A dynamic compartment model for xylem loading and long-distance transport of iron explains the effect of kanamycin on metal uptake in Arabidopsis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37143881
PubMed Central
PMC10151686
DOI
10.3389/fpls.2023.1147598
Knihovny.cz E-zdroje
- Klíčová slova
- FRD3, IREG1, WBC19, citrate, iron, kanamycin, nicotianamine, zinc,
- Publikační typ
- časopisecké články MeSH
Arabidopsis plants exposed to the antibiotic kanamycin (Kan) display altered metal homeostasis. Further, mutation of the WBC19 gene leads to increased sensitivity to kanamycin and changes in iron (Fe) and zinc (Zn) uptake. Here we propose a model that explain this surprising relationship between metal uptake and exposure to Kan. We first use knowledge about the metal uptake phenomenon to devise a transport and interaction diagram on which we base the construction of a dynamic compartment model. The model has three pathways for loading Fe and its chelators into the xylem. One pathway, involving an unknown transporter, loads Fe as a chelate with citrate (Ci) into the xylem. This transport step can be significantly inhibited by Kan. In parallel, FRD3 transports Ci into the xylem where it can chelate with free Fe. A third critical pathway involves WBC19, which transports metal-nicotianamine (NA), mainly as Fe-NA chelate, and possibly NA itself. To permit quantitative exploration and analysis, we use experimental time series data to parameterize this explanatory and predictive model. Its numerical analysis allows us to predict responses by a double mutant and explain the observed differences between data from wildtype, mutants and Kan inhibition experiments. Importantly, the model provides novel insights into metal homeostasis by permitting the reverse-engineering of mechanistic strategies with which the plant counteracts the effects of mutations and of the inhibition of iron transport by kanamycin.
Zobrazit více v PubMed
Alvarez-Vasquez F., Sims K. J., Voit E. O., Hannun Y. A. (2007). Coordination of the dynamics of yeast sphingolipid metabolism during the diauxic shift. Theor. Biol. Med. Model. 4, 42. doi: 10.1186/1742-4682-4-42 PubMed DOI PMC
Arrivault S., Senger T., Krämer U. (2006). The arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating zn exclusion from the shoot under fe deficiency and zn oversupply. Plant Journal: For Cell Mol. Biol. 46 (5), 861–879. doi: 10.1111/j.1365-313X.2006.02746.x PubMed DOI
Burris K., Mentewab A., Ripp S., Stewart C. N. (2008). An arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to escherichia coli. Microbial Biotechnol. 1 (2), 191–195. doi: 10.1111/j.1751-7915.2007.00010.x PubMed DOI PMC
Clemens S., Deinlein U., Ahmadi H., Höreth S., Uraguchi S. (2013). Nicotianamine is a major player in plant zn homeostasis. Biometals: Int. J. Role Metal Ions Biology Biochemistry Med. 26 (4), 623–632. doi: 10.1007/s10534-013-9643-1 PubMed DOI
Connolly E. L., Fett J. P., Guerinot M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14 (6), 1347–1357. doi: 10.1105/tpc.001263 PubMed DOI PMC
Conte S., Stevenson D., Furner I., Lloyd A. (2009). Multiple antibiotic resistance in Arabidopsis is conferred by mutations in a chloroplast-localized transport protein. Plant Physiol. 151 (2), 559–573. doi: 10.1104/pp.109.143487 PubMed DOI PMC
Conte S. S., Lloyd A. M. (2010). The MAR1 transporter is an opportunistic entry point for antibiotics. Plant Signaling Behav. 5 (1), 49–52. doi: 10.4161/psb.5.1.10142 PubMed DOI PMC
Desbrosses-Fonrouge A.-G., Voigt K., Schröder A., Arrivault S., Thomine S., Krämer U. (2005). Arabidopsis thaliana MTP1 is a zn transporter in the vacuolar membrane which mediates zn detoxification and drives leaf zn accumulation. FEBS Lett. 579 (19), 4165–4174. doi: 10.1016/j.febslet.2005.06.046 PubMed DOI
Durrett T. P., Gassmann W., Rogers E. E. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144 (1), 197–205. doi: 10.1104/pp.107.097162 PubMed DOI PMC
Eren E., Argüello J. M. (2004). Arabidopsis HMA2, a divalent heavy metal-transporting P(IB)-type ATPase, is involved in cytoplasmic Zn2+ homeostasis. Plant Physiol. 136 (3), 3712–3723. doi: 10.1104/pp.104.046292 PubMed DOI PMC
Green L. S., Rogers E. E. (2004). FRD3 controls iron localization in arabidopsis. Plant Physiol. 136 (1), 2523–2531. doi: 10.1104/pp.104.045633 PubMed DOI PMC
Grotz N., Fox T., Connolly E., Park W., Guerinot M. L., Eide D. (1998). Identification of a family of zinc transporter genes from arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sciences 95(12) pp, 7220–7224. doi: 10.1073/pnas.95.12.7220 PubMed DOI PMC
Gutenkunst R. N., Waterfall J. J., Casey F. P., Brown K. S., Myers C. R., Sethna J. P. (2007). Universally sloppy parameter sensitivities in systems biology models. PloS Comput. Biol. 3 (10), e189. doi: 10.1371/journal.pcbi.0030189 PubMed DOI PMC
Hatzimanikatis V., Floudas C. A., Bailey J. E. (1996. a). Optimization of regulatory architectures in metabolic reaction networks. Biotechnol. Bioeng 52, 485–500. doi: 10.1002/(SICI)1097-0290(19961120)52:4<485::AID-BIT4>3.0.CO;2-L PubMed DOI
Hatzimanikatis V., Floudas C. A., Bailey J. E. (1996. b). Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AIChE J. 42, 1277–1292. doi: 10.1002/aic.690420509 DOI
Haydon M. J., Kawachi M., Wirtz M., Hillmer S., Hell R., Krämer U. (2012). Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in arabidopsis. Plant Cell 24 (2), 724–737. doi: 10.1105/tpc.111.095042 PubMed DOI PMC
Hussain D., Haydon M. J., Wang Y., Wong E., Sherson S. M., Young J., et al. . (2004). P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in arabidopsis. Plant Cell 16 (5), 1327–1339. doi: 10.1105/tpc.020487 PubMed DOI PMC
Ishii N., Nakahigashi K., Baba T., Robert M., Soga T., Kanai A., et al. . (2007). Multiple high-throughput analyses monitor the response of e. coli to perturbations. Science 316 (5824), 593–597. doi: 10.1126/science.1132067 PubMed DOI
Jacquez J. A. (1996). Compartmental analysis in biology and medicine (Ann Arbor, MI: BioMedware; ).
Klatte M., Schuler M., Wirtz M., Fink-Straube C., Hell R., Bauer P. (2009). The analysis of arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 150 (1), 257–271. doi: 10.1104/pp.109.136374 PubMed DOI PMC
Kobae Y., Uemura T., Sato M. H., Ohnishi M., Mimura T., Nakagawa T., et al. . (2004). Zinc transporter of arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis. Plant Cell Physiol. 45 (12), 1749–1758. doi: 10.1093/pcp/pci015 PubMed DOI
Larbi A., Morales F., Abadía A., Abadía J. (2010). Changes in iron and organic acid concentrations in xylem sap and apoplastic fluid of iron-deficient beta vulgaris plants in response to iron resupply. J. Plant Physiol. 167 (4), 255–260. doi: 10.1016/j.jplph.2009.09.007 PubMed DOI
Lee Y., Chen P. W., Voit E. O. (2011). Analysis of operating principles with s-system models. Math. Biosci. 231 (1), 49–60. doi: 10.1016/j.mbs.2011.03.001 PubMed DOI PMC
Mentewab A., Matheson K., Adebiyi M., Robinson S., Elston B. (2014). RNA-Seq analysis of the effect of kanamycin and the ABC transporter AtWBC19 on arabidopsis thaliana seedlings reveals changes in metal content. PloS One 9 (10), e109310. doi: 10.1371/journal.pone.0109310 PubMed DOI PMC
Mentewab A., Stewart C. N. (2005). Overexpression of an arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat. Biotechnol. 23 (9), 1177–1180. doi: 10.1038/nbt1134 PubMed DOI
Mingeot-Leclercq M. P., Glupczynski Y., Tulkens P. M. (1999). Aminoglycosides: Activity and resistance. Antimicrobial Agents Chemotherapy 43 (4), 727–737. doi: 10.1128/AAC.43.4.727 PubMed DOI PMC
Morrissey J., Baxter I. R., Lee J., Li L., Lahner B., Grotz N., et al. . (2009). The ferroportin metal efflux proteins function in iron and cobalt homeostasis in arabidopsis. Plant Cell 21 (10), 3326–3338. doi: 10.1105/tpc.109.069401 PubMed DOI PMC
Raue A., Kreutz C., Maiwald T., Bachmann J., Schilling M., Klingmüller U., et al. . (2009). Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25 (15), 1923–1929. doi: 10.1093/bioinformatics/btp358 PubMed DOI
Rellán-Alvarez R., Giner-Martínez-Sierra J., Orduna J., Orera I., Rodríguez-Castrillón J. A., García-Alonso J. I., et al. . (2010). Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron: New insights into plant iron long-distance transport. Plant Cell Physiol. 51 (1), 91–102. doi: 10.1093/pcp/pcp170 PubMed DOI
Rogers E. E., Guerinot M. L. (2002). FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in arabidopsis. Plant Cell 14 (8), 1787–1799. doi: 10.1105/tpc.001495 PubMed DOI PMC
Schuler M., Rellán-Álvarez R., Fink-Straube C., Abadía J., Bauer P. (2012). Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis[C][W]. Plant Cell 24 (6), 2380–2400. doi: 10.1105/tpc.112.099077 PubMed DOI PMC
Segrè D., Vitkup D., Church G. M. (2002). Analysis of optimality in natural and perturbed metabolic networks. Proc. Natl. Acad. Sci. 99, 15112–15117. doi: 10.1073/pnas.232349399 PubMed DOI PMC
Sinclair S. A., Krämer U. (2012). The zinc homeostasis network of land plants. iochim. Biophys. Acta. 1823 (9), 1553–1567. doi: 10.1016/j.bbamcr.2012.05.016 PubMed DOI
Song W. Y., Choi K. S., Kim D. Y., Geisler M., Park J., Vincenzetti V., et al. . (2010). Arabidopsis PCR2 is a zinc exporter involved in both zinc extrusion and long distance zinc transport. Plant Cell 22 (7), 2237–2252. doi: 10.1105/tpc.109.070185 PubMed DOI PMC
Srinath S., Gunawan R. (2010). Parameter identifiability of power-law biochemical system models. J. Biotechnol. 149 (3), 132–140. doi: 10.1016/j.jbiotec.2010.02.019 PubMed DOI
Stevens A. (2022). Monte-Carlo Simulation: an introduction for engineers and scientists (CRC Press; ).
Verret F., Gravot A., Auroy P., Leonhardt N., David P., Nussaume L., et al. . (2004). Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett. 576 (3), 306–312. doi: 10.1016/j.febslet.2004.09.023 PubMed DOI
Verrier P. J., Bird D., Burla B., Dassa E., Forestier C., Geisler M., et al. . (2008). Plant ABC proteins–a unified nomenclature and updated inventory. Trends Plant Sci. 13 (4), 151–159. doi: 10.1016/j.tplants.2008.02.001 PubMed DOI
Vert G., Briat J.-F., Curie C. (2001). Arabidopsis IRT2 gene encodes a root-periphery iron transporter. Plant J. 26 (2), 181–189. doi: 10.1046/j.1365-313x.2001.01018.x PubMed DOI
Vert G. A., Briat J.-F., Curie C. (2003). Dual regulation of the arabidopsis high-affinity root iron uptake system by local and long-distance signals. Plant Physiol. 132 (2), 796–804. doi: 10.1104/pp.102.016089 PubMed DOI PMC
Voit E. O. (2013). Biochemical systems theory: A review. ISRN biomathematics . 2013, e897658. doi: 10.1155/2013/897658 DOI
Voit E. O. (2017. a). The best models of metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 9 (6), e1391. doi: 10.1002/wsbm.1391 PubMed DOI PMC
Voit E. O. (2017. b). A first course in systems biology. 2nd ed. (New York, NY: Garland Science; ), 2017.
Voit E. O., Martens H. A., Omholt S. W. (2015). 150 years of the mass action law. PloS Comp. Biol. 11 (1), e1004012. doi: 10.1371/journal.pcbi.1004012 PubMed DOI PMC
von Wiren N., Klair S., Bansal S., Briat J.-F., Khodr H., Shioiri T., et al. . (1999). Nicotianamine chelates both FeIII and FeII. implications for metal transport in plants. Plant Physiol. 119 (3), 1107–1114. doi: 10.1104/pp.119.3.1107 PubMed DOI PMC
Yi Y., Guerinot M. L. (1996). Genetic evidence that induction of root Fe(III) chelate reductase activity is necessary for iron uptake under iron deficiency. Plant Journal: For Cell Mol. Biol. 10 (5), 835–844. doi: 10.1046/j.1365-313x.1996.10050835.x PubMed DOI