• This record comes from PubMed

Study of Biological Activities and ADMET-Related Properties of Salicylanilide-Based Peptidomimetics

. 2022 Oct 01 ; 23 (19) : . [epub] 20221001

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
ITMS2014+: 313021BUZ3 the Operation Program of Integrated Infrastructure for the project, UpScale of Comenius University Capacities and Competence in Research, Development and Innovation, co-financed by the European Regional Development Fund

A series of eleven benzylated intermediates and eleven target compounds derived from salicylanilide were tested against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference strains and against three clinical isolates of methicillin-resistant S. aureus (MRSA) and three isolates of vancomycin-resistant E. faecalis. In addition, the compounds were evaluated against Mycobacterium tuberculosis H37Ra and M. smegmatis ATCC 700084. The in vitro cytotoxicity of the compounds was assessed using the human monocytic leukemia cell line THP-1. The lipophilicity of the prepared compounds was experimentally determined and correlated with biological activity. The benzylated intermediates were found to be completely biologically inactive. Of the final eleven compounds, according to the number of amide groups in the molecule, eight are diamides, and three are triamides that were inactive. 5-Chloro-2-hydroxy-N-[(2S)- 4-(methylsulfanyl)-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino}butan-2-yl]benzamide (3e) and 5-chloro-2-hydroxy-N-[(2S)-(4-methyl-1-oxo-1-{[4-(trifluoromethyl)phenyl]amino)pentan-2-yl)benzamide (3f) showed the broadest spectrum of activity against all tested species/isolates comparable to the used standards (ampicillin and isoniazid). Six diamides showed high antistaphylococcal activity with MICs ranging from 0.070 to 8.95 μM. Three diamides showed anti-enterococcal activity with MICs ranging from 4.66 to 35.8 μM, and the activities of 3f and 3e against M. tuberculosis and M. smegmatis were MICs of 18.7 and 35.8 μM, respectively. All the active compounds were microbicidal. It was observed that the connecting linker between the chlorsalicylic and 4-CF3-anilide cores must be substituted with a bulky and/or lipophilic chain such as isopropyl, isobutyl, or thiabutyl chain. Anticancer activity on THP-1 cells IC50 ranged from 1.4 to >10 µM and increased with increasing lipophilicity.

See more in PubMed

Atanasov A.G., Zotchev S.B., Dirsch V.M., The International Natural Product Sciences Taskforce. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021;20:200–216. doi: 10.1038/s41573-020-00114-z. PubMed DOI PMC

Newman D.J., Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020;83:770–803. doi: 10.1021/acs.jnatprod.9b01285. PubMed DOI

Dewick P.M. Medicinal Natural Products: A Biosynthetic Approach. 3rd ed. John Wiley & Sons; New York, NY, USA: 2009.

Salicylic Acid, DrugBank. [(accessed on 2 September 2022)]. Available online: https://go.drugbank.com/drugs/DB00936.

Aspirin, DrugBank. [(accessed on 2 September 2022)]. Available online: https://go.drugbank.com/drugs/DB00945.

WHO Model List of Essential Medicines-22nd List. 2021. [(accessed on 2 September 2022)]. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02.

Somasundaram S., Sigthorsson G., Simpson R.J., Watts J., Jacob M., Tavares I.A., Rafi S., Roseth A., Foster R., Price A.B., et al. Uncoupling of intestinal mitochondrial oxidative phosphorylation and inhibition of cyclooxygenase are required for the development of NSAID-enteropathy in the rat. Aliment. Pharmacol. Ther. 2000;14:639–650. doi: 10.1046/j.1365-2036.2000.00723.x. PubMed DOI

Bekebrede A.F., Keijer J., Gerrits W.J.J., de Boer V.C.J. Mitochondrial and glycolytic extracellular flux analysis optimization for isolated pig intestinal epithelial cells. Sci. Rep. 2021;11:19961. doi: 10.1038/s41598-021-99460-0. PubMed DOI PMC

Paul-Clark M.J., van Cao T., Moradi-Bidhendi N., Cooper D., Gilroy D.W. 15-epi-lipoxin A4-mediated induction of nitric oxide explains how aspirin inhibits acute inflammation. J. Exp. Med. 2004;200:69–78. doi: 10.1084/jem.20040566. PubMed DOI PMC

Ausina P., Branco J.R., Demaria T.M., Esteves A.M., Leandro J.G.B., Ochioni A.C., Mendonca A.P.M., Palhano F.L., Oliveira M.F., Abou-Kheir W., et al. Acetylsalicylic acid and salicylic acid present anticancer properties against melanoma by promoting nitric oxide-dependent endoplasmic reticulum stress and apoptosis. Sci. Rep. 2020;10:19617. doi: 10.1038/s41598-020-76824-6. PubMed DOI PMC

Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basilio J., Petzelbauer P., Assinger A., et al. Cell type-specific roles of NF-κB linking inflammation and thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC

Nath N., Chattopadhyay M., Rodes D.B., Nazarenko A., Kodela R., Kashfi K. Nitric oxide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo. Molecules. 2015;20:12481–12499. doi: 10.3390/molecules200712481. PubMed DOI PMC

Hawley S.A., Fullerton M.D., Ross F.A., Schertzer J.D., Chevtzoff C., Walker K.J., Peggie M.W., Zibrova D., Green K.A., Mustard K.J., et al. The ancient drug salicylate directly activates AMP-activated protein kinase. Science. 2012;336:918–922. doi: 10.1126/science.1215327. PubMed DOI PMC

Park H., Kim W., Kim D., Jeong S., Jung Y. Mesalazine activates adenosine monophosphate-activated protein kinase: Implication in the anti-inflammatory activity of this anti-colitic drug. Curr. Mol. Pharmacol. 2019;12:272–280. doi: 10.2174/1874467212666190308103448. PubMed DOI

Alfonso L.F., Srivenugopal K.S., Bhat G.J. Does aspirin acetylate multiple cellular proteins? Mol. Med. Rep. 2009;2:533–537. PubMed

Christensen D.G., Xie X., Basisty N., Byrnes J., McSweeney S., Schilling B., Wolfe A.J. Post-translational protein acetylation: An elegant mechanism for bacteria to dynamically regulate metabolic functions. Front. Microbiol. 2019;10:1604. doi: 10.3389/fmicb.2019.01604. PubMed DOI PMC

Angom R.S., Zhu J., Wu A.T.H., Sumitra M.R., Pham V., Dutta S., Wang E., Madamsetty V.S., Perez-Cordero G.D., Huang H.S., et al. LCC-09, a novel salicylanilide derivative, exerts anti-inflammatory effect in vascular endothelial cells. J. Inflamm. Res. 2021;14:4551–4565. doi: 10.2147/JIR.S305168. PubMed DOI PMC

Kratky M., Vinsova J. Salicylanilide ester prodrugs as potential antimicrobial agents—A review. Curr. Pharm. Des. 2011;17:3494–3505. doi: 10.2174/138161211798194521. PubMed DOI

Marrugal-Lorenzo J.A., Serna-Gallego A., Berastegui-Cabrera J., Pachon J., Sanchez-Cespedes J. Repositioning salicylanilide anthelmintic drugs to treat adenovirus infections. Sci. Rep. 2019;9:17. doi: 10.1038/s41598-018-37290-3. PubMed DOI PMC

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D., Kovacevic Z., Coffey A., et al. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules. 2010;15:8122–8142. doi: 10.3390/molecules15118122. PubMed DOI PMC

Imramovsky A., Pesko M., Monreal-Ferriz J., Kralova K., Vinsova J., Jampilek J. Photosynthesis-inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorg. Med. Chem. Lett. 2011;21:4564–4567. doi: 10.1016/j.bmcl.2011.05.118. PubMed DOI

Zadrazilova I., Pospisilova S., Masarikova M., Imramovsky A., Monreal-Ferriz J., Vinsova J., Cizek A., Jampilek J. Salicylanilide carbamates: Promising antibacterial agents with high in vitro activity against methicillin-resistant Staphylococcus aureus. Eur. J. Pharm. Sci. 2015;77:197–207. doi: 10.1016/j.ejps.2015.06.009. PubMed DOI

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. J. Appl. Biomed. 2016;14:125–130. doi: 10.1016/j.jab.2016.01.005. DOI

Copp J.N., Pletzer D., Brown A.S., van der Heijden J., Miton C.M., Edgar R.J., Rich M.H., Little R.F., Williams E.M., Hancock R.E.W., et al. Mechanistic understandingenables the rational design of salicylanilide combination therapies for Gram-negative infections. mBio. 2020;11:e02068-20. doi: 10.1128/mBio.02068-20. PubMed DOI PMC

Imramovsky A., Stepankova S., Vanco J., Pauk K., Monreal-Ferriz J., Vinsova J., Jampilek J. Acetylcholinesterase-inhibiting activity of salicylanilide N-alkylcarbamates and their molecular docking. Molecules. 2012;17:10142–10158. doi: 10.3390/molecules170910142. PubMed DOI PMC

Kratky M., Stepankova S., Houngbedji N.H., Vosatka R., Vorcakova K., Vinsova J. 2-Hydroxy-N-phenylbenzamides and their esters inhibit acetylcholinesterase and butyrylcholinesterase. Biomolecules. 2019;9:698. doi: 10.3390/biom9110698. PubMed DOI PMC

Trabocchi A. Principles and applications of small molecule peptidomimetics. In: Trabocchi A., Lenci E., editors. Small Molecule Drug Discovery. Elsevier; Amsterdam, The Netherlands: 2020. pp. 163–195.

Ghosh A.K., Brindisi M. Organic carbamates in drug design and medicinal chemistry. J. Med. Chem. 2015;58:2895–2940. doi: 10.1021/jm501371s. PubMed DOI PMC

Matosevic A., Bosak A. Carbamate group as structural motif in drugs: A review of carbamate derivatives used as therapeutic agents. Arch. Ind. Hyg. Toxicol. 2020;71:285–299. PubMed PMC

Makhoba X.H., Viegas C., Mosa R.A., Viegas F.P.D., Pooe O.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases. Drug Des. Dev. Ther. 2020;14:3235–3249. doi: 10.2147/DDDT.S257494. PubMed DOI PMC

Gray D.A., Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis. 2020;6:1346–1365. doi: 10.1021/acsinfecdis.0c00001. PubMed DOI PMC

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules. 2011;16:2414–2430. doi: 10.3390/molecules16032414. PubMed DOI PMC

Pauk K., Zadrazilova I., Imramovsky A., Vinsova J., Pokorna M., Masarikova M., Cizek A., Jampilek J. New derivatives of salicylamides: Preparation and antimicrobial activity against various bacterial species. Bioorg. Med. Chem. 2013;21:6574–6581. doi: 10.1016/j.bmc.2013.08.029. PubMed DOI

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Res. Int. 2015;2015:349534. doi: 10.1155/2015/349534. PubMed DOI PMC

Imramovsky A., Jorda R., Pauk K., Reznickova E., Dusek J., Hanusek J., Krystof V. Substituted 2-hydroxy-N-(arylalkyl)benzamides induce apoptosis in cancer cell lines. Eur. J. Med. Chem. 2013;68:253–259. doi: 10.1016/j.ejmech.2013.08.009. PubMed DOI

Dusek J., Imramovsky A., Pauk K., Jorda R., Reznickova E., Krystof V. Synthesis and antiproliferative activities of novel O-benzyl salicylamide derivatives. Lett. Drug Des. Discov. 2017;14:662–671. doi: 10.2174/1570180813666161020113827. DOI

Jorda R., Dusek J., Reznickova E., Pauk K., Magar P., Imramovsky A., Krystof V. Synthesis and antiproteasomal activity of novel O-benzyl salicylamide-based inhibitors built from leucine and phenylalanine. Eur. J. Med. Chem. 2017;135:142–158. doi: 10.1016/j.ejmech.2017.04.027. PubMed DOI

Jorda R., Magar P., Hendrychova D., Pauk K., Dibus M., Pilarova E., Imramovsky A., Krystof V. Novel modified leucine and phenylalanine dipeptides modulate viability and attachment of cancer cells. Eur. J. Med. Chem. 2020;188:112036. doi: 10.1016/j.ejmech.2020.112036. PubMed DOI

Felicio M.R., Silva O.N., Goncalves S., Santos N.C., Franco O.L. Peptides with dual antimicrobial and anticancer activities. Front. Chem. 2017;5:5. doi: 10.3389/fchem.2017.00005. PubMed DOI PMC

Thankappan B., Sivakumar J., Asokan S., Ramasamy M., Pillai M.M., Selvakumar R., Angayarkanni J. Dual antimicrobial and anticancer activity of a novel synthetic α-helical antimicrobial peptide. Eur. J. Pharm. Sci. 2021;161:105784. doi: 10.1016/j.ejps.2021.105784. PubMed DOI

Hicks R.P. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted Cα amino acids. Bioorg. Med. Chem. 2016;24:4056–4065. doi: 10.1016/j.bmc.2016.06.048. PubMed DOI

Sharma P., Kaur S., Chadha B.S., Kaur R., Kaur M., Kaur S. Anticancer and antimicrobial potential of enterocin 12a from Enterococcus faecium. BMC Microbiol. 2021;21:39. doi: 10.1186/s12866-021-02086-5. PubMed DOI PMC

Parchebafi A., Tamanaee F., Ehteram H., Ahmad E., Nikzad H., Kashani H.H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb. Cell Fact. 2022;21:118. doi: 10.1186/s12934-022-01848-8. PubMed DOI PMC

Garner A.L., Gloeckner C., Tricoche N., Zakhari J.S., Samje M., Cho-Ngwa F., Lustigman S., Janda K.D. Design, synthesis, and biological activities of closantel analogues: Structural promiscuity and its impact on Onchocerca volvulus. J. Med. Chem. 2011;54:3963–3972. doi: 10.1021/jm200364n. PubMed DOI

Fomovska A., Wood R.D., Mui E., Dubey J.P., Ferreira L.R., Hickman M.R., Lee P.J., Leed S.E., Auschwitz J.M., Welsh W.J., et al. Salicylanilide inhibitors of toxoplasma gondii. J. Med. Chem. 2012;55:8375–8391. doi: 10.1021/jm3007596. PubMed DOI PMC

Laudisi F., Maronek M., Di Grazia A., Monteleone G., Stolfi C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int. J. Mol. Sci. 2020;21:4957. doi: 10.3390/ijms21144957. PubMed DOI PMC

Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov. Today. 2022;27:2028–2041. doi: 10.1016/j.drudis.2022.05.006. PubMed DOI

Kratky M., Vinsova J., Novotna E., Mandikova J., Trejtnar F., Stolarikova J. Antibacterial activity of salicylanilide 4-(trifluoromethyl)-benzoates. Molecules. 2013;18:3674–3688. doi: 10.3390/molecules18043674. PubMed DOI PMC

Kratky M., Volkova M., Novotna E., Trejtnar F., Stolarikova J., Vinsova J. Synthesis and biological activity of new salicylanilide N,N-disubstituted carbamates and thiocarbamates. Bioorg. Med. Chem. 2014;22:4073–4082. doi: 10.1016/j.bmc.2014.05.064. PubMed DOI

Molchanova N., Nielsen J.E., Sorensen K.B., Prabhala B.K., Hansen P.R., Lund R., Barron A.E., Jenssen H. Halogenation as a tool to tune antimicrobial activity of peptoids. Sci. Rep. 2020;10:14805. doi: 10.1038/s41598-020-71771-8. PubMed DOI PMC

Arnot J.A., Planey S.L. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 2012;7:863–875. doi: 10.1517/17460441.2012.714363. PubMed DOI

Kerns E.H., Di L. Drug-like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization. Academic Press; San Diego, CA, USA: 2008.

Wermuth C., Aldous D., Raboisson P., Rognan D. The Practice of Medicinal Chemistry. 4th ed. Academic Press; San Diego, CA, USA: 2015.

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 1997;23:3–25. doi: 10.1016/S0169-409X(96)00423-1. PubMed DOI

Ertl P., Schuffenhauer A. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. J. Cheminform. 2009;1:8. doi: 10.1186/1758-2946-1-8. PubMed DOI PMC

Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ. Microbiol. 2014;16:939–949. doi: 10.1111/1462-2920.12213. PubMed DOI

Pankey G.A., Sabath L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis. 2004;38:864–870. doi: 10.1086/381972. PubMed DOI

Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., et al. A timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLoS Pathog. 2010;6:e1000855. doi: 10.1371/journal.ppat.1000855. PubMed DOI PMC

Measuring Cell Viability/Cytotoxicity Dojindo EU GmbH, Munich, Germany. [(accessed on 2 September 2022)]. Available online: https://www.dojindo.eu.com/Protocol/Dojindo-Cell-Proliferation-Protocol.pdf.

Grela E., Kozlowska J., Grabowiecka A. Current methodology of MTT assay in bacteria—A review. Acta Histochem. 2018;120:303–311. doi: 10.1016/j.acthis.2018.03.007. PubMed DOI

Nainu F., Permana A.D., Djide N.J.N., Anjani Q.K., Utami R.N., Rumata N.R., Zhang J., Emran T.B., Simal-Gandara J. Pharmaceutical approaches on antimicrobial resistance: Prospects and challenges. Antibiotics. 2021;10:981. doi: 10.3390/antibiotics10080981. PubMed DOI PMC

Lachowicz J.I., Szczepski K., Scano A., Casu C., Fais S., Orru G., Pisano B., Piras M., Jaremko M. The best peptidomimetic strategies to undercover antibacterial peptides. Int. J. Mol. Sci. 2020;21:7349. doi: 10.3390/ijms21197349. PubMed DOI PMC

Devi K.P., Nisha S.A., Sakthivel R., Pandian S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010;130:107–115. doi: 10.1016/j.jep.2010.04.025. PubMed DOI

Vaara M., Vaara T. Outer membrane permeability barrier disruption by polymyxinin polymyxin-susceptible and-resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 1981;19:578–583. doi: 10.1128/AAC.19.4.578. PubMed DOI PMC

National Committee for Clinical Laboratory Standards . Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. 11th ed. NCCLS; Wayne, PA, USA: 2018. M07.

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols. CRC Press; Boca Raton, FL, USA: 2007.

Scandorieiro S., de Camargo L.C., Lancheros C.A., Yamada-Ogatta S.F., Nakamura C.V., de Oliveira A.G., Andrade C.G., Duran N., Nakazato G., Kobayashi R.K. Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front. Microbiol. 2016;7:760. doi: 10.3389/fmicb.2016.00760. PubMed DOI PMC

Guimaraes A.C., Meireles L.M., Lemos M.F., Guimaraes M.C.C., Endringer D.C., Fronza M., Scherer R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules. 2019;24:2471. doi: 10.3390/molecules24132471. PubMed DOI PMC

Kos J., Kozik V., Pindjakova D., Jankech T., Smolinski A., Stepankova S., Hosek J., Oravec M., Jampilek J., Bak A. Synthesis and hybrid SAR property modeling of novel cholinesterase inhibitors. Int. J. Mol. Sci. 2021;22:3444. doi: 10.3390/ijms22073444. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...