• This record comes from PubMed

The Effect of 4-Methylcatechol on Platelets in Familial Hypercholesterolemic Patients Treated with Lipid Apheresis and/or Proprotein Convertase Subtilisin Kexin 9 Monoclonal Antibodies

. 2023 Apr 11 ; 15 (8) : . [epub] 20230411

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NU21-02-00135 Czech Health Research Council
SVV 260 549 Charles University
UHHK, 00179906 MH CZ - DRO

Elevated low-density lipoprotein (LDL) cholesterol levels lead to atherosclerosis and platelet hyperaggregability, both of which are known culprits of arterial thrombosis. Normalization of LDL cholesterol in familial hypercholesterolemia (FH) is not an easy task and frequently requires specific treatment, such as regularly performed lipid apheresis and/or novel drugs such as proprotein convertase subtilisin kexin 9 monoclonal antibodies (PCSK9Ab). Moreover, a high resistance rate to the first-line antiplatelet drug acetylsalicylic acid (ASA) stimulated research of novel antiplatelet drugs. 4-methylcatechol (4-MC), a known metabolite of several dietary flavonoids, may be a suitable candidate. The aim of this study was to analyse the antiplatelet effect of 4-MC in FH patients and to compare its impact on two FH treatment modalities via whole-blood impedance aggregometry. When compared to age-matched, generally healthy controls, the antiplatelet effect of 4-MC against collagen-induced aggregation was higher in FH patients. Apheresis itself improved the effect of 4-MC on platelet aggregation and blood from patients treated with this procedure and pretreated with 4-MC had lower platelet aggregability when compared to those solely treated with PCKS9Ab. Although this study had some inherent limitations, e.g., a low number of patients and possible impact of administered drugs, it confirmed the suitability of 4-MC as a promising antiplatelet agent and also demonstrated the effect of 4-MC in patients with a genetic metabolic disease for the first time.

See more in PubMed

Pejic R.N. Familial hypercholesterolemia. Ochsner J. 2014;14:669–672. PubMed PMC

Siegel-Axel D., Daub K., Seizer P., Lindemann S., Gawaz M. Platelet lipoprotein interplay: Trigger of foam cell formation and driver of atherosclerosis. Cardiovasc. Res. 2008;78:8–17. doi: 10.1093/cvr/cvn015. PubMed DOI

Yeung J., Li W., Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharm. Rev. 2018;70:526–548. doi: 10.1124/pr.117.014530. PubMed DOI PMC

Qi Z., Hu L., Zhang J., Yang W., Liu X., Jia D., Yao Z., Chang L., Pan G., Zhong H., et al. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation. 2021;143:45–61. doi: 10.1161/CIRCULATIONAHA.120.046290. PubMed DOI

Raal F.J., Hovingh G.K., Catapano A.L. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis. 2018;277:483–492. doi: 10.1016/j.atherosclerosis.2018.06.859. PubMed DOI

Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., Chapman M.J., De Backer G.G., Delgado V., Ference B.A., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020;41:111–188. doi: 10.1093/eurheartj/ehz455. PubMed DOI

Alsayed N., Almahmeed W., Alnouri F., Al-Waili K., Sabbour H., Sulaiman K., Zubaid M., Ray K.K., Al-Rasadi K. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East: 2021 update. Atherosclerosis. 2022;343:28–50. doi: 10.1016/j.atherosclerosis.2021.11.022. PubMed DOI

Warden B.A., Fazio S., Shapiro M.D. Familial Hypercholesterolemia: Genes and Beyond. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K., Dungan K., Hershman J.M., Hofland J., Kalra S., et al., editors. Endotext. MDText.Com, Inc.; South Dartmouth, MA, USA: 2021.

Kastelein J.J., Ginsberg H.N., Langslet G., Hovingh G.K., Ceska R., Dufour R., Blom D., Civeira F., Krempf M., Lorenzato C., et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J. 2015;36:2996–3003. doi: 10.1093/eurheartj/ehv370. PubMed DOI PMC

Sinzinger H., Pirich C., Bednar J., O’Grady J. Ex-vivo and in-vivo platelet function in patients with severe hypercholesterolemia undergoing LDL-apheresis. Thromb. Res. 1996;82:291–301. doi: 10.1016/0049-3848(96)00079-5. PubMed DOI

Otto C., Baumann M., Schreiner T., Bartsch G., Borberg H., Schwandt P., Schmid-Schönbein H. Standardized ultrasound as a new method to induce platelet aggregation: Evaluation, influence of lipoproteins and of glycoprotein IIb/IIIa antagonist tirofiban. Eur. J. Ultrasound. 2001;14:157–166. doi: 10.1016/S0929-8266(01)00157-4. PubMed DOI

Pares M.N., D’Amico E.A., Kutner J.M., Chamone Dde A., Bydlowski S.P. Platelet aggregation and lipoprotein levels in a patient with familial hypercholesterolemia after selective LDL-apheresis. Sao Paulo Med. J. 1997;115:1448–1451. doi: 10.1590/S1516-31801997000300009. PubMed DOI

Li J., Guasch-Ferré M., Chung W., Ruiz-Canela M., Toledo E., Corella D., Bhupathiraju S.N., Tobias D.K., Tabung F.K., Hu J., et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020;41:2645–2656. doi: 10.1093/eurheartj/ehaa209. PubMed DOI PMC

Widmer R.J., Flammer A.J., Lerman L.O., Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015;128:229–238. doi: 10.1016/j.amjmed.2014.10.014. PubMed DOI PMC

Martínez-González M.A., Gea A., Ruiz-Canela M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019;124:779–798. doi: 10.1161/CIRCRESAHA.118.313348. PubMed DOI

Franke A.A., Lai J.F., Halm B.M. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake. Arch. Biochem. Biophys. 2014;559:24–28. doi: 10.1016/j.abb.2014.06.007. PubMed DOI PMC

Hanske L., Engst W., Loh G., Sczesny S., Blaut M., Braune A. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br. J. Nutr. 2013;109:1433–1441. doi: 10.1017/S0007114512003376. PubMed DOI

Roowi S., Stalmach A., Mullen W., Lean M.E., Edwards C.A., Crozier A. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. J. Agric. Food Chem. 2010;58:1296–1304. doi: 10.1021/jf9032975. PubMed DOI

Sánchez-Patán F., Monagas M., Moreno-Arribas M.V., Bartolomé B. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. J. Agric. Food Chem. 2011;59:2241–2247. doi: 10.1021/jf104574z. PubMed DOI

Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC

Williamson G., Clifford M.N. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br. J. Nutr. 2010;104((Suppl. 3)):48–66. doi: 10.1017/S0007114510003946. PubMed DOI

Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:e1900261. doi: 10.1002/mnfr.201900261. PubMed DOI

Hrubša M., Konečný L., Paclíková M., Parvin M.S., Skořepa P., Musil F., Karlíčková J., Javorská L., Matoušová K., Krčmová L.K., et al. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. Nutrients. 2022;14:4798. doi: 10.3390/nu14224798. PubMed DOI PMC

Oudot C., Gomes A., Nicolas V., Le Gall M., Chaffey P., Broussard C., Calamita G., Mastrodonato M., Gena P., Perfettini J.L., et al. CSRP3 mediates polyphenols-induced cardioprotection in hypertension. J. Nutr. Biochem. 2019;66:29–42. doi: 10.1016/j.jnutbio.2019.01.001. PubMed DOI

Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI

Najmanová I., Pourová J., Mladěnka P. A Mixture of Phenolic Metabolites of Quercetin Can Decrease Elevated Blood Pressure of Spontaneously Hypertensive Rats Even in Low Doses. Nutrients. 2020;12:213. doi: 10.3390/nu12010213. PubMed DOI PMC

Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., Nomoto H., Furukawa Y., Furukawa S. 4-methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. J. Pharm. Exp. 1999;291:1276–1283. PubMed

Hsieh Y.L., Lin W.M., Lue J.H., Chang M.F., Hsieh S.T. Effects of 4-methylcatechol on skin reinnervation: Promotion of cutaneous nerve regeneration after crush injury. J. Neuropathol. Exp. Neurol. 2009;68:1269–1281. doi: 10.1097/NEN.0b013e3181c17b46. PubMed DOI

Fukuhara K., Ishikawa K., Yasuda S., Kishishita Y., Kim H.K., Kakeda T., Yamamoto M., Norii T., Ishikawa T. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF) Cell Mol. Neurobiol. 2012;32:971–977. doi: 10.1007/s10571-011-9782-2. PubMed DOI PMC

Sun M.K., Alkon D.L. Effects of 4-methylcatechol on spatial memory and depression. Neuroreport. 2008;19:355–359. doi: 10.1097/WNR.0b013e3282f519c7. PubMed DOI

Payton F., Bose R., Alworth W.L., Kumar A.P., Ghosh R. 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem. Pharm. 2011;81:1211–1218. doi: 10.1016/j.bcp.2011.03.005. PubMed DOI PMC

Bláha V., Bláha M., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. LDL-apheresis in the treatment familial hypercholesterolemia. Vnitř. Lék. 2014;60:970–976. PubMed

Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., Defesche J.C., et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013;34:3478–3490a. doi: 10.1093/eurheartj/eht273. PubMed DOI PMC

Carazo A., Hrubša M., Konečný L., Skořepa P., Paclíková M., Musil F., Karlíčková J., Javorská L., Matoušová K., Krčmová L.K., et al. Seminars in Thrombosis and Hemostasis. Thieme Medical Publishers, Inc.; New York, NY, USA: 2022. Sex-Related Differences in Platelet Aggregation: A Literature Review Supplemented with Local Data from a Group of Generally Healthy Individuals. PubMed DOI

Blaha V., Blaha M., Solichová D., Krčmová L.K., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017;30:159–165. doi: 10.1016/j.atherosclerosissup.2017.05.002. PubMed DOI

Borberg H., Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006;34:41–49. doi: 10.1016/j.transci.2005.09.001. PubMed DOI

Krcmova L., Solichova D., Melichar B., Kasparova M., Plisek J., Sobotka L., Solich P. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85:1466–1471. doi: 10.1016/j.talanta.2011.06.027. PubMed DOI

Gaziano J.M., Brotons C., Coppolecchia R., Cricelli C., Darius H., Gorelick B.P., Howard G., Pearson A.T., Rothwell M.P., Ruilope M.L., et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet. 2018;392:1036–1046. doi: 10.1016/S0140-6736(18)31924-X. PubMed DOI PMC

Pedersen A.K., FitzGerald G.A. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N. Engl. J. Med. 1984;311:1206–1211. doi: 10.1056/NEJM198411083111902. PubMed DOI

Sirok D., Pátfalusi M., Szeleczky G., Somorjai G., Greskovits D., Monostory K. Robust and sensitive LC/MS-MS method for simultaneous detection of acetylsalicylic acid and salicylic acid in human plasma. Microchem. J. 2018;136:200–208. doi: 10.1016/j.microc.2016.11.005. DOI

Friend M., Vucenik I., Miller M. Research pointers: Platelet responsiveness to aspirin in patients with hyperlipidaemia. BMJ. 2003;326:82–83. doi: 10.1136/bmj.326.7380.82. PubMed DOI PMC

Tremoli E., Folco G., Agradi E., Galli C. Platelet thromboxanes and serum-cholesterol. Lancet. 1979;1:107–108. doi: 10.1016/S0140-6736(79)90101-6. PubMed DOI

Ritchie J.L., Harker L.A. Platelet and fibrinogen survival in coronary atherosclerosis. Response to medical and surgical therapy. Am. J. Cardiol. 1977;39:595–598. doi: 10.1016/S0002-9149(77)80171-9. PubMed DOI

Stalker T.J., Newman D.K., Ma P., Wannemacher K.M., Brass L.F. Handbook of Experimental Pharmacology. Volume 210. Springer; Heidelberg, Germany: 2012. Platelet signaling; pp. 59–85. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...