-8486(98)00437-2 DOI
Kent ML, Andree KB, Bartholomew JL, El-Matbouli M, Desser SS, Devlin RH, et al. . Recent Advances in Our Knowledge of the Myxozoa. J Eukaryot Microbiol (2001) 48:395–413. doi: 10.1111/j.1550-7408.2001.tb00173.x PubMed DOI
MacKenzie K, Kalavati C, Gaard M, Hemmingsen W. Myxosporean Gall Bladder Parasites of Gadid Fishes in the North Atlantic: Their Geographical Distributions and an Assessment of Their Economic Importance in Fisheries and Mariculture. Fish Res (2005) 76:454–65. doi: 10.1016/j.fishres.2005.07.014 DOI
Feist SW, Longshaw M. Phylum Myxozoa. In: Woo PTK, editor. Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections. Oxfordshire: CAB International; (2006). p. 230–80.
Lom J, Dyková I. Myxozoan Genera: Definition and Notes on Taxonomy, Life-Cycle Terminology and Pathogenic Species. Folia Parasitol (2006) 53:1–36. doi: 10.14411/fp.2006.001 PubMed DOI
Sitjà-Bobadilla A. Fish Immune Response to Myxozoan Parasites. Parasite (2008) 15:420–5. doi: 10.1051/parasite/2008153420 PubMed DOI
Sarker S, Kallert DM, Hedrick RP, El-Matbouli M. Whirling Disease Revisited: Pathogenesis, Parasite Biology and Disease Intervention. Dis Aquat Organ (2015) 114:155–75. doi: 10.3354/dao02856 PubMed DOI
Bartholomew JL, Reno PW. The History and Dissemination of Whirling Disease. Am Fish Soc - Whirling Dis Rev Curr Top (2002) 26:1–22. doi: 10.47886/9781888569377.ch1 DOI
Chilmonczyk S, Monge D, De Kinkelin P. Proliferative Kidney Disease: Cellular Aspects of the Rainbow Trout, Oncorhynchus mykiss (Walbaum), Response to Parasitic Infection. J Fish Dis (2002) 25:217–26. doi: 10.1046/j.1365-2761.2002.00362.x DOI
Okamura B, Hartikainen H, Schimidt-Posthaus H, Wahli T. Life Cycle Complexity, Environmental Change and the Emerging Status of Salmonid Proliferative Kidney Disease. Freshw Biol (2011) 56:735–53. doi: 10.1111/j.1365-2427.2010.02465.x DOI
Hallett SL, Bartholomew JL. Myxobolus cerebralis and Ceratomyxa shasta. In: Woo PTK, Buchmann K, editors. Fish Parasites: Pathobiology and Protection. Wallingford: CAB International; (2011). p. 131–62. doi: 10.1079/9781845938062.0000 DOI
Zhang JY, Yokoyama H, Wang JG, Li AH, Gong XN, Ryu-Hasegawa A, et al. . Utilization of Tissue Habitats by Myxobolus wulii Landsberg & Lom, 1991 in Different Carp Hosts and Disease Resistance in Allogynogenetic Gibel Carp: Redescription of M. wulii From China and Japan. J Fish Dis (2010) 33:57–68. doi: 10.1111/j.1365-2761.2009.01102.x PubMed DOI
Molnár K, Fischer-Scherl T, Baska F, Hoffmann RW. Hoferellosis in Goldfish Carassius Auratus and Gibel Carp Carassius Auratus Gibelio. Dis Aquat Organ (1989) 7:89–95. doi: 10.3354/dao007089 DOI
Liu Y, Whipps CM, Gu ZM, Zeng C, Huang MJ. Myxobolus honghuensis N. sp. (Myxosporea: Bivalvulida) Parasitizing the Pharynx of Allogynogenetic Gibel Carp Carassius auratus gibelio (Bloch) From Honghu Lake, China. Parasitol Res (2012) 110:1331–6. doi: 10.1007/s00436-011-2629-4 PubMed DOI
Baska F, Molnár K. Blood Stages of Sphaerospora spp. (Myxosporea) in Cyprinid Fishes. Dis Aquat Organ (1988) 5:23–8. doi: 10.3354/dao005023 DOI
Lom J, Dyková I, Pavlásková M, Grupcheva G. Sphaerospora molnari sp.Nov. (Myxozoa : Myxosporea), an Agent of Gill, Skin and Blood Sphaerosporosis of Common Carp in Europe. Parasitology (1983) 86:529–35. doi: 10.1017/S003118200005071X DOI
Pote LM, Hanson LA, Shivaji R. Small Subunit Ribosomal RNA Sequences Link the Cause of Proliferative Gill Disease in Channel Catfish to Henneguya N. sp. (Myxozoa: Myxosporea). J Aquat Anim Health (2000) 12:230–40. doi: 10.1577/1548-8667(2000)012<0230:SSRRSL>2.0.CO;2 DOI
Sitjà-Bobadilla A, Palenzuela O. Enteromyxum Species. In: Woo P, Buchmann K, editors. Fish Parasites: Pathobiology and Protection. Wallingford, UK: CABI; (2012)163–176.
Yokoyama H, Freeman MA, Itoh N, Fukuda Y. Spinal Curvature of Cultured Japanese Mackerel Scomber japonicus Associated With a Brain Myxosporean, Myxobolus acanthogobii . Dis Aquat Organ (2005) 66:1–7. doi: 10.3354/dao066001 PubMed DOI
Yokoyama H. Kudoosis of Marine Fish in Japan. Fish Pathol (2016) 51:163–8. doi: 10.3147/jsfp.51.163 DOI
Dawson-Coates JA, Chase JC, Funk V, Booy MH, Haines LR, Falkenberg CL, et al. . The Relationship Between Flesh Quality and Numbers of Kudoa thyrsites Plasmodia and Spores in Farmed Atlantic Salmon, Salmo salar L. J Fish Dis (2003) 26:451–9. doi: 10.1046/j.1365-2761.2003.00477.x PubMed DOI
Eszterbauer E, Sipos D, Kaján GL, Szegő D, Fiala I, Holzer AS, et al. . Genetic Diversity of Serine Protease Inhibitors in Myxozoan (Cnidaria, Myxozoa) Fish Parasites. Microorganisms (2020) 8:1502. doi: 10.3390/microorganisms8101502 PubMed DOI PMC
Wolf K, Markiw ME. Biology Contravenes Taxonomy in the Myxozoa: New Discoveries Show Alternation of Invertebrate and Vertebrate Hosts. Science (1984) 225:1449–52. doi: 10.1126/science.225.4669.1449 PubMed DOI
Holzer AS, Bartošová-Sojková P, Born-Torrijos A, Lövy A, Hartigan A, Fiala I. The Joint Evolution of the Myxozoa and Their Alternate Hosts: A Cnidarian Recipe for Success and Vast Biodiversity. Mol Ecol (2018) 27:1651–66. doi: 10.1111/mec.14558 PubMed DOI
Kent ML, Hedrick RP. Development of the PKX Myxosporean in Rainbow Trout Salmo gairdneri . Dis Aquat Organ (1986) 1:169–82. doi: 10.3354/dao001169 DOI
EL–Matbouli M, Hoffmann RW, Mandok C. Light and Electron Microscopic Observations on the Route of the Triactinomyxon-Sporoplasm of Myxobolus cerebralis From Epidermis Into Rainbow Trout Cartilage. J Fish Biol (1995) 46:919–35. doi: 10.1111/j.1095-8649.1995.tb01397.x DOI
Ozer A, Wootten R. The Life Cycle of Sphaerospora truttae (Myxozoa: Myxosporea) and Some Features of the Biology of Both the Actinosporean and Myxosporean Stages. Dis Aquat Organ (2000) 40:33–9. doi: 10.3354/dao040033 PubMed DOI
Bjork SJ, Bartholomew JL. Invasion of Ceratomyxa shasta (Myxozoa) and Comparison of Migration to the Intestine Between Susceptible and Resistant Fish Hosts. Int J Parasitol (2010) 40:1087–95. doi: 10.1016/j.ijpara.2010.03.005 PubMed DOI
Longshaw M, Le Deuff R-M, Harris AF, Feist SW. Development of Proliferative Kidney Disease in Rainbow Trout, Oncorhynchus mykiss (Walbaum), Following Short-Term Exposure to Tetracapsula bryosalmonae Infected Bryozoans. J Fish Dis (2002) 25:443–9. doi: 10.1046/j.1365-2761.2002.00353.x DOI
Morris DJ, Adams A, Richards RH. Observations on the Electron-Dense Bodies of the PKX Parasite, Agent of Proliferative Kidney Disease in Salmonids. Dis Aquat Organ (2000) 39:201–9. doi: 10.3354/dao039201 PubMed DOI
Grabner DS, El-Matbouli M. Transmission of Tetracapsuloides bryosalmonae (Myxozoa: Malacosporea) to Fredericella Sultana (Bryozoa: Phylactolaemata) by Various Fish Species. Dis Aquat Organ (2008) 79:133–9. doi: 10.3354/dao01894 PubMed DOI
Wilson AB MHC. And Adaptive Immunity in Teleost Fishes. Immunogenetics (2017) 69:521–8. doi: 10.1007/s00251-017-1009-3 PubMed DOI
Uribe C, Folch H, Enriquez R, Moran G. Innate and Adaptive Immunity in Teleost Fish: a Review. Vet Med (2018) 56:486–503. doi: 10.17221/3294-VETMED DOI
Meyer A, Van de Peer Y. From 2R to 3R: Evidence for a Fish-Specific Genome Duplication (FSGD). Bioessays (2005) 27:937–45. doi: 10.1002/bies.20293 PubMed DOI
Tort L, Mackenzie S. Fish Immune System. A Crossroads Between Innate and Adaptive Responses. Inmunologia (2003) 22:277–86.
Salinas I, Zhang YA, Sunyer JO. Mucosal Immunoglobulins and B Cells of Teleost Fish. Dev Comp Immunol (2011) 35:1346–65. doi: 10.1016/j.dci.2011.11.009 PubMed DOI PMC
Mutoloki S, Jørgensen JB, Evensen Ø. The Adaptive Immune Response in Fish. In: Gudding R, Lillehaug A, Evensen Ø, editors. Fish Vaccination Wiley Online Books. West Sussex, UK: Wiley Online Books. (2014) p. 104–15. doi: 10.1002/9781118806913.ch9 DOI
Dittmar J, Janssen H, Kuske A, Kurtz J, Scharsack JP. Heat and Immunity: An Experimental Heat Wave Alters Immune Functions in Three-Spined Sticklebacks (Gasterosteus aculeatus). J Anim Ecol (2014) 83:744–57. doi: 10.1111/1365-2656.12175 PubMed DOI
Fillatreau S, Six A, Magadan S, Castro R, Sunyer JO, Boudinot P. The Astonishing Diversity of Ig Classes and B Cell Repertoires in Teleost Fish. Front Immunol (2013) 4:28. doi: 10.3389/fimmu.2013.00028 PubMed DOI PMC
Fischer U, Koppang EO, Nakanishi T. Teleost T and NK Cell Immunity. Fish Shellfish Immunol (2013) 35:197–206. doi: 10.1016/j.fsi.2013.04.018 PubMed DOI
Rosales C. Neutrophils at the Crossroads of Innate and Adaptive Immunity. J Leukoc Biol (2020) 108:377–96. doi: 10.1002/JLB.4MIR0220-574RR PubMed DOI
Sakai M, Hikima J, Kono T. Fish Cytokines: Current Research and Applications. Fish Sci (2021) 87:1–9. doi: 10.1007/s12562-020-01476-4 DOI
Ye J, Kaattari IM, Ma C, Kaattari S. The Teleost Humoral Immune Response. Fish Shellfish Immunol (2013) 35:1719–28. doi: 10.1016/j.fsi.2013.10.015 PubMed DOI
Zhang H, Shen B, Wu H, Gao L, Liu Q, Wang Q, et al. . Th17-Like Immune Response in Fish Mucosal Tissues After Administration of Live Attenuated Vibrio anguillarum via Different Vaccination Routes. Fish Shellfish Immunol (2014) 37:229–38. doi: 10.1016/j.fsi.2014.02.007 PubMed DOI
Forlenza M, Fink IR, Raes G, Wiegertjes GF. Heterogeneity of Macrophage Activation in Fish. Dev Comp Immunol (2011) 35:1246–55. doi: 10.1016/j.dci.2011.03.008 PubMed DOI
Salinas I, Magadán S. Omics in Fish Mucosal Immunity. Dev Comp Immunol (2017) 75:99–108. doi: 10.1016/j.dci.2017.02.010 PubMed DOI
Dickerson HW, Findly RC. Vertebrate Adaptive Immunity—Comparative Insights From a Teleost Model. Front Immunol (2017) 8:1379. doi: 10.3389/fimmu.2017.01379 PubMed DOI PMC
Ye H, Lin Q, Luo H. Applications of Transcriptomics and Proteomics in Understanding Fish Immunity. Fish Shellfish Immunol (2018) 77:319–27. doi: 10.1016/j.fsi.2018.03.046 PubMed DOI
Lulijwa R, Alfaro AC, Merien F, Meyer J, Young T. Advances in Salmonid Fish Immunology: A Review of Methods and Techniques for Lymphoid Tissue and Peripheral Blood Leucocyte Isolation and Application. Fish Shellfish Immunol (2019) 95:44–80. doi: 10.1016/j.fsi.2019.10.006 PubMed DOI
Yamaguchi T, Quillet E, Boudinot P, Fischer U. What Could be the Mechanisms of Immunological Memory in Fish? Fish Shellfish Immunol (2019) 85:3–8. doi: 10.1016/j.fsi.2018.01.035 PubMed DOI
Woo PTK, Ardelli BF. Immunity Against Selected Piscine Flagellates. Dev Comp Immunol (2014) 43:268–79. doi: 10.1016/j.dci.2013.07.006 PubMed DOI
Byadgi O, Massimo M, Dirks RP, Pallavicini A, Bron JE, Ireland JH, et al. . Innate Immune-Gene Expression During Experimental Amyloodiniosis in European Seabass (Dicentrarchus labrax). Vet Immunol Immunopathol (2021) 234:110217. doi: 10.1016/j.vetimm.2021.110217 PubMed DOI
Rodriguez-Tovar LE, Speare DJ, Markham RJF. Fish Microsporidia: Immune Response, Immunomodulation and Vaccination. Fish Shellfish Immunol (2011) 30:999–1006. doi: 10.1016/j.fsi.2011.02.011 PubMed DOI
Piazzon MC, Leiro J, Lamas J. Fish Immunity to Scuticociliate Parasites. Dev Comp Immunol (2013) 41:248–56. doi: 10.1016/j.dci.2013.05.022 PubMed DOI
Valle A, Leiro JM, Pereiro P, Figueras A, Novoa B, Dirks RPH, et al. . Interactions Between the Parasite Philasterides dicentrarchi and the Immune System of the Turbot Scophthalmus maximus. A Transcriptomic Analysis. Biology (2020) 9:337. doi: 10.3390/biology9100337 PubMed DOI PMC
Buchmann K. Immune Response to Ichthyophthirius multifiliis and Role of IgT. Parasite Immunol (2020) 42:e12675. doi: 10.1111/pim.12675 PubMed DOI PMC
Sukeda M, Shiota K, Kondo M, Nagasawa T, Nakao M, Somamoto T. Innate Cell-Mediated Cytotoxicity of CD8(+) T Cells Against the Protozoan Parasite Ichthyophthirius multifiliis in the Ginbuna Crucian Carp, Carassius auratus langsdorfii . Dev Comp Immunol (2021) 115:103886. doi: 10.1016/j.dci.2020.103886 PubMed DOI
Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L. Fish Innate Immunity Against Intestinal Helminths. Fish Shellfish Immunol (2016) 50:274–87. doi: 10.1016/j.fsi.2016.02.002 PubMed DOI
Sayyaf Dezfuli B, Giari L, Bosi G. Chapter Three - Survival of Metazoan Parasites in Fish: Putting Into Context the Protective Immune Responses of Teleost Fish. Adv Parasitol (2021) 112:77–132. doi: 10.1016/bs.apar.2021.03.001 PubMed DOI
Zhi T, Huang C, Sun R, Zheng Y, Chen J, Xu X, et al. . Mucosal Immune Response of Nile Tilapia Oreochromis niloticus During Gyrodactylus cichlidarum Infection. Fish Shellfish Immunol (2020) 106:21–7. doi: 10.1016/j.fsi.2020.07.025 PubMed DOI
Konczal M, Ellison AR, Phillips KP, Radwan J, Mohammed RS, Cable J, et al. . RNA-Seq Analysis of the Guppy Immune Response Against Gyrodactylus bullatarudis Infection. Parasite Immunol (2020) 42:e12782. doi: 10.1111/pim.12782 PubMed DOI
Nowak B, Valdenegro-Vega V, Crosbie P, Bridle A. Immunity to Amoeba. Dev Comp Immunol (2014) 43:257–67. doi: 10.1016/j.dci.2013.07.021 PubMed DOI
Marcos-López M, Rodger HD. Amoebic Gill Disease and Host Response in Atlantic Salmon (Salmo salar L.): A Review. Parasite Immunol (2020) 42:e12766. doi: 10.1111/pim.12766 PubMed DOI
Fast MD. Fish Immune Responses to Parasitic Copepod (Namely Sea Lice) Infection. Dev Comp Immunol (2014) 43:300–12. doi: 10.1016/j.dci.2013.08.019 PubMed DOI
Swain JK, Carpio Y, Johansen L-H, Velazquez J, Hernandez L, Leal Y, et al. . Impact of a Candidate Vaccine on the Dynamics of Salmon Lice (Lepeophtheirus salmonis) Infestation and Immune Response in Atlantic Salmon (Salmo salar L.). PloS One (2020) 15:e0239827–e0239827. doi: 10.1371/journal.pone.0239827 PubMed DOI PMC
Piazzon MC, Mladineo I, Dirks RP, Santidrián Yebra-Pimentel E, Hrabar J, Sitjà-Bobadilla A. Ceratothoa oestroides Infection in European Sea Bass: Revealing a Long Misunderstood Relationship. Front Immunol (2021) 12:645607. doi: 10.3389/fimmu.2021.645607 PubMed DOI PMC
Sitjà-Bobadilla A, Schmidt-Posthaus H, Wahli T, Holland JW, Secombes CJ. Fish Immune Responses to Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL, editors. Myxozoan Evolution, Ecology and Development. Switzerland: Springer; (2015). p. 253–80. doi: 10.1007/978-3-319-14753-6 DOI
Estensoro I, Mulero I, Redondo MJ, Alvarez-Pellitero P, Mulero V, Sitjà-Bobadilla A, et al. . Modulation of Leukocytic Populations of Gilthead Sea Bream (Sparus aurata) by the Intestinal Parasite Enteromyxum leei (Myxozoa: Myxosporea). Parasitology (2014) 141:425–40. doi: 10.1017/S0031182013001789 PubMed DOI
Bartholomew JL. Host Resistance to Infection by the Myxosporean Parasite Ceratomyxa shasta: A Review. J Aquat Anim Health (1998) 10:112–20. doi: 10.1577/1548-8667(1998)010<0112:HRTIBT>2.0.CO;2 DOI
Hedrick RP, El-Matbouli M, Adkison MA, MacConnell E. Whirling Disease: Re-Emergence Among Wild Trout. Immunol Rev (1998) 166:365–76. doi: 10.1111/j.1600-065x.1998.tb01276.x PubMed DOI
Blazer VS, Densmore CL, Schill WB, Cartwright DD, Page SJ. Comparative Susceptibility of Atlantic Salmon, Lake Trout and Rainbow Trout to Myxobolus cerebralis in Controlled Laboratory Exposures. Dis Aquat Organ (2004) 58:27–34. doi: 10.3354/dao058027 PubMed DOI
Sugiyama A, Yokoyama H, Ogawa K. Epizootiological Investigation of Kudoosis Amami Caused by Kudoa amamiensis (Multivalvulida: Myxozoa) in Okinawa Prefecture, Japan. Fish Pathol (1999) 3:39–43. doi: 10.3147/jsfp.34.39 DOI
Arkush KD, Hedrick RP. Experimental Transmission of PKX, the Causative Agent of Proliferative Kidney Disease, to Three Species of Pacific Salmon. J Appl Ichthyol (1990) 6:237–43. doi: 10.1111/j.1439-0426.1990.tb00584.x DOI
Bailey C, Strepparava N, Wahli T, Segner H. Exploring the Immune Response, Tolerance and Resistance in Proliferative Kidney Disease of Salmonids. Dev Comp Immunol (2019) 90:165–75. doi: 10.1016/j.dci.2018.09.015 PubMed DOI
Padrós F, Palenzuela O, Hispano C, Tosas O, Zarza C, Crespo S, et al. . Myxidium leei (Myxozoa) Infections in Aquarium-Reared Mediterranean Fish Species. Dis Aquat Organ (2001) 47:57–62. doi: 10.3354/dao047057 PubMed DOI
Diamant A, Ram S, Paperna I. Experimental Transmission of Enteromyxum leei to Freshwater Fish. Dis Aquat Organ (2006) 72:171–8. doi: 10.3354/dao072171 PubMed DOI
Alvarez-Pellitero P, Palenzuela O, Sitjà-Bobadilla A. Histopathology and Cellular Response in Enteromyxum leei (Myxozoa) Infections of Diplodus puntazzo (Teleostei). Parasitol Int (2008) 57:110–20. doi: 10.1016/j.parint.2007.09.004 PubMed DOI
Golomazou E, Athanassopoulou F, Karagouni E, Vagianou S, Tsantilas H, Karamanis D. Efficacy and Toxicity of Orally Administrated Anti-Coccidial Drug Teatment on Enteromyxum leei Infections in Sharpsnout Seabream (Diplodus puntazzo C.). Isr J Aquac (2006) 58:157–69. doi: 10.46989/001c.20444 DOI
Palenzuela O, Redondo MJ, López E, Álvarez-Pellitero P. Cultured Sole, Solea senegalensis is Susceptible to Enteromyxum scophthalmi, the Myxozoan Parasite Causing Turbot Emaciative Enteritis. Parassitologia (2007) 49:73. PubMed
Quiroga MI, Redondo MJ, Sitjà-Bobadilla A, Palenzuela O, Riaza A, Macías A, et al. . Risk Factors Associated With Enteromyxum scophthalmi (Myxozoa) Infection in Cultured Turbot, Scophthalmus maximus (L.). Parasitology (2006) 133:433–42. doi: 10.1017/S0031182006000515 PubMed DOI
Sitjà-Bobadilla A, Redondo MJ, Bermúdez R, Palenzuela O, Ferreiro I, Riaza A, et al. . Innate and Adaptive Immune Responses of Turbot, Scophthalmus maximus (L.), Following Experimental Infection With Enteromyxum scophthalmi (Myxosporea: Myxozoa). Fish Shellfish Immunol (2006) 21:485–500. doi: 10.1016/j.fsi.2006.02.004 PubMed DOI
Jublanc E, Elkiric N, Toubiana M, Sri Widada J, Le Breton A, Lefebre G, et al. . Observation on a Enteromyxum leei (Myxozoa Myxosporea) Parasitosis on Farming Sea Bream Sparus aurata . J Eukaryot Microbiol (2005) 52:28S–34S. doi: 10.1111/j.1550-7408.2005.05202003_3_19.x DOI
Sitjà-Bobadilla A, Diamant A, Palenzuela O, Álvarez-Pellitero P. Effect of Host Factors and Experimental Conditions on the Horizontal Transmission of Enteromyxum leei (Myxozoa) to Gilthead Sea Bream, Sparus aurata L., and European Sea Bass, Dicentrarchus labrax (L.). J Fish Dis (2007) 30:243–50. doi: 10.1111/j.1365-2761.2007.00804.x PubMed DOI
Nichols KM, Bartholomew J, Thorgaard GH. Mapping Multiple Genetic Loci Associated With Ceratomyxa shasta Resistance in Oncorhynchus mykiss . Dis Aquat Organ (2003) 56:145–54. doi: 10.3354/dao056145 PubMed DOI
Barrett D. What Makes a Fish Resistant? Comparative Genomics and Transcriptomics of Oncorhynchus mykiss With Differential Resistance to the Parasite Ceratonova shasta (2020). Available at: https://ir.library.oregonstate.edu/concern/parent/5h73q367z/file_sets/1v53k442z.
Hedrick PW, Kim TJ, Parker KM. Parasite Resistance and Genetic Variation in the Endangered Gila Topminnow. Anim Conserv (2001) 4:103–9. doi: 10.1017/S1367943001001135 DOI
Debes PV, Gross R, Vasemägi A. Quantitative Genetic Variation in, and Environmental Effects on, Pathogen Resistance and Temperature-Dependent Disease Severity in a Wild Trout. Am Nat (2017) 190:244–65. doi: 10.1086/692536 PubMed DOI
Saleh M, Montero R, Kumar G, Sudhagar A, Friedl A, Köllner B, et al. . Kinetics of Local and Systemic Immune Cell Responses in Whirling Disease Infection and Resistance in Rainbow Trout. Parasit Vectors (2019) 12:249. doi: 10.1186/s13071-019-3505-9 PubMed DOI PMC
Picard-Sánchez A, Estensoro I, del Pozo R, Piazzon MC, Palenzuela O, Sitjà-Bobadilla A. Acquired Protective Immune Response in a Fish-Myxozoan Model Encompasses Specific Antibodies and Inflammation Resolution. Fish Shellfish Immunol (2019) 90:349–62. doi: 10.1016/j.fsi.2019.04.300 PubMed DOI
Picard-Sánchez A, Estensoro I, Perdiguero P, del Pozo R, Tafalla C, Piazzon MC, et al. . Passive Immunization Delays Disease Outcome in Gilthead Sea Bream Infected With Enteromyxum leei (Myxozoa), Despite the Moderate Changes in IgM and IgT Repertoire. Front Immunol (2020) 11:581361. doi: 10.3389/fimmu.2020.581361 PubMed DOI PMC
Carmona SJ, Teichmann SA, Ferreira L, Macaulay IC, Stubbington MJT, Cvejic A, et al. . Single-Cell Transcriptome Analysis of Fish Immune Cells Provides Insight Into the Evolution of Vertebrate Immune Cell Types. Genome Res (2017) 27:451–61. doi: 10.1101/gr.207704.116 PubMed DOI PMC
Nakanishi T, Shibasaki Y, Matsuura Y. T Cells in Fish. Biology (2015) 4:640–63. doi: 10.3390/biology4040640 PubMed DOI PMC
Wang T, Johansson P, Abós B, Holt A, Tafalla C, Jiang Y, et al. . First in-Depth Analysis of the Novel Th2-Type Cytokines in Salmonid Fish Reveals Distinct Patterns of Expression and Modulation But Overlapping Bioactivities. Oncotarget (2016) 7:10917–46. doi: 10.18632/oncotarget.7295 PubMed DOI PMC
Ashfaq H, Soliman H, Saleh M, El-Matbouli M. CD4: A Vital Player in the Teleost Fish Immune System. Vet Res (2019) 50:1. doi: 10.1186/s13567-018-0620-0 PubMed DOI PMC
Wang T, Husain M, Hong S, Holland JW. Differential Expression, Modulation and Bioactivity of Distinct Fish IL-12 Isoforms: Implication Towards the Evolution of Th1-Like Immune Responses. Eur J Immunol (2014) 44:1541–51. doi: 10.1002/eji.201344273 PubMed DOI
Zou J, Secombes CCJ. The Function of Fish Cytokines. Biology (2016) 5:23. doi: 10.3390/biology5020023 PubMed DOI PMC
Ivashkiv LB. Ifnγ: Signaling, Epigenetics and Roles in Immunity, Metabolism, Disease and Cancer Immunotherapy. Nat Rev Immunol (2018) 18:545–58. doi: 10.1038/s41577-018-0029-z PubMed DOI PMC
Kak G, Raza M, Tiwari BK. Interferon-Gamma (IFN-γ): Exploring its Implications in Infectious Diseases. Biomol Concepts (2018) 9:64–79. doi: 10.1515/bmc-2018-0007 PubMed DOI
Zou J, Carrington A, Collet B, Dijkstra JM, Yoshiura Y, Bols N, et al. . Identification and Bioactivities of IFN-γ in Rainbow Trout Oncorhynchus mykiss: The First Th1-Type Cytokine Characterized Functionally in Fish. J Immunol (2005) 175:2484–94. doi: 10.4049/jimmunol.175.4.2484 PubMed DOI
Hu Y, Alnabulsi A, Alnabulsi A, Scott C, Tafalla C, Secombes CJ, et al. . Characterisation and Analysis of IFN-Gamma Producing Cells in Rainbow Trout Oncorhynchus mykiss. Fish Shellfish Immunol (2021) 117:328–38. doi: 10.1016/j.fsi.2021.07.022 PubMed DOI
Walker JA, McKenzie ANJ. TH2 Cell Development and Function. Nat Rev Immunol (2018) 18:121–33. doi: 10.1038/nri.2017.118 PubMed DOI
Braden LM, Koop BF, Jones SRM. Signatures of Resistance to Lepeophtheirus Salmonis Include a TH2-Type Response at the Louse-Salmon Interface. Dev Comp Immunol (2015) 48:178–91. doi: 10.1016/j.dci.2014.09.015 PubMed DOI
Gajewski TF, Fitch FW. Anti-Proliferative Effect of IFN-Gamma in Immune Regulation. I. IFN-Gamma Inhibits the Proliferation of Th2 But Not Th1 Murine Helper T Lymphocyte Clones. J Immunol (1988) 140:4245–52. PubMed
Oriss TB, McCarthy SA, Morel BF, Campana MA, Morel PA. Crossregulation Between T Helper Cell (Th)1 and Th2: Inhibition of Th2 Proliferation by IFN-Gamma Involves Interference With IL-1. J Immunol (1997) 158:3666–72. PubMed
Bottiglione F, Dee CT, Lea R, Zeef LAH, Badrock AP, Wane M, et al. . Zebrafish IL-4-Like Cytokines and IL-10 Suppress Inflammation But Only IL-10 is Essential for Gill Homeostasis. J Immunol (2020) 205:994–1008. doi: 10.4049/jimmunol.2000372 PubMed DOI PMC
Vignali DAA, Collison LW, Workman CJ. How Regulatory T Cells Work. Nat Rev Immunol (2008) 8:523–32. doi: 10.1038/nri2343 PubMed DOI PMC
Bjork SJ, Zhang YA, Hurst CN, Alonso-Naveiro ME, Alexander JD, Sunyer JO, et al. . Defenses of Susceptible and Resistant Chinook Salmon (Onchorhynchus tshawytscha) Against the Myxozoan Parasite Ceratomyxa shasta . Fish Shellfish Immunol (2014) 37:87–95. doi: 10.1016/j.fsi.2013.12.024 PubMed DOI PMC
Hurst CN, Alexander JD, Dolan BP, Jia L, Bartholomew JL. Outcome of Within-Host Competition Demonstrates That Parasite Virulence Doesn’t Equal Success in a Myxozoan Model System. Int J Parasitol (2019) 9:25–35. doi: 10.1016/j.ijppaw.2019.03.008 PubMed DOI PMC
Bartholomew JL, Smith CE, Rohovec JS, Fryer JL. Characterization of a Host Response to the Myxosporean Parasite, Ceratomyxa shasta(Noble) by Histology, Scanning Electron Microscopy Immunologgical Techniques. J Fish Dis (1989) 12:509–22. doi: 10.1111/j.1365-2761.1989.tb00561.x DOI
Taggart-Murphy L, Alama-Bermejo G, Dolan B, Takizawa F, Bartholomew J. Differences in Inflammatory Responses of Rainbow Trout Infected by Two Genotypes of the Myxozoan Parasite Ceratonova shasta . Dev Comp Immunol (2021) 114:103829. doi: 10.1016/j.dci.2020.103829 PubMed DOI PMC
Barrett DE, Bartholomew JL. A Tale of Two Fish: Comparative Transcriptomics of Resistant and Susceptible Steelhead Following Exposure to Ceratonova shasta Highlights Differences in Parasite Recognition. PloS One (2021) 16:e0234837. doi: 10.1371/journal.pone.0234837 PubMed DOI PMC
Baerwald MR. Temporal Expression Patterns of Rainbow Trout Immune-Related Genes in Response to Myxobolus cerebralis Exposure. Fish Shellfish Immunol (2013) 35:965–71. doi: 10.1016/j.fsi.2013.07.008 PubMed DOI
Gorgoglione B, Wang T, Secombes CJ, Holland JW. Immune Gene Expression Profiling of Proliferative Kidney Disease in Rainbow Trout Oncorhynchus mykiss Reveals a Dominance of Anti-Inflammatory, Antibody and T Helper Cell-Like Activities. Vet Res (2013) 44:55. doi: 10.1186/1297-9716-44-55 PubMed DOI PMC
Wang T, Holland JW, Martin SAM, Secombes CJ. Sequence and Expression Analysis of Two T Helper Master Transcription Factors, T-Bet and GATA3, in Rainbow Trout Oncorhynchus mykiss and Analysis of Their Expression During Bacterial and Parasitic Infection. Fish Shellfish Immunol (2010) 29:705–15. doi: 10.1016/j.fsi.2010.06.016 PubMed DOI
Korytář T, Wiegertjes GF, Zusková E, Tomanová MAL, Patra S, Sieranski V, et al. . The Kinetics of Cellular and Humoral Immune Responses of Common Carp to Presporogonic Development of the Myxozoan Sphaerospora molnari . Parasit Vectors (2019) 12:208. doi: 10.1186/s13071-019-3462-3 PubMed DOI PMC
Zhao Y, Liu X, Sato H, Zhang Q, Li A, Zhang J. RNA-Seq Analysis of Local Tissue of Carassius auratus gibelio With Pharyngeal Myxobolosis: Insights Into the Pharyngeal Mucosal Immune Response in a Fish-Parasite Dialogue. Fish Shellfish Immunol (2019) 94:99–112. doi: 10.1016/j.fsi.2019.08.076 PubMed DOI
Jones SRM, Cho S, Nguyen J, Mahony A. Acquired Resistance to Myxobolus thyrsites in Atlantic Salmon Salmo salar Following Recovery From a Primary Infection With the Parasite. Aquaculture (2016) 451:457–62. doi: 10.1016/j.aquaculture.2015.10.002 DOI
Braden LM, Rasmussen KJ, Purcell SL, Ellis L, Mahony A, Cho S, et al. . Acquired Protective Immunity in Atlantic Salmon Salmo salar Against the Myxozoan Myxobolus thyrsites Involves Induction of MHIIbeta(+) CD83(+) Antigen-Presenting Cells. Infect Immun (2018) 86:e00556–17. doi: 10.1128/IAI.00556-17 PubMed DOI PMC
Piazzon MC, Estensoro I, Calduch-Giner JA, Del Pozo R, Picard-Sánchez A, Pérez-Sánchez J, et al. . Hints on T Cell Responses in a Fish-Parasite Model: Enteromyxum leei Induces Differential Expression of T Cell Signature Molecules Depending on the Organ and the Infection Status. Parasit Vectors (2018) 11:443. doi: 10.1186/s13071-018-3007-1 PubMed DOI PMC
Ronza P, Robledo D, Bermudez R, Losada AP, Pardo BG, Sitja-Bobadilla A, et al. . RNA-Seq Analysis of Early Enteromyxosis in Turbot (Scophthalmus maximus): New Insights Into Parasite Invasion and Immune Evasion Strategies. Int J Parasitol (2016) 46:507–17. doi: 10.1016/j.ijpara.2016.03.007 PubMed DOI
Bermúdez R, Vigliano F, Marcaccini A, Sitjà-Bobadilla A, Quiroga MI, Nieto JM. Response of Ig-Positive Cells to Enteromyxum scophthalmi (Myxozoa) Experimental Infection in Turbot, Scophthalmus maximus (L.): A Histopathological and Immunohistochemical Study. Fish Shellfish Immunol (2006) 21:501–12. doi: 10.1016/j.fsi.2006.02.006 PubMed DOI
Bermúdez R, Losada AP, Vázquez S, Redondo MJ, Alvarez-Pellitero P, Quiroga MI. Light and Electron Microscopic Studies on Turbot Psetta maxima Infected With Enteromyxum scophthalmi: Histopathology of Turbot Enteromyxosis. Dis Aquat Organ (2010) 89:209–21. doi: 10.3354/dao02202 PubMed DOI
Robledo D, Ronza P, Harrison PW, Losada AP, Bermúdez R, Pardo BG, et al. . RNA-Seq Analysis Reveals Significant Transcriptome Changes in Turbot (Scophthalmus maximus) Suffering Severe Enteromyxosis. BMC Genomics (2014) 15:1149. doi: 10.1186/1471-2164-15-1149 PubMed DOI PMC
Ronza P, Estensoro I, Bermúdez R, Losada AP, Pérez-Cordón G, Pardo BG, et al. . Effects of Enteromyxum Spp. (Myxozoa) Infection in the Regulation of Intestinal E-Cadherin: Turbot Against Gilthead Sea Bream. J Fish Dis (2020) 43:337–46. doi: 10.1111/jfd.13130 PubMed DOI
Ronza P, Álvarez-Dios JA, Robledo D, Losada AP, Romero R, Bermúdez R, et al. . Blood Transcriptomics of Turbot Scophthalmus maximus: A Tool for Health Monitoring and Disease Studies. Anim (2021) 11:1296. doi: 10.3390/ani11051296 PubMed DOI PMC
Castro R, Jouneau L, Pham HP, Bouchez O, Giudicelli V, Lefranc MP, et al. . Teleost Fish Mount Complex Clonal IgM and IgT Responses in Spleen Upon Systemic Viral Infection. PloS Pathog (2013) 9:e1003098. doi: 10.1371/journal.ppat.1003098 PubMed DOI PMC
Piazzon MC, Galindo-Villegas J, Pereiro P, Estensoro I, Calduch-Giner JA, Gómez-Casado E, et al. . Differential Modulation of IgT and IgM Upon Parasitic, Bacterial, Viral, and Dietary Challenges in a Perciform Fish. Front Immunol (2016) 7:637. doi: 10.3389/fimmu.2016.00637 PubMed DOI PMC
Zhang YA, Salinas I, Li J, Parra D, Bjork S, Xu Z, et al. . IgT, a Primitive Immunoglobulin Class Specialized in Mucosal Immunity. Nat Immunol (2010) 11:827–35. doi: 10.1038/ni.1913 PubMed DOI PMC
Edholm E-S, Bengtén E, Stafford JL, Sahoo M, Taylor EB, Miller NW, et al. . Identification of Two IgD+ B Cell Populations in Channel Catfish, Ictalurus punctatus . J Immunol (2010) 185:4082–94. doi: 10.4049/jimmunol.1000631 PubMed DOI
Castro R, Bromage E, Abós B, Pignatelli J, González Granja A, Luque A, et al. . CCR7 is Mainly Expressed in Teleost Gills, Where it Defines an IgD+IgM- B Lymphocyte Subset. J Immunol (2014) 192:1257–66. doi: 10.4049/jimmunol.1302471 PubMed DOI
Picard-Sánchez A. Control of Enteric Parasitic Diseases of Farmed Gilthead Sea Bream: New Insights Into Enteromyxum leei (Myxozoa) and Enterospora nucleophila (Microsporidia) Infections. PhD Thesis, Universidad Politecnica de Valencia. (2021) p. 273. doi: 10.4995/Thesis/10251/16703 DOI
Abos B, Estensoro I, Perdiguero P, Faber M, Hu YF, Rosales PD, et al. . Dysregulation of B Cell Activity During Proliferative Kidney Disease in Rainbow Trout. Front Immunol (2018) 9:1203. doi: 10.3389/fimmu.2018.01203 PubMed DOI PMC
Markiw ME, Wolf K. Myxosoma cerebralis: Fluorescent Antibody Techniques for Antigen Recognition. J Fish Res Board Canada (1978) 35:828–32. doi: 10.1139/f78-133 DOI
Markiw ME. Salmonid Whirling Disease: Myxosporean and Actinosporean Stages Cross-React in Direct Fluorescent Antibody Test. J Fish Dis (1989) 12:137–41. doi: 10.1111/j.1365-2761.1989.tb00285.x DOI
Ryce EKN. Factors Affecting the Resistance of Juvenile Rainbow Trout to Whirling Disease. ProQuest Diss Theses (2003) Available at: https://www.proquest.com/docview/305310701?pq-origsite=gscholar&fromopenview=true.
Korytář T, Chan JTH, Vancová M, Holzer AS. Blood Feast: Exploring the Erythrocyte-Feeding Behaviour of the Myxozoan Sphaerospora molnari . Parasite Immunol (2020) 42:12683. doi: 10.1111/pim.12683 PubMed DOI PMC
Sitjà-Bobadilla A, Redondo MJ, Macias MA, Ferreiro I, Riaza A, Álvarez-Pellitero P. Development of Immunohistochemistry and Enzyme-Linked Immunosorbent Assays for the Detection of Circulating Antibodies Against Enteromyxum scophthalmi (Myxozoa) in Turbot (Scophthalmus maximus L.). Fish Shellfish Immunol (2004) 17:335–45. doi: 10.1016/j.fsi.2004.04.007 PubMed DOI
Sitjà-Bobadilla A, Palenzuela O, Riaza A, Macias MA, Álvarez-Pellitero P. Protective Acquired Immunity to Enteromyxum scophthalmi (Myxozoa) is Related to Specific Antibodies in Psetta maxima (L.) (Teleostei). Scand J Immunol (2007) 66:26–34. doi: 10.1111/j.1365-3083.2007.01942.x PubMed DOI
Jain KE, Farrell AP. Influence of Seasonal Temperature on the Repeat Swimming Performance of Rainbow Trout Oncorhynchus mykiss . J Exp Biol (2003) 206:3569–79. doi: 10.1242/jeb.00588 PubMed DOI
López-Olmeda JF, Sánchez-Vázquez FJ. Thermal Biology of Zebrafish (Danio rerio). J Therm Biol (2011) 36:91–104. doi: 10.1016/j.jtherbio.2010.12.005 DOI
Abram QH, Dixon B, Katzenback BA. Impacts of Low Temperature on the Teleost Immune System. Biology (2017) 6:39. doi: 10.3390/biology6040039 PubMed DOI PMC
Köllner B, Kotterba G. Temperature Dependent Activation of Leucocyte Populations of Rainbow Trout, Oncorhynchus mykiss, After Intraperitoneal Immunisation With Aeromonas salmonicida . Fish Shellfish Immunol (2002) 12:35–48. doi: 10.1006/fsim.2001.0352 PubMed DOI
Alcorn SW, Murra AL, Pascho RJ. Effects of Rearing Temperature on Immune Functions in Sockeye Salmon (Oncorhynchus Nerka). Fish Shellfish Immunol (2002) 12:303–34. doi: 10.1006/fsim.2001.0373 PubMed DOI
Le Morvan C, Troutaud D, Deschaux P. Differential Effects of Temperature on Specific and Nonspecific Immune Defences in Fish. J Exp Biol (1998) 201:165–8. doi: 10.1242/jeb.201.2.165 PubMed DOI
Makrinos DL, Bowden TJ. Natural Environmental Impacts on Teleost Immune Function. Fish Shellfish Immunol (2016) 53:50–7. doi: 10.1016/j.fsi.2016.03.008 PubMed DOI
Yanagida T, Sameshima M, Nasu H, Yokoyama H, Ogawa K. Temperature Effects on the Development of Enteromyxum spp. (Myxozoa) in Experimentally Infected Tiger Puffer, Takifugu rubripes (Temminck & Schlegel). J Fish Dis (2006) 29:561–7. doi: 10.1111/j.1365-2761.2006.00752.x PubMed DOI
El-Matbouli M, McDowell TS, Antonio DB, Andree KB, Hedrick RP. Effect of Water Temperature on the Development, Release and Survival of the Triactinomyxon Stage of Myxobolus cerebralis in its Oligochaete Host. Int J Parasitol (1999) 29:627–41. doi: 10.1016/S0020-7519(99)00009-0 PubMed DOI
Ray RA, Bartholomew JL. Estimation of Transmission Dynamics of the Ceratomyxa shasta Actinospore to the Salmonid Host. Parasitology (2013) 140:907–16. doi: 10.1017/S0031182013000127 PubMed DOI
Bailey C, Segner H, Casanova-Nakayama A, Wahli T. Who Needs the Hotspot? The Effect of Temperature on the Fish Host Immune Response to Tetracapsuloides bryosalmonae the Causative Agent of Proliferative Kidney Disease. Fish Shellfish Immunol (2017) 63:424–37. doi: 10.1016/j.fsi.2017.02.039 PubMed DOI
Picard-Sánchez A, Estensoro I, Del Pozo R, Palenzuela OR, Piazzon MC, Sitjà-Bobadilla A. Water Temperature, Time of Exposure and Population Density are Key Parameters in Enteromyxum leei Fish-to-Fish Experimental Transmission. J Fish Dis (2020) 43:491–502. doi: 10.1111/jfd.13147 PubMed DOI
Bailey C, Strepparava N, Ros A, Wahli T, Schmidt-Posthaus H, Segner H, et al. . It’s a Hard Knock Life for Some: Heterogeneity in Infection Life-History of Salmonids Influences Parasite Disease Outcomes. J Anim Ecol (2021) 1–21. doi: 10.1111/1365-2656.13562. In Press. PubMed DOI PMC
Atkinson SD, Bartholomew JL. Disparate Infection Patterns of Ceratomyxa shasta (Myxozoa) in Rainbow Trout (Oncorhynchus mykiss) and Chinook Salmon (Oncorhynchus tshawytscha) Correlate With Internal Transcribed Spacer-1 Sequence Variation in the Parasite. Int J Parasitol (2010) 40:599–604. doi: 10.1016/j.ijpara.2009.10.010 PubMed DOI
Atkinson SD, Hallett SL, Bartholomew JL. Genotyping of Individual Ceratonova shasta (Cnidaria: Myxosporea) Myxospores Reveals Intra-Spore ITS-1 Variation and Invalidates the Distinction of Genotypes II and III. Parasitology (2018) 145:1588–93. doi: 10.1017/S0031182018000422 PubMed DOI
Harnett W. Secretory Products of Helminth Parasites as Immunomodulators. Mol Biochem Parasitol (2014) 195:130–6. doi: 10.1016/j.molbiopara.2014.03.007 PubMed DOI
Morrot A. Editorial: Immune Evasion Strategies in Protozoan-Host Interactions. Front Immunol (2020) 11:609166. doi: 10.3389/fimmu.2020.609166 PubMed DOI PMC
Schmid-Hempel P. Immune Defence, Parasite Evasion Strategies and Their Relevance for “Macroscopic Phenomena” Such as Virulence. Philos Trans R Soc Lond B Biol Sci (2009) 364:85–98. doi: 10.1098/rstb.2008.0157 PubMed DOI PMC
Soliman H, Kumar G, El-Matbouli M. Tetracapsuloides bryosalmonae Persists in Brown Trout Salmo trutta for Five Years Post Exposure. Dis Aquat Organ (2018) 127:151–6. doi: 10.3354/dao03200 PubMed DOI
Alama-Bermejo G, Meyer E, Atkinson SD, Holzer AS, Wiśniewska MM, Kolísko M, et al. . Transcriptome-Wide Comparisons and Virulence Gene Polymorphisms of Host-Associated Genotypes of the Cnidarian Parasite Ceratonova shasta in Salmonids. Genome Biol Evol (2020) 12:1258–76. doi: 10.1093/gbe/evaa109 PubMed DOI PMC
Carson MJ, Doose JM, Melchior B, Schmid CD, Ploix CC. CNS Immune Privilege: Hiding in Plain Sight. Immunol Rev (2006) 213:48–65. doi: 10.1111/j.1600-065X.2006.00441.x PubMed DOI PMC
Liu Y, Lövy A, Gu Z, Fiala I. Phylogeny of Myxobolidae (Myxozoa) and the Evolution of Myxospore Appendages in the Myxobolus Clade. Int J Parasitol (2019) 49:523–30. doi: 10.1016/j.ijpara.2019.02.009 PubMed DOI
Khoo L, Rommel FA, Smith SA, Griffin MJ, Pote LM. Myxobolus neurophilus: Morphologic, Histopathologic and Molecular Characterization. Dis Aquat Organ (2010) 89:51–61. doi: 10.3354/dao02180 PubMed DOI
Azevedo C, Feltran R, Rocha S, Matos E, Maciel E, Oliveira E, et al. . Simultaneous Occurrence of Two New Myxosporean Species Infecting the Central Nervous System of Hypopygus lepturus From Brazil. Dis Aquat Organ (2018) 131:143–56. doi: 10.3354/dao03283 PubMed DOI
Miller TL, Adlard RD. Brain Infecting Kudoids of Australia’s Coral Reefs, Including a Description of Kudoa lemniscati n. sp. (Myxosporea: Kudoidae) From Lutjanus lemniscatus (Perciformes: Lutjanidae) Off Ningaloo Reef, Western Australia. Parasitol Int (2012) 61:333–42. doi: 10.1016/j.parint.2012.01.002 PubMed DOI
Levsen A, Alvik T, Grotmol S. Neurological Symptoms in Tricolor Sharkminnow Balantiocheilos melanopterus Associated With Myxobolus balantiocheili N. sp. Infecting the Central Nervous System. Dis Aquat Organ (2004) 59:135–40. doi: 10.3354/dao059135 PubMed DOI
Lom J, Dyková I. Protozoan Parasites of Fishes (Developments in Aquaculture and Fisheries Science, 26). Lom J, Dyková I, editors. Amsterdam: Elsevier Science Publishers B.V; (1992).
Sitjà-Bobadilla A, Alvarez-Pellitero P. Ultrastructural and Cytochemical Observations on the Sporogenesis of Sphaerospora testicularis (Protozoa: Myxosporea) From Mediterranean Sea Bass, Dicentrarchus labrax (L.). Eur J Protistol (1993) 29:219–29. doi: 10.1016/S0932-4739(11)80276-2 PubMed DOI
Daniels SB, Herman RL, Burke CN. Fine Structure of an Unidentified Protozoon in the Epithelium of Rainbow Trout Exposed to Water With Myxosoma cerebralis . J Protozool (1976) 23:402–10. doi: 10.1111/j.1550-7408.1976.tb03795.x PubMed DOI
Ohnishi T, Kikuchi Y, Furusawa H, Kamata Y, Sugita-Konishi Y. Kudoa septempunctata Invasion Increases the Permeability of Human Intestinal Epithelial Monolayer. Foodborne Pathog Dis (2013) 10:137–42. doi: 10.1089/fpd.2012.1294 PubMed DOI
Diamant A, Ucko M, Paperna I, Colorni A, Lipshitz A. Kudoa iwatai (Myxosporea: Multivalvulida) in Wild and Cultured Fish in the Red Sea: Redescription and Molecular Phylogeny. J Parasitol (2005) 91:1175–89. doi: 10.1645/GE-491R.1 PubMed DOI
Székely C, Molnár K, Rácz O. Complete Developmental Cycle of Myxobolus pseudodispar (Gorbunova) (Myxosporea: Myxobolidae). J Fish Dis (2001) 24:461–8. doi: 10.1046/j.1365-2761.2001.00324.x DOI
Morado JF, Sparks A. Observations on the Host-Parasite Relations of the Pacific Whiting, Merluccius productus (Ayres), and Two Myxosporean Parasites, Kudoa Thyrsitis (Gilchrist, 1924) and K. paniformis Kabata & Whitaker, 1981. J Fish Dis (1986) 9:445–55. doi: 10.1111/j.1365-2761.1986.tb01038.x DOI
Marshall WL, Sitjà-Bobadilla A, Brown HM, MacWilliam T, Richmond Z, Lamson H, et al. . Long-Term Epidemiological Survey of Myxobolus THYRSITES (Myxozoa) in Atlantic Salmon (Salmo salar L.) From Commercial Aquaculture Farms. J Fish Dis (2016) 39:929–46. doi: 10.1111/jfd.12429 PubMed DOI
Ma JS, Sasai M, Ohshima J, Lee Y, Bando H, Takeda K, et al. . Selective and Strain-Specific NFAT4 Activation by the Toxoplasma gondii Polymorphic Dense Granule Protein GRA6. J Exp Med (2014) 211:2013–32. doi: 10.1084/jem.20131272 PubMed DOI PMC
Denkers EY, Butcher BA. Sabotage and Exploitation in Macrophages Parasitized by Intracellular Protozoans. Trends Parasitol (2005) 21:35–41. doi: 10.1016/j.pt.2004.10.004 PubMed DOI
Alama-Bermejo G, Bron JE, Raga JA, Holzer AS. 3d Morphology, Ultrastructure and Development of Ceratomyxa puntazzi Stages: First Insights Into the Mechanisms of Motility and Budding in the Myxozoa. PloS One (2012) 7:e32679. doi: 10.1371/journal.pone.0032679 PubMed DOI PMC
Alama-Bermejo G, Holzer AS, Bartholomew JL. Myxozoan Adhesion and Virulence: Ceratonova shasta on the Move. Microorganisms (2019) 7:397. doi: 10.3390/microorganisms7100397 PubMed DOI PMC
Adriano EA, Okamura B. Motility, Morphology and Phylogeny of the Plasmodial Worm, Ceratomyxa vermiformis N. sp. (Cnidaria: Myxozoa: Myxosporea). Parasitology (2017) 144:158–68. doi: 10.1017/S0031182016001852 PubMed DOI
da Silva MF, de Carvalho AEFB, Hamoy I, Matos ER. Coelozoic Parasite of the Family Ceratomyxidae (Myxozoa, Bivalvulida) Described From Motile Vermiform Plasmodia Found in Hemiodus unimaculatus Bloch, 1794. Parasitol Res (2020) 119:871–8. doi: 10.1007/s00436-019-06505-5 PubMed DOI
Hartigan A, Estensoro I, Vancová M, Bílý T, Patra S, Eszterbauer E, et al. . New Cell Motility Model Observed in Parasitic Cnidarian Sphaerospora molnari (Myxozoa : Myxosporea) Blood Stages in Fish. Sci Rep (2016) 6:39093. doi: 10.1038/srep39093 PubMed DOI PMC
Lom J, Dyková I, Pavlaskova M. “Unidentified” Mobile Protozoans From the Blood of Carp and Some Unsolved Problems of Myxosporean Life Cycles. J Protozool (1983) 30:497–508. doi: 10.1111/j.1550-7408.1983.tb01411.x DOI
Yamamoto T, Sanders JE. Light and Electron Microscopic Observations of Sporogenesis in the Myxosporida, Ceratomyxa shasta (Noble, 1950). J Fish Dis (1979) 2:411–28. doi: 10.1111/j.1365-2761.1979.tb00393.x DOI
Holzer AS, Bartošová P, Pecková H, Tyml T, Atkinson S, Bartholomew J, et al. . “Who’s Who” in Renal Sphaerosporids (Bivalvulida: Myxozoa) From Common Carp, Prussian Carp and Goldfish-Molecular Identification of Cryptic Species, Blood Stages and New Members of Sphaerospora Sensu Stricto . Parasitology (2013) 140:46–60. doi: 10.1017/S0031182012001175 PubMed DOI
Grupcheva G, Dyková I, Lom J. Seasonal Fluctuation in the Prevalence of Sphaerospora renicola and Myxosporean Bloodstream Stages in Carp Fingerlings in Bulgaria. Folia Parasitol (1985) 32:193–203.
Lom J, Pavlaskova M, Dyková I. Notes on Kidney-Infecting Species of the Genus Sphaerospora Thélohan (Myxosporea), Including a New Species S. Gobionis sp.Nov., and on Myxosporean Life Cycle Stages in the Blood of Some Freshwater Fish. J Fish Dis (1985) 8:221–32. doi: 10.1111/j.1365-2761.1985.tb01217.x DOI
Supamattaya K, Fischer-Scherl T, Hoffmann RW, Boonyaratpalin S. Light and Electron Microscope Observations on Presporogonic and Sporogonic Stages of Sphaerospora epinepheli (Myxosporea) in Grouper (Epinephelus malabaricus). J Eukaryot Microbiol (1993) 40:71–80. doi: 10.1111/j.1550-7408.1993.tb04885.x PubMed DOI
Sitjà-Bobadilla A, Estensoro I, Pérez-Sánchez J. Immunity to Gastrointestinal Microparasites of Fish. Dev Comp Immunol (2016) 64:187–201. doi: 10.1016/j.dci.2016.01.014 PubMed DOI
Rénia L, Goh YS. Malaria Parasites: The Great Escape. Front Immunol (2016) 7:463. doi: 10.3389/fimmu.2016.00463 PubMed DOI PMC
Barfod L, Dalgaard MB, Pleman ST, Ofori MF, Pleass RJ, Hviid L. Evasion of Immunity to Plasmodium Falciparum Malaria by IgM Masking of Protective IgG Epitopes in Infected Erythrocyte Surface-Exposed Pfemp1. Proc Natl Acad Sci USA (2011) 108:12485–90. doi: 10.1073/pnas.1103708108 PubMed DOI PMC
Lu YS, Li M, Wu YS, Wang JG. Antigenic Study of Myxobolus rotundus (Myxozoa: Myxosporea) Using Monoclonal Antibodies. J Fish Dis (2002) 25:307–10. doi: 10.1046/j.1365-2761.2002.00372.x DOI
Estensoro I, Álvarez-Pellitero P, Sitjà-Bobadilla A. Antigenic Characterization of Enteromyxum leei (Myxozoa: Myxosporea). Dis Aquat Organ (2013) 106:149–62. doi: 10.3354/dao02651 PubMed DOI
Kaltner H, Stippl M, Knaus M, El-Matbouli M. Characterization of Glycans in the Developmental Stages of Myxobolus Cerebralis (Myxozoa), the Causative Agent of Whirling Disease. J Fish Dis (2007) 30:637–47. doi: 10.1111/j.1365-2761.2007.00846.x PubMed DOI
Feng S, Woo PTK. Identification of Carbohydrates on the Surface Membrane of Pathogenic and Nonpathogenic Piscine Haemoflagellates, Cryptobia salmositica, C. bullocki and C. catostomi (Kinetoplastida). Dis Aquat Organ (1998) 32:201–9. doi: 10.3354/dao032201 PubMed DOI
Young CA, Jones SRM. Epitopes Associated With Mature Spores Not Recognized on Myxobolus thyrsites From Recently Infected Atlantic Salmon Smolts. Dis Aquat Organ (2005) 63:267–71. doi: 10.3354/dao063267 PubMed DOI
Knaus M, El-Matbouli M. Lectin Blot Studies on Proteins of Myxobolus cerebralis, the Causative Agent of Whirling Disease. Dis Aquat Organ (2005) 65:227–35. doi: 10.3354/dao065227 PubMed DOI
Morris DJ, Adams A, Richards RH. Studies of the PKX Parasite in Rainbow Trout via Immunohistochemistry and Immunogold Electron Microscopy. J Aquat Anim Health (1997) 9:265–72. doi: 10.1577/1548-8667(1997)009<0265:SOTPPI>2.3.CO;2 DOI
Hurst CN, Wong P, Hallett SL, Ray RA, Bartholomew JL. Transmission and Persistence of Ceratonova shasta Genotypes in Chinook Salmon. J Parasitol (2014) 100:773–7. doi: 10.1645/13-482.1 PubMed DOI
Wang B, Wangkahart E, Secombes CJ, Wang T. Insights Into the Evolution of the Suppressors of Cytokine Signaling (SOCS) Gene Family in Vertebrates. Mol Biol Evol (2019) 36:393–411. doi: 10.1093/molbev/msy230 PubMed DOI PMC
Kotob MH, Kumar G, Saleh M, Gorgoglione B, Abdelzaher M, El-Matbouli M. Differential Modulation of Host Immune Genes in the Kidney and Cranium of the Rainbow Trout (Oncorhynchus mykiss) in Response to Tetracapsuloides bryosalmonae and Myxobolus cerebralis Co-Infections. Parasit Vectors (2018) 11:326. doi: 10.1186/s13071-018-2912-7 PubMed DOI PMC
Wang T, Gorgoglione B, Maehr T, Holland JW, Vecino JLG, Wadsworth S, et al. . Fish Suppressors of Cytokine Signaling (SOCS): Gene Discovery, Modulation of Expression and Function. J Signal Transduct (2011) 2011:905813. doi: 10.1155/2011/905813 PubMed DOI PMC
Zimmermann S, Murray PJ, Heeg K, Dalpke AH. Induction of Suppressor of Cytokine Signaling-1 by Toxoplasma gondii Contributes to Immune Evasion in Macrophages by Blocking IFN-Gamma Signaling. J Immunol (2006) 176:1840–7. doi: 10.4049/jimmunol.176.3.1840 PubMed DOI
Bertholet S, Dickensheets HL, Sheikh F, Gam AA, Donnelly RP, Kenney RT. Leishmania donovani-Induced Expression of Suppressor of Cytokine Signaling 3 in Human Macrophages: a Novel Mechanism for Intracellular Parasite Suppression of Activation. Infect Immun (2003) 71:2095–101. doi: 10.1128/IAI.71.4.2095-2101.2003 PubMed DOI PMC
Bailey C, Segner H, Wahli T. What Goes Around Comes Around: an Investigation of Resistance to Proliferative Kidney Disease in Rainbow Trout Oncorhynchus mykiss (Walbaum) Following Experimental Re-Exposure. J Fish Dis (2017) 40:1599–612. doi: 10.1111/jfd.12628 PubMed DOI
Davey GC, Calduch-Giner JA, Houeix B, Talbot A, Sitjà-Bobadilla A, Prunet P, et al. . Molecular Profiling of the Gilthead Sea Bream (Sparus aurata L.) Response to Chronic Exposure to the Myxosporean Parasite Enteromyxum leei . Mol Immunol (2011) 48:2102–12. doi: 10.1016/j.molimm.2011.07.003 PubMed DOI
Mege J-L, Meghari S, Honstettre A, Capo C, Raoult D. The Two Faces of Interleukin 10 in Human Infectious Diseases. Lancet Infect Dis (2006) 6:557–69. doi: 10.1016/S1473-3099(06)70577-1 PubMed DOI
Bryan MA, Guyach SE, Norris KA. Specific Humoral Immunity Versus Polyclonal B Cell Activation in Trypanosoma Cruzi Infection of Susceptible and Resistant Mice. PloS Negl Trop Dis (2010) 4:e733. doi: 10.1371/journal.pntd.0000733 PubMed DOI PMC
Maizels RM, Smits HH, McSorley HJ. Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity (2018) 49:801–18. doi: 10.1016/j.immuni.2018.10.016 PubMed DOI PMC
Doyle PS, Zhou YM, Hsieh I, Greenbaum DC, McKerrow JH, Engel JC. The Trypanosoma cruzi Protease Cruzain Mediates Immune Evasion. PloS Pathog (2011) 7:e1002139. doi: 10.1371/journal.ppat.1002139 PubMed DOI PMC
Potempa M, Potempa J. Protease-Dependent Mechanisms of Complement Evasion by Bacterial Pathogens. Biol Chem (2012) 393:873–88. doi: 10.1515/hsz-2012-0174 PubMed DOI PMC
Kelley GO, Adkison MA, Leutenegger CM, Hedrick RP. Myxobolus cerebralis: Identification of a Cathepsin Z-Like Protease Gene (MyxCP-1) Expressed During Parasite Development in Rainbow Trout, Oncorhynchus mykiss. Exp Parasitol (2003) 105:201–10. doi: 10.1016/j.exppara.2003.12.004 PubMed DOI
Kelley GO, Zagmutt-Vergara FJ, Leutenegger CM, Adkison MA, Baxa DV, Hedrick RP. Identification of a Serine Protease Gene Expressed by Myxobolus cerebralis During Development in Rainbow Trout Oncorhynchus mykiss . Dis Aquat Organ (2004) 59:235–48. doi: 10.3354/dao059235 PubMed DOI
Faber M, Shaw S, Yoon S, de Paiva Alves E, Wang B, Qi Z, et al. . Comparative Transcriptomics and Host-Specific Parasite Gene Expression Profiles Inform on Drivers of Proliferative Kidney Disease. Sci Rep (2021) 11:2149. doi: 10.1038/s41598-020-77881-7 PubMed DOI PMC
Alama-Bermejo G, Holzer AS. Advances and Discoveries in Myxozoan Genomics. Trends Parasitol (2021) 37:552–68. doi: 10.1016/j.pt.2021.01.010 PubMed DOI
Turchini GM, Trushenski JT, Glencross BD. Thoughts for the Future of Aquaculture Nutrition: Realigning Perspectives to Reflect Contemporary Issues Related to Judicious Use of Marine Resources in Aquafeeds. N Am J Aquac (2019) 81:13–39. doi: 10.1002/naaq.10067 DOI
Egerton S, Wan A, Murphy K, Collins F, Ahern G, Sugrue I, et al. . Replacing Fishmeal With Plant Protein in Atlantic Salmon (Salmo salar) Diets by Supplementation With Fish Protein Hydrolysate. Sci Rep (2020) 10:4194. doi: 10.1038/s41598-020-60325-7 PubMed DOI PMC
Estensoro I, Ballester-Lozano G, Benedito-Palos L, Grammes F, Martos-Sitcha JA, Mydland L-T, et al. . Dietary Butyrate Helps to Restore the Intestinal Status of a Marine Teleost (Sparus aurata) Fed Extreme Diets Low in Fish Meal and Fish Oil. PloS One (2016) 11:e0166564. doi: 10.1371/journal.pone.0166564 PubMed DOI PMC
Torrecillas S, Mompel D, Caballero MJ, Montero D, Merrifield D, Rodiles A, et al. . Effect of Fishmeal and Fish Oil Replacement by Vegetable Meals and Oils on Gut Health of European Sea Bass (Dicentrarchus labrax). Aquaculture (2017) 468:386–98. doi: 10.1016/j.aquaculture.2016.11.005 DOI
Oliva-Teles A. Nutrition and Health of Aquaculture Fish. J Fish Dis (2012) 35:83–108. doi: 10.1111/j.1365-2761.2011.01333.x PubMed DOI
Estensoro I, Benedito-Palos L, Palenzuela O, Kaushik S, Sitjà-Bobadilla A, Pérez-Sánchez J. The Nutritional Background of the Host Alters the Disease Course in a Fish–Myxosporean System. Vet Parasitol (2011) 175:141–50. doi: 10.1016/j.vetpar.2010.09.015 PubMed DOI
Estensoro I, Redondo MJ, Salesa B, Kaushik S, Pérez-Sánchez J, Sitjà-Bobadilla A. Effect of Nutrition and Enteromyxum leei Infection on Gilthead Sea Bream Sparus aurata Intestinal Carbohydrate Distribution. Dis Aquat Organ (2012) 100:29–42. doi: 10.3354/dao02486 PubMed DOI
Calduch-Giner JA, Sitjà-Bobadilla A, Davey GC, Cairns MT, Kaushik S, Pérez-Sánchez J. Dietary Vegetable Oils do Not Alter the Intestine Transcriptome of Gilthead Sea Bream (Sparus aurata), But Modulate the Transcriptomic Response to Infection With Enteromyxum leei . BMC Genomics (2012) 13:470. doi: 10.1186/1471-2164-13-470 PubMed DOI PMC
Estensoro I, Calduch-Giner JA, Kaushik S, Pérez-Sánchez J, Sitjà-Bobadilla A. Modulation of the IgM Gene Expression and the IgM Immunoreactive Cell Distribution by the Nutritional Background in Gilthead Sea Bream (Sparus Aurata) Challenged With Enteromyxum leei (Myxozoa). Fish Shellfish Immunol (2012) 33:401–10. doi: 10.1016/j.fsi.2012.05.029 PubMed DOI
Piazzon MC, Calduch-Giner JA, Fouz B, Estensoro I, Simó-Mirabet P, Puyalto M, et al. . Under Control: How a Dietary Additive can Restore the Gut Microbiome and Proteomic Profile, and Improve Disease Resilience in a Marine Teleostean Fish Fed Vegetable Diets. Microbiome (2017) 5:164. doi: 10.1186/s40168-017-0390-3 PubMed DOI PMC
Hyatt MW, Waltzek TB, Kieran EA, Frasca SJ, Lovy J. Diagnosis and Treatment of Multi-Species Fish Mortality Attributed to Enteromyxum leei While in Quarantine at a US Aquarium. Dis Aquat Organ (2018) 132:37–48. doi: 10.3354/dao03303 PubMed DOI
Karagouni E, Athanassopoulou F, Lytra A, Komis C, Dotsika E. Antiparasitic and Immunomodulatory Effect of Innovative Treatments Against Myxobolus sp. Infection in Diplodus puntazzo . Vet Parasitol (2005) 134:215–28. doi: 10.1016/j.vetpar.2005.07.020 PubMed DOI
Wunderlich AC, Zica E, Ayres V, Guimaraes AC, Takeara R. Plant-Derived Compounds as an Alternative Treatment Against Parasites in Fish Farming: A Review. In: Khater HF, Govindarajan M, Benelli G, editors. Natural Remedies in the Fight Against Parasites. London, UK: IntechOpen; (2017). doi: 10.5772/67668 DOI
Ganeva VO, Korytář T, Pecková H, McGurk C, Mullins J, Yanes-Roca C, et al. . Natural Feed Additives Modulate Immunity and Mitigate Infection With Sphaerospora molnari (Myxozoa : Cnidaria) in Common Carp: A Pilot Study. Pathog (2020) 9:1013. doi: 10.3390/pathogens9121013 PubMed DOI PMC
Palenzuela O, Browdy CL, Petropoulos Y, Natribouzas N, Del Pozo R, Sitjà-Bobadilla A. Monitoring Parasite Incidence in Gilthead Sea Bream Held in Experimental and Production Cages: Long-Term Effect of a Supplemented Diet on Fish Health. In: European Association of Fish Pathologists. Spain: Las Palmas de Gran Canaria; (2015).
Palenzuela O, Del Pozo R, Piazzon MC, Isern-Subich MM, Ceulemans S, Coutteau P, et al. . Effect of a Functional Feed Additive on Mitigation of Experimentally Induced Gilthead Sea Bream Sparus aurata Enteromyxosis. Dis Aquat Organ (2020) 138:111–20. doi: 10.3354/dao03453 PubMed DOI
Pérez-Sánchez J, Benedito-Palos L, Estensoro I, Petropoulos Y, Calduch-Giner JA, Browdy CL, et al. . Effects of Dietary NEXT ENHANCE®150 on Growth Performance and Expression of Immune and Intestinal Integrity Related Genes in Gilthead Sea Bream (Sparus aurata L.). Fish Shellfish Immunol (2015) 44:117–28. doi: 10.1016/j.fsi.2015.01.039 PubMed DOI
Holzer AS, Stewart S, Tildesley A, Wootten R, Sommerville C. Infection Dynamics of Two Renal Myxozoans in Hatchery Reared Fry and Juvenile Atlantic Cod Gadus morhua L. Parasitology (2010) 137:1501–13. doi: 10.1017/S0031182010000247 PubMed DOI
Nylund A, Hansen H, Brevik ØJ, Hustoft H, Markussen T, Plarre H, et al. . Infection Dynamics and Tissue Tropism of Parvicapsula pseudobranchicola (Myxozoa: Myxosporea) in Farmed Atlantic Salmon (Salmo salar). Parasit Vectors (2018) 11:17. doi: 10.1186/s13071-017-2583-9 PubMed DOI PMC
Muñoz P, Sitjà-Bobadilla A, Álvarez-Pellitero P. Cellular and Humoral Immune Response of European Sea Bass (Dicentrarchus labrax L.) (Teleostei: Serranidae) Immunized With Sphaerospora dicentrarchi (Myxosporea: Bivalvulida). Parasitology (2000) 120:465–77. doi: 10.1017/s0031182099005855 PubMed DOI
Hedrick RP, McDowell TS, Adkison MA, Myklebust KA, Mardones FO, Petri B. Invasion and Initial Replication of Ultraviolet Irradiated Waterborne Infective Stages of Myxobolus cerebralis Results in Immunity to Whirling Disease in Rainbow Trout. Int J Parasitol (2012) 42:657–66. doi: 10.1016/j.ijpara.2012.04.010 PubMed DOI
Hurst CN, Bartholomew JL. Lack of Protection Following Re-Exposure of Chinook Salmon to Ceratonova shasta (Myxozoa). J Aquat Anim Health (2015) 27:20–4. doi: 10.1080/08997659.2014.970716 PubMed DOI
Faber MN, Holland JW, Secombes CJ. Vaccination Strategies and IgM Responses Against PKD in Rainbow Trout. Fish Shellfish Immunol (2019) 91:423. doi: 10.1016/j.fsi.2019.04.159 DOI
Zapata A, Amemiya CT. Phylogeny of Lower Vertebrates and Their Immunological Structures. Curr Top Microbiol Immunol (2000) 248:67–107. doi: 10.1007/978-3-642-59674-2_5 PubMed DOI
Ulmer JB, Geall AJ. Recent Innovations in mRNA Vaccines. Curr Opin Immunol (2016) 41:18–22. doi: 10.1016/j.coi.2016.05.008 PubMed DOI
RNAi-directed knockdown in the cnidarian fish blood parasite Sphaerospora molnari
Ceratonova shasta: a cnidarian parasite of annelids and salmonids