Effect of Plant Bioactive Compounds Supplemented in Transition Dairy Cows on the Metabolic and Inflammatory Status
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie veterinární
Grantová podpora
ITA VFU 2020
Veterinary University Brno
PubMed
36144832
PubMed Central
PMC9504483
DOI
10.3390/molecules27186092
PII: molecules27186092
Knihovny.cz E-zdroje
- Klíčová slova
- energy status, inflammation, periparturient cows, plant bioactive compounds,
- MeSH
- dieta veterinární MeSH
- fytonutrienty farmakologie MeSH
- haptoglobiny metabolismus farmakologie MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- laktace MeSH
- mléko * metabolismus MeSH
- potravní doplňky MeSH
- propolis * farmakologie MeSH
- skot MeSH
- zvířata MeSH
- Check Tag
- skot MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie veterinární MeSH
- Názvy látek
- fytonutrienty MeSH
- haptoglobiny MeSH
- kyseliny mastné neesterifikované MeSH
- propolis * MeSH
(1) Background: This study evaluated the effects of a plant bioactive (Phyto Ax’Cell, Phytosynthese, Mozac, France) on the inflammatory status and health of dairy cows during calving. (2) Methods: 46 Holstein crossbred cows were randomized into a control group (CON, n = 23) and the Phyto Ax’Cell group (PAC, n = 23). PAC received Phyto Ax’Cell at 25 g/cow/day, from 15 days prepartum to 7 days postpartum. Blood analyses were performed weekly from D-7 to D14 to evaluate the energy metabolism and inflammatory status; rectal temperature was measured daily within 14 days from calving day (D0). (3) Results: PAC showed lower serum haptoglobin at D7 (0.55 vs. 0.79 mg/mL; p < 0.05) and D14 (0.44 vs. 0.66 mg/mL; p < 0.05). CON had a higher number of circulating white blood cells and granulocytes on D7 (p < 0.05). Fewer cows from PAC showed hyperthermia (≥39 °C) during the first 2 weeks postpartum (−7%, p < 0.05). Energy metabolism, which was represented by the NEFA/cholesterol ratio, improved (0.21 vs. 0.36 at D0, p < 0.1; 0.19 and 0.15 vs. 0.36 and 0.32, respectively, at D+7 and D+14, p < 0.05) under the plant bioactive supplementation. (4) Conclusions: The results suggest that the anti-inflammatory plant bioactive compound with Brazilian green propolis administered during calving had a beneficial effect on the energy and inflammatory status of dairy cows.
Nutrition and Feeding of Farm Animals Institute of Animal Science 104 00 Prague Czech Republic
Phytosynthése 632 00 Mozac France
Ruminant and Swine Clinic University of Veterinary Sciences Brno 612 42 Brno Czech Republic
Zobrazit více v PubMed
Mikulková K., Illek J., Kadek R. Glutathione redox state, glutathione peroxidase activity and selenium concentration in periparturient dairy cows, and their relation with negative energy balance. J. Anim. Feed Sci. 2020;29:19–26. doi: 10.22358/jafs/117867/2020. DOI
Trevisi E., Amadori M., Cogrossi S., Razzuoli E., Bertoni G. Metabolic Stress and Inflammatory Response in High-Yielding, Periparturient Dairy Cows. Res. Vet. Sci. 2012;93:695–704. doi: 10.1016/j.rvsc.2011.11.008. PubMed DOI
LeBlanc S. Interactions of Metabolism, Inflammation, and Reproductive Tract Health in the Postpartum Period in Dairy Cattle: Reproductive Tract Inflammation in Cattle. Reprod. Domest. Anim. 2012;47:18–30. doi: 10.1111/j.1439-0531.2012.02109.x. PubMed DOI
Chebel R.C., Mendonça L.G.D., Baruselli P.S. Association between Body Condition Score Change during the Dry Period and Postpartum Health and Performance. J. Dairy Sci. 2018;101:4595–4614. doi: 10.3168/jds.2017-13732. PubMed DOI
Sordillo L.M., Raphael W. Significance of Metabolic Stress, Lipid Mobilization, and Inflammation on Transition Cow Disorders. Vet. Clin. N. Am. Food Anim. 2013;29:267–278. doi: 10.1016/j.cvfa.2013.03.002. PubMed DOI
Huzzey J.M., Mann S., Nydam D.V., Grant R.J., Overton T.R. Associations of Peripartum Markers of Stress and Inflammation with Milk Yield and Reproductive Performance in Holstein Dairy Cows. Prev. Vet. Med. 2015;120:291–297. doi: 10.1016/j.prevetmed.2015.04.011. PubMed DOI
Lopreiato V., Mezzetti M., Cattaneo L., Ferronato G., Minuti A., Trevisi E. Role of Nutraceuticals during the Transition Period of Dairy Cows: A Review. J. Anim. Sci. Biotechnol. 2020;11:96. doi: 10.1186/s40104-020-00501-x. PubMed DOI PMC
Oh J., Wall E.H., Bravo D.M., Hristov A.N. Host-Mediated Effects of Phytonutrients in Ruminants: A Review. J. Dairy Sci. 2017;100:5974–5983. doi: 10.3168/jds.2016-12341. PubMed DOI
Jaiswal L., Ismail H., Worku M.A. Review of the Effect of Plant-derived Bioactive Substances on the Inflammatory Response of Ruminants (Sheep, Cattle, and Goats) Int. J. Vet. Anim. Med. 2020;3:130.
Hashemzadeh-Cigari F., Khorvash M., Ghorbani G.R., Kadivar M., Riasi A., Zebeli Q. Effects of Supplementation with a Phytobiotics-Rich Herbal Mixture on Performance, Udder Health, and Metabolic Status of Holstein Cows with Various Levels of Milk Somatic Cell Counts. J. Dairy Sci. 2014;97:7487–7497. doi: 10.3168/jds.2014-7989. PubMed DOI
Farney J.K., Mamedova L.K., Coetzee J.F., Minton J.E., Hollis L.C., Bradford B.J. Sodium Salicylate Treatment in Early Lactation Increases Whole-Lactation Milk and Milk Fat Yield in Mature Dairy Cows. J. Dairy Sci. 2013;96:7709–7718. doi: 10.3168/jds.2013-7088. PubMed DOI
Carpenter A.J., Ylioja C.M., Vargas C.F., Mamedova L.K., Mendonça L.G., Coetzee J.F., Hollis L.C., Gehring R., Bradford B.J. Hot Topic: Early Postpartum Treatment of Commercial Dairy Cows with Nonsteroidal Antiinflammatory Drugs Increases Whole-Lactation Milk Yield. J. Dairy Sci. 2016;99:672–679. doi: 10.3168/jds.2015-10048. PubMed DOI
Wathes D.C., Cheng Z., Bourne N., Taylor V.J., Coffey M.P., Brotherstone S. Differences between Primiparous and Multiparous Dairy Cows in the Inter-Relationships between Metabolic Traits, Milk Yield and Body Condition Score in the Periparturient Period. Domest. Anim. Endocrinol. 2007;33:203–225. doi: 10.1016/j.domaniend.2006.05.004. PubMed DOI
Zhang Y., Li X., Zhang H., Zhao Z., Peng Z., Wang Z., Liu G., Li X. Non-Esterified Fatty Acids Over-Activate the TLR2/4-NF-Κb Signaling Pathway to Increase Inflammatory Cytokine Synthesis in Neutrophils from Ketotic Cows. Cell. Physiol. Biochem. 2018;48:827–837. doi: 10.1159/000491913. PubMed DOI
Drackley J.K. Use of NEFA as a Tool to Monitor Energy Balance in Transition Dairy Cows. [(accessed on 16 August 2022)]. Available online: http://livestocktrail.illinois.edu/dairynet/paperDisplay.cfm?ContentID=330.
Schulz K., Frahm J., Kersten S., Meyer U., Reiche D., Sauerwein H., Dänicke S. Effects of Elevated Parameters of Subclinical Ketosis on the Immune System of Dairy Cows: In Vivo and In Vitro Results. Arch. Anim. Nutr. 2015;69:113–127. doi: 10.1080/1745039X.2015.1013666. PubMed DOI
Kováč G., Tóthová C., Nagy O., Seidel H., Konvičná J. Acute Phase Proteins and their Relation to Energy Metabolites in Dairy Cows during the Pre- and Postpartal Period. Acta Vet. Brno. 2009;78:441–447. doi: 10.2754/avb200978030441. DOI
Winkler A., Weber F., Ringseis R., Eder K., Dusel G. Determination of polyphenol and crude nutrient content and nutrient digestibility of dried and ensiled white and red grape pomace cultivars. Arch. Anim. Nutr. 2015;69:187–200. doi: 10.1080/1745039X.2015.1039751. PubMed DOI
Kaneene J.B., Miller R., Herdt T.H., Gardiner J.C. The Association of Serum Nonesterified Fatty Acids and Cholesterol, Management and Feeding Practices with Peripartum Disease in Dairy Cows. Prev. Vet. Med. 1997;31:59–72. doi: 10.1016/S0167-5877(96)01141-5. PubMed DOI
Mikulková K., Kadek R., Filípek J., Illek J. Evaluation of oxidant/antioxidant status, metabolic profile and milk production in cows with metritis. Ir. Vet. J. 2020;73:8. doi: 10.1186/s13620-020-00161-3. PubMed DOI PMC
SYNLAB . Biologie Clinique des Ruminants Guide d’interprétation. Synlab Heppignies; Fleurus, Belgium: 2017. p. 36.
Smith B.I., Risco C.A. Management of Periparturient Disorders in Dairy Cattle. Vet. Clin. N. Am. Food Anim. 2005;21:503–521. doi: 10.1016/j.cvfa.2005.02.007. PubMed DOI
Wenz J.R., Moore D.A., Kasimanickam R. Factors Associated with the Rectal Temperature of Holstein Dairy Cows during the First 10 Days in Milk. J. Dairy Sci. 2011;94:1864–1872. doi: 10.3168/jds.2010-3924. PubMed DOI
Benzaquen M.E., Risco C.A., Archbald L.F., Melendez P., Thatcher M.-J., Thatcher W.W. Rectal Temperature, Calving-Related Factors, and the Incidence of Puerperal Metritis in Postpartum Dairy Cows. J. Dairy Sci. 2007;90:2804–2814. doi: 10.3168/jds.2006-482. PubMed DOI
Humblet M.-F., Guyot H., Boudry B., Mbayahi F., Hanzen C., Rollin F., Godeau J.-M. Relationship between Haptoglobin, Serum Amyloid A, and Clinical Status in a Survey of Dairy Herds during a 6-Month Period. Vet. Clin. Pathol. 2006;35:188–193. doi: 10.1111/j.1939-165X.2006.tb00112.x. PubMed DOI
Williams E.J., Fischer D.P., Noakes D.E., England G.C.W., Rycroft A., Dobson H., Sheldon I.M. The Relationship between Uterine Pathogen Growth Density and Ovarian Function in the Postpartum Dairy Cow. Theriogenology. 2007;68:549–559. doi: 10.1016/j.theriogenology.2007.04.056. PubMed DOI PMC
Huzzey J.M., Duffield T.F., LeBlanc S.J., Veira D.M., Weary D.M., von Keyserlingk M.A.G. Short Communication: Haptoglobin as an Early Indicator of Metritis. J. Dairy Sci. 2009;92:621–625. doi: 10.3168/jds.2008-1526. PubMed DOI
Kim I.-H., Na K.-J., Yang M.-P. Immune Responses during the Peripartum Period in Dairy Cows with Postpartum Endometritis. J. Reprod. Dev. 2005;51:757–764. doi: 10.1262/jrd.17036. PubMed DOI
Aguiar S.C., Zeoula L.M., Franco S.L., Peres L.P., Arcuri P.B., Forano E. Antimicrobial Activity of Brazilian Propolis Extracts against Rumen Bacteria In Vitro. World J. Microbiol. Biotechnol. 2013;29:1951–1959. doi: 10.1007/s11274-013-1361-x. PubMed DOI
Aguiar S.C., Cottica S.M., Boeing J.S., Samensari R.B., Santos G.T., Visentainer J.V., Zeoula L.M. Effect of Feeding Phenolic Compounds from Propolis Extracts to Dairy Cows on Milk Production, Milk Fatty Acid Composition, and the Antioxidant Capacity of Milk. Anim. Feed Sci. Technol. 2014;193:148–154. doi: 10.1016/j.anifeedsci.2014.04.006. DOI
Hori J.I., Zamboni D.S., Carrão D.B., Goldman G.H., Berretta A.A. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF) J. Evid. Based Complementary Altern. Med. 2013;2013:418508. doi: 10.1155/2013/418508. PubMed DOI PMC
Kelly P., Meade K.G., O’Farrelly C. Non-Canonical Inflammasome-Mediated IL-1β Production by Primary Endometrial Epithelial and Stromal Fibroblast Cells Is NLRP3 and Caspase-4 Dependent. Front. Immunol. 2019;10:102. doi: 10.3389/fimmu.2019.00102. PubMed DOI PMC
Machado J.L., Assunção A.K.M., da Silva M.C.P., Reis A.S.d., Costa G.C., Arruda D.d.S., Rocha B.A., Vaz M.M.d.O.L.L., Paes A.M.d.A., Guerra R.N.M., et al. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity. J. Evid. Based Complementary Altern. Med. 2012;2012:157652. doi: 10.1155/2012/157652. PubMed DOI PMC
Nishikawa S., Kamiya M., Aoyama H., Yoshimura K., Miyata R., Kumazawa S., Tsuda T. Co-Administration of Curcumin and Artepillin C Induces Development of Brown-Like Adipocytes in Association with Local Norepinephrine Production by Alternatively Activated Macrophages in Mice. J. Nutr. Sci. Vitaminol. 2019;65:328–334. doi: 10.3177/jnsv.65.328. PubMed DOI
Wang J., Ghosh S.S., Ghosh S. Curcumin Improves Intestinal Barrier Function: Modulation of Intracellular Signaling, and Organization of Tight Junctions. Am. J. Physiol. Cell. Physiol. 2017;312:C438–C445. doi: 10.1152/ajpcell.00235.2016. PubMed DOI PMC
Masella R., Di Benedetto R., Varì R., Filesi C., Giovannini C. Novel Mechanisms of Natural Antioxidant Compounds in Biological Systems: Involvement of Glutathione and Glutathione-Related Enzymes. J. Nutr. Biochem. 2005;16:577–586. doi: 10.1016/j.jnutbio.2005.05.013. PubMed DOI
Gladine C., Rock E., Morand C., Bauchart D., Durand D. Bioavailability and Antioxidant Capacity of Plant Extracts Rich in Polyphenols, given as a Single Acute Dose, in Sheep Made Highly Susceptible to Lipoperoxidation. BJN. 2007;98:691–701. doi: 10.1017/S0007114507742666. PubMed DOI
Gobert M., Martin B., Ferlay A., Chilliard Y., Graulet B., Pradel P., Bauchart D., Durand D. Plant Polyphenols Associated with Vitamin E Can Reduce Plasma Lipoperoxidation in Dairy Cows given N-3 Polyunsaturated Fatty Acids. J. Dairy Sci. 2009;92:6095–6104. doi: 10.3168/jds.2009-2087. PubMed DOI
Sjaunja O., Bævre L., Junkkarinen L., Pedersen J., Setälä J. A nordic proposal for an energy corrected milk (ECM) formula. In: Gaillon P., Chabert Y., editors. Performance Recording of Animals: State of the Art. 1st ed. PUDOC; Wageningen, The Netherlands: 1991. pp. 156–157.
Edmonson A.J., Lean I.J., Weaver L.D., Farver T., Webster G. A Body Condition Scoring Chart for Holstein Dairy Cows. J. Dairy Sci. 1989;72:68–78. doi: 10.3168/jds.S0022-0302(89)79081-0. DOI
Illek J., Mikulková K., Danielová L., Kadek R., Geboliszová K., Staffa A., Gricová J. Laboratory Diagnostics in Large Animals: Practical Classes. 1st ed. University of Veterinary and Pharmaceutical Sciences Brno; Brno, Czech Republic: 2020. pp. 26–27.
Paglia D.E., Valentine W.N. Studies on the Quantitative and Qualitative Characterization of Erythrocyte Glutathione Peroxidase. J. Lab. Clin. Med. 1967;70:158–169. PubMed
Zemjanis R. Diagnostic and Therapeutic Techniques in Animal Reproduction. 2nd ed. Williams and Wilson Co.; Baltimore, MD, USA: 1970. pp. 3–87.