The Effect of 4-Methylcatechol on Platelets in Familial Hypercholesterolemic Patients Treated with Lipid Apheresis and/or Proprotein Convertase Subtilisin Kexin 9 Monoclonal Antibodies
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
NU21-02-00135
Czech Health Research Council
SVV 260 549
Charles University
UHHK, 00179906
MH CZ - DRO
PubMed
37111061
PubMed Central
PMC10143685
DOI
10.3390/nu15081842
PII: nu15081842
Knihovny.cz E-resources
- Keywords
- 4-methylcathechol, familial hypercholesterolemia, lipid apheresis, platelet,
- MeSH
- Hyperlipoproteinemia Type II * drug therapy MeSH
- Cholesterol, LDL MeSH
- Humans MeSH
- Antibodies, Monoclonal pharmacology therapeutic use MeSH
- Proprotein Convertase 9 MeSH
- Proprotein Convertases therapeutic use MeSH
- Blood Component Removal * methods MeSH
- Subtilisin MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 4-methylcatechol MeSH Browser
- Cholesterol, LDL MeSH
- Antibodies, Monoclonal MeSH
- Proprotein Convertase 9 MeSH
- Proprotein Convertases MeSH
- Subtilisin MeSH
Elevated low-density lipoprotein (LDL) cholesterol levels lead to atherosclerosis and platelet hyperaggregability, both of which are known culprits of arterial thrombosis. Normalization of LDL cholesterol in familial hypercholesterolemia (FH) is not an easy task and frequently requires specific treatment, such as regularly performed lipid apheresis and/or novel drugs such as proprotein convertase subtilisin kexin 9 monoclonal antibodies (PCSK9Ab). Moreover, a high resistance rate to the first-line antiplatelet drug acetylsalicylic acid (ASA) stimulated research of novel antiplatelet drugs. 4-methylcatechol (4-MC), a known metabolite of several dietary flavonoids, may be a suitable candidate. The aim of this study was to analyse the antiplatelet effect of 4-MC in FH patients and to compare its impact on two FH treatment modalities via whole-blood impedance aggregometry. When compared to age-matched, generally healthy controls, the antiplatelet effect of 4-MC against collagen-induced aggregation was higher in FH patients. Apheresis itself improved the effect of 4-MC on platelet aggregation and blood from patients treated with this procedure and pretreated with 4-MC had lower platelet aggregability when compared to those solely treated with PCKS9Ab. Although this study had some inherent limitations, e.g., a low number of patients and possible impact of administered drugs, it confirmed the suitability of 4-MC as a promising antiplatelet agent and also demonstrated the effect of 4-MC in patients with a genetic metabolic disease for the first time.
See more in PubMed
Pejic R.N. Familial hypercholesterolemia. Ochsner J. 2014;14:669–672. PubMed PMC
Siegel-Axel D., Daub K., Seizer P., Lindemann S., Gawaz M. Platelet lipoprotein interplay: Trigger of foam cell formation and driver of atherosclerosis. Cardiovasc. Res. 2008;78:8–17. doi: 10.1093/cvr/cvn015. PubMed DOI
Yeung J., Li W., Holinstat M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharm. Rev. 2018;70:526–548. doi: 10.1124/pr.117.014530. PubMed DOI PMC
Qi Z., Hu L., Zhang J., Yang W., Liu X., Jia D., Yao Z., Chang L., Pan G., Zhong H., et al. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation. 2021;143:45–61. doi: 10.1161/CIRCULATIONAHA.120.046290. PubMed DOI
Raal F.J., Hovingh G.K., Catapano A.L. Familial hypercholesterolemia treatments: Guidelines and new therapies. Atherosclerosis. 2018;277:483–492. doi: 10.1016/j.atherosclerosis.2018.06.859. PubMed DOI
Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., Chapman M.J., De Backer G.G., Delgado V., Ference B.A., et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020;41:111–188. doi: 10.1093/eurheartj/ehz455. PubMed DOI
Alsayed N., Almahmeed W., Alnouri F., Al-Waili K., Sabbour H., Sulaiman K., Zubaid M., Ray K.K., Al-Rasadi K. Consensus clinical recommendations for the management of plasma lipid disorders in the Middle East: 2021 update. Atherosclerosis. 2022;343:28–50. doi: 10.1016/j.atherosclerosis.2021.11.022. PubMed DOI
Warden B.A., Fazio S., Shapiro M.D. Familial Hypercholesterolemia: Genes and Beyond. In: Feingold K.R., Anawalt B., Boyce A., Chrousos G., de Herder W.W., Dhatariya K., Dungan K., Hershman J.M., Hofland J., Kalra S., et al., editors. Endotext. MDText.Com, Inc.; South Dartmouth, MA, USA: 2021.
Kastelein J.J., Ginsberg H.N., Langslet G., Hovingh G.K., Ceska R., Dufour R., Blom D., Civeira F., Krempf M., Lorenzato C., et al. ODYSSEY FH I and FH II: 78 week results with alirocumab treatment in 735 patients with heterozygous familial hypercholesterolaemia. Eur. Heart J. 2015;36:2996–3003. doi: 10.1093/eurheartj/ehv370. PubMed DOI PMC
Sinzinger H., Pirich C., Bednar J., O’Grady J. Ex-vivo and in-vivo platelet function in patients with severe hypercholesterolemia undergoing LDL-apheresis. Thromb. Res. 1996;82:291–301. doi: 10.1016/0049-3848(96)00079-5. PubMed DOI
Otto C., Baumann M., Schreiner T., Bartsch G., Borberg H., Schwandt P., Schmid-Schönbein H. Standardized ultrasound as a new method to induce platelet aggregation: Evaluation, influence of lipoproteins and of glycoprotein IIb/IIIa antagonist tirofiban. Eur. J. Ultrasound. 2001;14:157–166. doi: 10.1016/S0929-8266(01)00157-4. PubMed DOI
Pares M.N., D’Amico E.A., Kutner J.M., Chamone Dde A., Bydlowski S.P. Platelet aggregation and lipoprotein levels in a patient with familial hypercholesterolemia after selective LDL-apheresis. Sao Paulo Med. J. 1997;115:1448–1451. doi: 10.1590/S1516-31801997000300009. PubMed DOI
Li J., Guasch-Ferré M., Chung W., Ruiz-Canela M., Toledo E., Corella D., Bhupathiraju S.N., Tobias D.K., Tabung F.K., Hu J., et al. The Mediterranean diet, plasma metabolome, and cardiovascular disease risk. Eur. Heart J. 2020;41:2645–2656. doi: 10.1093/eurheartj/ehaa209. PubMed DOI PMC
Widmer R.J., Flammer A.J., Lerman L.O., Lerman A. The Mediterranean diet, its components, and cardiovascular disease. Am. J. Med. 2015;128:229–238. doi: 10.1016/j.amjmed.2014.10.014. PubMed DOI PMC
Martínez-González M.A., Gea A., Ruiz-Canela M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019;124:779–798. doi: 10.1161/CIRCRESAHA.118.313348. PubMed DOI
Franke A.A., Lai J.F., Halm B.M. Absorption, distribution, metabolism, and excretion of isoflavonoids after soy intake. Arch. Biochem. Biophys. 2014;559:24–28. doi: 10.1016/j.abb.2014.06.007. PubMed DOI PMC
Hanske L., Engst W., Loh G., Sczesny S., Blaut M., Braune A. Contribution of gut bacteria to the metabolism of cyanidin 3-glucoside in human microbiota-associated rats. Br. J. Nutr. 2013;109:1433–1441. doi: 10.1017/S0007114512003376. PubMed DOI
Roowi S., Stalmach A., Mullen W., Lean M.E., Edwards C.A., Crozier A. Green tea flavan-3-ols: Colonic degradation and urinary excretion of catabolites by humans. J. Agric. Food Chem. 2010;58:1296–1304. doi: 10.1021/jf9032975. PubMed DOI
Sánchez-Patán F., Monagas M., Moreno-Arribas M.V., Bartolomé B. Determination of microbial phenolic acids in human faeces by UPLC-ESI-TQ MS. J. Agric. Food Chem. 2011;59:2241–2247. doi: 10.1021/jf104574z. PubMed DOI
Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC
Williamson G., Clifford M.N. Colonic metabolites of berry polyphenols: The missing link to biological activity? Br. J. Nutr. 2010;104((Suppl. 3)):48–66. doi: 10.1017/S0007114510003946. PubMed DOI
Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:e1900261. doi: 10.1002/mnfr.201900261. PubMed DOI
Hrubša M., Konečný L., Paclíková M., Parvin M.S., Skořepa P., Musil F., Karlíčková J., Javorská L., Matoušová K., Krčmová L.K., et al. The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action. Nutrients. 2022;14:4798. doi: 10.3390/nu14224798. PubMed DOI PMC
Oudot C., Gomes A., Nicolas V., Le Gall M., Chaffey P., Broussard C., Calamita G., Mastrodonato M., Gena P., Perfettini J.L., et al. CSRP3 mediates polyphenols-induced cardioprotection in hypertension. J. Nutr. Biochem. 2019;66:29–42. doi: 10.1016/j.jnutbio.2019.01.001. PubMed DOI
Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI
Najmanová I., Pourová J., Mladěnka P. A Mixture of Phenolic Metabolites of Quercetin Can Decrease Elevated Blood Pressure of Spontaneously Hypertensive Rats Even in Low Doses. Nutrients. 2020;12:213. doi: 10.3390/nu12010213. PubMed DOI PMC
Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., Nomoto H., Furukawa Y., Furukawa S. 4-methylcatechol increases brain-derived neurotrophic factor content and mRNA expression in cultured brain cells and in rat brain in vivo. J. Pharm. Exp. 1999;291:1276–1283. PubMed
Hsieh Y.L., Lin W.M., Lue J.H., Chang M.F., Hsieh S.T. Effects of 4-methylcatechol on skin reinnervation: Promotion of cutaneous nerve regeneration after crush injury. J. Neuropathol. Exp. Neurol. 2009;68:1269–1281. doi: 10.1097/NEN.0b013e3181c17b46. PubMed DOI
Fukuhara K., Ishikawa K., Yasuda S., Kishishita Y., Kim H.K., Kakeda T., Yamamoto M., Norii T., Ishikawa T. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF) Cell Mol. Neurobiol. 2012;32:971–977. doi: 10.1007/s10571-011-9782-2. PubMed DOI PMC
Sun M.K., Alkon D.L. Effects of 4-methylcatechol on spatial memory and depression. Neuroreport. 2008;19:355–359. doi: 10.1097/WNR.0b013e3282f519c7. PubMed DOI
Payton F., Bose R., Alworth W.L., Kumar A.P., Ghosh R. 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem. Pharm. 2011;81:1211–1218. doi: 10.1016/j.bcp.2011.03.005. PubMed DOI PMC
Bláha V., Bláha M., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. LDL-apheresis in the treatment familial hypercholesterolemia. Vnitř. Lék. 2014;60:970–976. PubMed
Nordestgaard B.G., Chapman M.J., Humphries S.E., Ginsberg H.N., Masana L., Descamps O.S., Wiklund O., Hegele R.A., Raal F.J., Defesche J.C., et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease: Consensus statement of the European Atherosclerosis Society. Eur. Heart J. 2013;34:3478–3490a. doi: 10.1093/eurheartj/eht273. PubMed DOI PMC
Carazo A., Hrubša M., Konečný L., Skořepa P., Paclíková M., Musil F., Karlíčková J., Javorská L., Matoušová K., Krčmová L.K., et al. Seminars in Thrombosis and Hemostasis. Thieme Medical Publishers, Inc.; New York, NY, USA: 2022. Sex-Related Differences in Platelet Aggregation: A Literature Review Supplemented with Local Data from a Group of Generally Healthy Individuals. PubMed DOI
Blaha V., Blaha M., Solichová D., Krčmová L.K., Lánská M., Havel E., Vyroubal P., Zadák Z., Žák P., Sobotka L. Antioxidant defense system in familial hypercholesterolemia and the effects of lipoprotein apheresis. Atheroscler. Suppl. 2017;30:159–165. doi: 10.1016/j.atherosclerosissup.2017.05.002. PubMed DOI
Borberg H., Tauchert M. Rheohaemapheresis of ophthalmological diseases and diseases of the microcirculation. Transfus. Apher. Sci. 2006;34:41–49. doi: 10.1016/j.transci.2005.09.001. PubMed DOI
Krcmova L., Solichova D., Melichar B., Kasparova M., Plisek J., Sobotka L., Solich P. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85:1466–1471. doi: 10.1016/j.talanta.2011.06.027. PubMed DOI
Gaziano J.M., Brotons C., Coppolecchia R., Cricelli C., Darius H., Gorelick B.P., Howard G., Pearson A.T., Rothwell M.P., Ruilope M.L., et al. Use of aspirin to reduce risk of initial vascular events in patients at moderate risk of cardiovascular disease (ARRIVE): A randomised, double-blind, placebo-controlled trial. Lancet. 2018;392:1036–1046. doi: 10.1016/S0140-6736(18)31924-X. PubMed DOI PMC
Pedersen A.K., FitzGerald G.A. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N. Engl. J. Med. 1984;311:1206–1211. doi: 10.1056/NEJM198411083111902. PubMed DOI
Sirok D., Pátfalusi M., Szeleczky G., Somorjai G., Greskovits D., Monostory K. Robust and sensitive LC/MS-MS method for simultaneous detection of acetylsalicylic acid and salicylic acid in human plasma. Microchem. J. 2018;136:200–208. doi: 10.1016/j.microc.2016.11.005. DOI
Friend M., Vucenik I., Miller M. Research pointers: Platelet responsiveness to aspirin in patients with hyperlipidaemia. BMJ. 2003;326:82–83. doi: 10.1136/bmj.326.7380.82. PubMed DOI PMC
Tremoli E., Folco G., Agradi E., Galli C. Platelet thromboxanes and serum-cholesterol. Lancet. 1979;1:107–108. doi: 10.1016/S0140-6736(79)90101-6. PubMed DOI
Ritchie J.L., Harker L.A. Platelet and fibrinogen survival in coronary atherosclerosis. Response to medical and surgical therapy. Am. J. Cardiol. 1977;39:595–598. doi: 10.1016/S0002-9149(77)80171-9. PubMed DOI
Stalker T.J., Newman D.K., Ma P., Wannemacher K.M., Brass L.F. Handbook of Experimental Pharmacology. Volume 210. Springer; Heidelberg, Germany: 2012. Platelet signaling; pp. 59–85. PubMed DOI PMC
Small phenolic compounds as potential endocrine disruptors interacting with estrogen receptor alpha