The induction and inhibition of UDP-glycosyltransferases in Haemonchus contortus and their role in the metabolism of albendazole
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35738156
PubMed Central
PMC9234156
DOI
10.1016/j.ijpddr.2022.06.001
PII: S2211-3207(22)00012-4
Knihovny.cz E-zdroje
- Klíčová slova
- Anthelmintic resistance, Anthelmintics biotransformation, Benzimidazoles, Detoxification, Gene expression, Glycosylated metabolites, Glycosylation, Nematodes, UGT inhibitors, UHPLC-MS/MS,
- MeSH
- albendazol MeSH
- anthelmintika * terapeutické užití MeSH
- fenobarbital metabolismus farmakologie terapeutické užití MeSH
- glykosidy metabolismus farmakologie terapeutické užití MeSH
- glykosyltransferasy MeSH
- Haemonchus * MeSH
- hlístice * MeSH
- nemoci ovcí * farmakoterapie MeSH
- ovce MeSH
- sulfinpyrazon metabolismus farmakologie terapeutické užití MeSH
- uridindifosfát MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- albendazol MeSH
- anthelmintika * MeSH
- fenobarbital MeSH
- glykosidy MeSH
- glykosyltransferasy MeSH
- sulfinpyrazon MeSH
- uridindifosfát MeSH
Albendazole (ABZ) is an anthelmintic frequently used to treat haemonchosis, a common parasitosis of ruminants caused by the gastrointestinal nematode Haemonchus contortus. This parasite is able to protect itself against ABZ via the formation of inactive ABZ-glycosides. The present study was designed to deepen the knowledge about the role of UDP-glycosyltransferases (UGTs) in ABZ glycosylation in H. contortus. The induction effect of phenobarbital, a classical inducer of UGTs, as well as ABZ and ABZ-sulphoxide (ABZSO, the main active metabolite of ABZ) on UGTs expression and UGT activity toward ABZ was studied ex vivo in isolated adult nematodes. The effect of three potential UGT inhibitors (5-nitrouracil, 4,6-dihydroxy-5-nitropyrimidine and sulfinpyrazone) on ABZ glycosylation was tested. Pre-incubation of nematodes with ABZ and ABZSO led to increased expression of several UGTs as well as ABZ-glycosides formation in subsequent treatment. Phenobarbital also induced UGTs expression, but did not affect ABZ biotransformation. In the nematode's subcellular fraction, sulfinpyrazone inhibited UGT activity toward ABZ, although no effect of other inhibitors was observed. The inhibitory potential of sulfinpyrazone on the formation of ABZ-glycosides was also proved ex vivo in living nematodes. The obtained results confirmed the role of UGTs in ABZ biotransformation in H. contortus adults and revealed sulfinpyrazone as a potent inhibitor of ABZ glycosylation in this parasite. The possible use of sulfinpyrazone with ABZ in combination therapy merits further research.
Zobrazit více v PubMed
AlGusbi S., Krucken J., Ramunke S., von Samson-Himmelstjerna G., Demeler J. Analysis of putative inhibitors of anthelmintic resistance mechanisms in cattle gastrointestinal nematodes. Int. J. Parasitol. 2014;44:647–658. PubMed
Besier R.B., Kahn L.P., Sargison N.D., Van Wyk J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends. 2016;93:95–143. PubMed
Bock K.W. Vertebrate UDP-glucuronosyltransferases: functional and evolutionary aspects. Biochem. Pharmacol. 2003;66:691–696. PubMed
Borges F.A., Rossini J.B., Velludo P.P., Buzzulini C., Costa G.H., Molento M.B., Costa A.J. Weak phenotypic reversion of ivermectin resistance in a field resistant isolate of Haemonchus contortus by verapamil. Pesqui. Vet. Bras. 2011;31:731–736.
Cvilink V., Skalova L., Szotakova B., Lamka J., Kostiainen R., Ketola R.A. LC-MS-MS identification of albendazole and flubendazole metabolites formed ex vivo by Haemonchus contortus. Anal. Bioanal. Chem. 2008;391:337–343. PubMed
Devine C., Brennan G.P., Lanusse C.E., Alvarez L.I., Trudgett A., Hoey E., Fairweather I. Effect of the metabolic inhibitor, methimazole on the drug susceptibility of a triclabendazole-resistant isolate of Fasciola hepatica. Parasitology. 2009;136:183–192. PubMed
Devine C., Brennan G.P., Lanusse C.E., Alvarez L.I., Trudgett A., Hoey E., Fairweather I. Piperonyl butoxide enhances triclabendazole action against triclabendazole-resistant Fasciola hepatica. Parasitology. 2011;138:224–236. PubMed
Dimunová D., Matoušková P., Navrátilová M., Nguyen L.T., Ambrož M., Vokřál I., Szotáková B., Skálová L. Environmental circulation of the anthelmintic drug albendazole affects expression and activity of resistance-related genes in the parasitic nematode Haemonchus contortus. Sci. Total Environ. 2022;822 PubMed
Fisher M.B., Campanale K., Ackermann B.L., Vandenbranden M., Wrighton S.A. In vitro glucuronidation using human liver microsomes and the pore-forming peptide alamethicin. Drug Metabol. Dispos. 2000;28:560–566. PubMed
Flynn A.F., Joyce M.G., Taylor R.T., Bennuru S., Lindrose A.R., Sterling S.L., Morris C.P., Nutman T.B., Mitre E. Intestinal UDP-glucuronosyltransferase as a potential target for the treatment and prevention of lymphatic filariasis. PLoS Neglected Trop. Dis. 2019;13 PubMed PMC
Fontaine P., Choe K. The transcription factor SKN-1 and detoxification gene ugt-22 alter albendazole efficacy in Caenorhabditis elegans. Int. J. Parasitol. Drug. Resis. 2018;8:312–319. PubMed PMC
Hartman J.H., Widmayer S.J., Bergemann C.M., King D.E., Morton K.S., Romersi R.F., Jameson L.E., Leung M.C.K., Andersen E.C., Taubert S., Meyer J.N. Xenobiotic metabolism and transport in Caenorhabditis elegans. J. Toxicol. Environ. Health B Crit. Rev. 2021;24:51–94. PubMed PMC
Kaplan R.M., Vidyashankar A.N. An inconvenient truth: global worming and anthelmintic resistance. Vet. Parasitol. 2012;186:70–78. PubMed
Kellerova P., Navratilova M., Nguyen L.T., Dimunova D., Stuchlikova L.R., Skalova L., Matouskova P. UDP-glycosyltransferases and albendazole metabolism in the juvenile stages of Haemonchus contortus. Front. Physiol. 2020;11 PubMed PMC
Kellerova P., Stuchlikova L.R., Matouskova P., Sterbova K., Lamka J., Navratilova M., Vokral I., Szotakova B., Skalova L. Sub-lethal doses of albendazole induce drug metabolizing enzymes and increase albendazole deactivation inHaemonchus contortusadults. Vet. Res. 2020;51:94. PubMed PMC
Kotze A.C., McClure S.J. Haemonchus contortus utilises catalase in defence against exogenous hydrogen peroxide in vitro. Int. J. Parasitol. 2001;31:1563–1571. PubMed
Kotze A.C., Prichard R.K. Anthelmintic resistance in Haemonchus contortus: history, mechanisms and diagnosis. Haemonchus Contortus and Haemonchosis - Past, Present and Future Trends. 2016;93:397–428. PubMed
Kotze A.C., Ruffell A.P., Ingham A.B. Phenobarbital induction and chemical synergism demonstrate the role of UDP-glucuronosyltransferases in detoxification of naphthalophos by Haemonchus contortus larvae. Antimicrob. Agents Chemother. 2014;58:7475–7483. PubMed PMC
Laing R., Kikuchi T., Martinelli A., Tsai I.J., Beech R.N., Redman E., Holroyd N., Bartley D.J., Beasley H., Britton C., Curran D., Devaney E., Gilabert A., Hunt M., Jackson F., Johnston S.L., Kryukov I., Li K.Y., Morrison A.A., Reid A.J., Sargison N., Saunders G.I., Wasmuth J.D., Wolstenholme A., Berriman M., Gilleard J.S., Cotton J.A. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013;14 PubMed PMC
Lanusse C., Canton C., Virkel G., Alvarez L., Costa L., Lifschitz A. Strategies to optimize the efficacy of anthelmintic drugs in ruminants. Trends Parasitol. 2018;34:664–682. PubMed
Letelier M.E., Pimentel A., Pino P., Lepe A.M., Faundez M., Aracena P., Speisky H. Microsomal UDP-glucuronyltransferase in rat liver: oxidative activation. Basic Clin. Pharmacol. Toxicol. 2005;96:480–486. PubMed
Li X.X., Zhu B., Gao X.W., Liang P. Over-expression of UDP-glycosyltransferase gene UGT2B17 is involved in chlorantraniliprole resistance in Plutella xylostella (L.) Pest Manag. Sci. 2017;73:1402–1409. PubMed
Matouskova P., Lecova L., Laing R., Dimunova D., Vogel H., Stuchlikova L.R., Nguyen L.T., Kellerova P., Vokral I., Lamka J., Szotakova B., Varady M., Skalova L. UDP-glycosyltransferase family in Haemonchus contortus: phylogenetic analysis, constitutive expression, sex-differences and resistance-related differences. Int. J. Parasitol. Drug. Resis. 2018;8:420–429. PubMed PMC
Matouskova P., Vokral I., Lamka J., Skalova L. The role of xenobiotic-metabolizing enzymes in anthelmintic deactivation and resistance in helminths. Trends Parasitol. 2016;32:481–491. PubMed
Pan Y.O., Tian F.Y., Wei X., Wu Y.Q., Gao X.W., Xi J.H., Shang Q.L. Thiamethoxam resistance in &ITAphis gossypii&IT glover relies on multiple UDP-glucuronosyltransferases. Front. Physiol. 2018;9 PubMed PMC
Roos M.H., Otsen M., Hoekstra R., Veenstra J.G., Lenstra J.A. Genetic analysis of inbreeding of two strains of the parasitic nematode Haemonchus contortus. Int. J. Parasitol. 2004;34:109–115. PubMed
Salle G., Doyle S.R., Cortet J., Cabaret J., Berriman M., Holroyd N., Cotton J.A. The global diversity of Haemonchus contortus is shaped by human intervention and climate. Nat. Commun. 2019;10 PubMed PMC
Savage J., Meaney M., Brennan G.P., Hoey E., Trudgett A., Fairweather I. Increased action of triclabendazole (TCBZ) in vitro against a TCBZ-resistant isolate of Fasciola hepatica following its co-incubation with the P-glycoprotein inhibitor, R(+)-verapamil. Exp. Parasitol. 2013;135:642–653. PubMed
Stasiuk S.J., MacNevin G., Workentine M.L., Gray D., Redman E., Bartley D., Morrison A., Sharma N., Colwell D., Ro D.K., Gilleard J.S. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int. J. Parasitol. Drug. Resis. 2019;11:13–29. PubMed PMC
Stuchlikova L., Jirasko R., Vokral I., Valat M., Lamka J., Szotakova B., Holcapek M., Skalova L. Metabolic pathways of anthelmintic drug monepantel in sheep and in its parasite (Haemonchus contortus) Drug Test. Anal. 2014;6:1055–1062. PubMed
Stuchlikova L.R., Matouskova P., Vokral I., Lamka J., Szotakova B., Seckarova A., Dimunova D., Nguyen L.T., Varady M., Skalova L. Metabolism of albendazole, ricobendazole and flubendazole in Haemonchus contortus adults: sex differences, resistance-related differences and the identification of new metabolites. Int. J. Parasitol. Drug. Resis. 2018;8:50–58. PubMed PMC
Tian F.J., Wang Z.B., Li C.F., Liu J.L., Zeng X.N. UDP-Glycosyltransferases are involved in imidacloprid resistance in the Asian citrus psyllid, Diaphorina citri (Hemiptera: lividae) Pestic. Biochem. Physiol. 2019;154:23–31. PubMed
Vokral I., Bartikova H., Prchal L., Stuchlikova L., Skalova L., Szotakova B., Lamka J., Varady M., Kubicek V. The metabolism of flubendazole and the activities of selected biotransformation enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Parasitology. 2012;139:1309–1316. PubMed
Vokral I., Jirasko R., Stuchlikova L., Bartikova H., Szotakova B., Lamka J., Varady M., Skalova L. Biotransformation of albendazole and activities of selected detoxification enzymes in Haemonchus contortus strains susceptible and resistant to anthelmintics. Vet. Parasitol. 2013;196:373–381. PubMed
Walsky R.L., Bauman J.N., Bourcier K., Giddens G., Lapham K., Negahban A., Ryder T.F., Obach R.S., Hyland R., Goosen T.C. Optimized assays for human UDP-glucuronosyltransferase (UGT) activities: altered alamethicin concentration and utility to screen for UGT inhibitors. Drug Metabol. Dispos. 2012;40:1051–1065. PubMed
Biotransformation of anthelmintics in nematodes in relation to drug resistance