• This record comes from PubMed

Domino-like effect of C112R mutation on ApoE4 aggregation and its reduction by Alzheimer's Disease drug candidate

. 2023 Jun 06 ; 18 (1) : 38. [epub] 20230606

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37280636
PubMed Central PMC10245438
DOI 10.1186/s13024-023-00620-9
PII: 10.1186/s13024-023-00620-9
Knihovny.cz E-resources

BACKGROUND: Apolipoprotein E (ApoE) ε4 genotype is the most prevalent risk factor for late-onset Alzheimer's Disease (AD). Although ApoE4 differs from its non-pathological ApoE3 isoform only by the C112R mutation, the molecular mechanism of its proteinopathy is unknown. METHODS: Here, we reveal the molecular mechanism of ApoE4 aggregation using a combination of experimental and computational techniques, including X-ray crystallography, site-directed mutagenesis, hydrogen-deuterium mass spectrometry (HDX-MS), static light scattering and molecular dynamics simulations. Treatment of ApoE ε3/ε3 and ε4/ε4 cerebral organoids with tramiprosate was used to compare the effect of tramiprosate on ApoE4 aggregation at the cellular level. RESULTS: We found that C112R substitution in ApoE4 induces long-distance (> 15 Å) conformational changes leading to the formation of a V-shaped dimeric unit that is geometrically different and more aggregation-prone than the ApoE3 structure. AD drug candidate tramiprosate and its metabolite 3-sulfopropanoic acid induce ApoE3-like conformational behavior in ApoE4 and reduce its aggregation propensity. Analysis of ApoE ε4/ε4 cerebral organoids treated with tramiprosate revealed its effect on cholesteryl esters, the storage products of excess cholesterol. CONCLUSIONS: Our results connect the ApoE4 structure with its aggregation propensity, providing a new druggable target for neurodegeneration and ageing.

See more in PubMed

Tomaskova H, Kuhnova J, Cimler R, Dolezal O, Kuca K. Prediction of population with Alzheimer’s disease in the European Union using a system dynamics model. Neuropsychiatr Dis Treat. 2016;12:1589–98. doi: 10.2147/NDT.S107969. PubMed DOI PMC

2022 Alzheimer’s disease facts and figures. Alzheimers Dement J Alzheimers Assoc. 2022;18:700–89. PubMed

Gustavsson A, Norton N, Fast T, Frölich L, Georges J, Holzapfel D et al. Global estimates on the number of persons across the Alzheimer’s disease continuum. Alzheimers Dement [Internet]. [cited 2022 Jun 9];n/a. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/alz.12694. PubMed

Cummings J, Bauzon J, Lee G. Who funds Alzheimer’s disease drug development? Alzheimers Dement Transl Res Clin Interv. 2021;7:e12185. PubMed PMC

Huang L-K, Chao S-P, Hu C-J. Clinical trials of new drugs for Alzheimer disease. J Biomed Sci. 2020;27:18. doi: 10.1186/s12929-019-0609-7. PubMed DOI PMC

Knopman DS, Jones DT, Greicius MD. Failure to demonstrate efficacy of aducanumab: an analysis of the EMERGE and ENGAGE trials as reported by Biogen, December 2019. Alzheimers Dement. 2021;17:696–701. doi: 10.1002/alz.12213. PubMed DOI

Cummings J, Lee G, Nahed P, Kambar MEZN, Zhong K, Fonseca J, et al. Alzheimer’s disease drug development pipeline: 2022. Alzheimers Dement Transl Res Clin Interv. 2022;8:e12295. PubMed PMC

Huang Y, Mucke L. Alzheimer mechanisms and therapeutic strategies. Cell. 2012;148:1204–22. doi: 10.1016/j.cell.2012.02.040. PubMed DOI PMC

Hey JA, Yu JY, Versavel M, Abushakra S, Kocis P, Power A, et al. Clinical pharmacokinetics and safety of ALZ-801, a Novel Prodrug of Tramiprosate in Development for the treatment of Alzheimer’s Disease. Clin Pharmacokinet. 2018;57:315–33. doi: 10.1007/s40262-017-0608-3. PubMed DOI PMC

Gervais F, Paquette J, Morissette C, Krzywkowski P, Yu M, Azzi M, et al. Targeting soluble Abeta peptide with tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging. 2007;28:537–47. doi: 10.1016/j.neurobiolaging.2006.02.015. PubMed DOI

Kocis P, Tolar M, Yu J, Sinko W, Ray S, Blennow K, et al. Elucidating the Aβ42 anti-aggregation mechanism of action of Tramiprosate in Alzheimer’s Disease: integrating Molecular Analytical Methods, pharmacokinetic and clinical data. CNS Drugs. 2017;31:495–509. doi: 10.1007/s40263-017-0434-z. PubMed DOI PMC

Hey JA, Kocis P, Hort J, Abushakra S, Power A, Vyhnálek M, et al. Discovery and Identification of an endogenous metabolite of Tramiprosate and its Prodrug ALZ-801 that inhibits Beta amyloid oligomer formation in the human brain. CNS Drugs. 2018;32:849–61. doi: 10.1007/s40263-018-0554-0. PubMed DOI PMC

Abushakra S, Porsteinsson A, Vellas B, Cummings J, Gauthier S, Hey JA, et al. Clinical benefits of Tramiprosate in Alzheimer’s Disease Are Associated with higher number of APOE4 alleles: the “APOE4 gene-dose effect. J Prev Alzheimers Dis. 2016;3:219–28. PubMed

Abushakra S, Porsteinsson A, Scheltens P, Sadowsky C, Vellas B, Cummings J, et al. Clinical Effects of Tramiprosate in APOE4/4 homozygous patients with mild Alzheimer’s Disease Suggest Disease Modification potential. J Prev Alzheimers Dis. 2017;4:149–56. PubMed

Abushakra S, Porsteinsson AP, Sabbagh M, Bracoud L, Schaerer J, Power A, et al. APOE ε4/ε4 homozygotes with early Alzheimer’s disease show accelerated hippocampal atrophy and cortical thinning that correlates with cognitive decline. Alzheimers Dement N Y N. 2020;6:e12117. PubMed PMC

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science. 1993;261:921–3. doi: 10.1126/science.8346443. PubMed DOI

Sadigh-Eteghad S, Talebi M, Farhoudi M. Association of apolipoprotein E epsilon 4 allele with sporadic late onset Alzheimer`s disease. A meta-analysis. Neurosci Riyadh Saudi Arab. 2012;17:321–6. PubMed

Korologou-Linden R, Bhatta L, Brumpton BM, Howe LD, Millard LAC, Kolaric K, et al. The causes and consequences of Alzheimer’s disease: phenome-wide evidence from mendelian randomization. Nat Commun Nature Publishing Group. 2022;13:4726. doi: 10.1038/s41467-022-32183-6. PubMed DOI PMC

Mahley RW, Weisgraber KH, Huang Y, Apolipoprotein E. Structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res. 2009;50:183–8. doi: 10.1194/jlr.R800069-JLR200. PubMed DOI PMC

Holtzman DM, Bales KR, Tenkova T, Fagan AM, Parsadanian M, Sartorius LJ, et al. Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2000;97:2892–7. doi: 10.1073/pnas.050004797. PubMed DOI PMC

Verghese PB, Castellano JM, Garai K, Wang Y, Jiang H, Shah A, et al. ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc Natl Acad Sci U S A. 2013;110:E1807–16. doi: 10.1073/pnas.1220484110. PubMed DOI PMC

Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer’s disease. Annu Rev Neurosci. 1996;19:53–77. doi: 10.1146/annurev.ne.19.030196.000413. PubMed DOI

Weisgraber KH, Rall SC, Mahley RW. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem. 1981;256:9077–83. doi: 10.1016/S0021-9258(19)52510-8. PubMed DOI

Safieh M, Korczyn AD, Michaelson DM. ApoE4: an emerging therapeutic target for Alzheimer’s disease. BMC Med. 2019;17:64. doi: 10.1186/s12916-019-1299-4. PubMed DOI PMC

Yang A, Kantor B, Chiba-Falek OAPOE. The New Frontier in the development of a therapeutic target towards Precision Medicine in Late-Onset Alzheimer’s. Int J Mol Sci Multidisciplinary Digital Publishing Institute. 2021;22:1244. PubMed PMC

Kim J, Eltorai AEM, Jiang H, Liao F, Verghese PB, Kim J, et al. Anti-apoe immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J Exp Med. 2012;209:2149–56. doi: 10.1084/jem.20121274. PubMed DOI PMC

Huynh T-PV, Liao F, Francis CM, Robinson GO, Serrano JR, Jiang H, et al. Age-Dependent Effects of apoE reduction using antisense oligonucleotides in a model of β-amyloidosis. Neuron. 2017;96:1013–1023e4. doi: 10.1016/j.neuron.2017.11.014. PubMed DOI PMC

Chen H-K, Liu Z, Meyer-Franke A, Brodbeck J, Miranda RD, McGuire JG, et al. Small molecule structure correctors abolish detrimental Effects of Apolipoprotein E4 in cultured neurons. J Biol Chem. 2012;287:5253–66. doi: 10.1074/jbc.M111.276162. PubMed DOI PMC

Petros AM, Korepanova A, Jakob CG, Qiu W, Panchal SC, Wang J, et al. Fragment-based Discovery of an apolipoprotein E4 (apoE4) stabilizer. J Med Chem American Chemical Society. 2019;62:4120–30. PubMed

Garai K, Frieden C. The association – dissociation behavior of the ApoE proteins: kinetic and equilibrium studies. Biochemistry. 2010;49:9533–41. doi: 10.1021/bi101407m. PubMed DOI PMC

Zhang Y, Vasudevan S, Sojitrawala R, Zhao W, Cui C, Xu C, et al. A monomeric, biologically active, full-length human apolipoprotein E. Biochemistry. 2007;46:10722–32. doi: 10.1021/bi700672v. PubMed DOI

Chen J, Li Q, Wang J. Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci. Proceedings of the National Academy of Sciences; 2011;108:14813–8. PubMed PMC

Perugini MA, Schuck P, Howlett GJ. Self-association of human apolipoprotein E3 and E4 in the presence and absence of phospholipid. J Biol Chem. 2000;275:36758–65. doi: 10.1074/jbc.M005565200. PubMed DOI

Chou C-Y, Lin Y-L, Huang Y-C, Sheu S-Y, Lin T-H, Tsay H-J, et al. Structural variation in human apolipoprotein E3 and E4: secondary structure, Tertiary structure, and size distribution. Biophys J. 2005;88:455–66. doi: 10.1529/biophysj.104.046813. PubMed DOI PMC

Hubin E, Verghese PB, van Nuland N, Broersen K. Apolipoprotein E associated with reconstituted high-density lipoprotein-like particles is protected from aggregation. FEBS Lett. 2019;593:1144–53. doi: 10.1002/1873-3468.13428. PubMed DOI PMC

Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res. 1991;541:163–6. doi: 10.1016/0006-8993(91)91092-F. PubMed DOI

Gal J, Katsumata Y, Zhu H, Srinivasan S, Chen J, Johnson LA, et al. Apolipoprotein E proteinopathy is a Major Dementia-Associated Pathologic Biomarker in individuals with or without the APOE Epsilon 4 Allele. Am J Pathol Elsevier. 2022;192:564–78. doi: 10.1016/j.ajpath.2021.11.013. PubMed DOI PMC

Hatters DM, Zhong N, Rutenber E, Weisgraber KH. Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol. 2006;361:932–44. doi: 10.1016/j.jmb.2006.06.080. PubMed DOI

Sarkar G, Sommer SS. The “megaprimer” method of site-directed mutagenesis. Biotechniques. 1990;8:404–7. PubMed

Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. Int Union Crystallogr. 2010;66:125–32. PubMed PMC

Evans PR, Murshudov GN. How good are my data and what is the resolution? Acta Crystallogr D Biol Crystallogr. Int Union Crystallogr. 2013;69:1204–14. PubMed PMC

McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. Phaser crystallographic software. J Appl Crystallogr International Union of Crystallography. 2007;40:658–74. doi: 10.1107/S0021889807021206. PubMed DOI PMC

Adams P, Afonine P, Bunkóczi G, Chen V, Echols N, Headd J, et al. The Phenix Software for Automated determination of Macromolecular Structures. Methods San Diego Calif. 2011;55:94–106. doi: 10.1016/j.ymeth.2011.07.005. PubMed DOI PMC

Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr International Union of Crystallography. 2010;66:486–501. doi: 10.1107/S0907444910007493. PubMed DOI PMC

Kavan D, Man P. MSTools—Web based application for visualization and presentation of HXMS data. Int J Mass Spectrom. 2011;302:53–8. doi: 10.1016/j.ijms.2010.07.030. DOI

Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 2019;47:D442–50. doi: 10.1093/nar/gky1106. PubMed DOI PMC

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78:1606–19. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Brautigam CA. Calculations and publication-quality illustrations for Analytical Ultracentrifugation Data. Methods Enzymol. 2015;562:109–33. doi: 10.1016/bs.mie.2015.05.001. PubMed DOI

Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics. 2012;4:17. doi: 10.1186/1758-2946-4-17. PubMed DOI PMC

Rappe AK, Casewit CJ, Colwell KS, Goddard WA, Skiff WM. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc. 1992;114:10024–35. doi: 10.1021/ja00051a040. DOI

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision E.01. Wallingford, CT: Gaussian, Inc; 2009.

Case DA, Babin V, Berryman JT, Betz RM, Cai Q, Cerutti S et al. AMBER 14. San Francisco: University of California; 2014.

Zoete V, Cuendet MA, Grosdidier A, Michielin O. SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem. 2011;32:2359–68. doi: 10.1002/jcc.21816. PubMed DOI

Rose PW, Bi C, Bluhm WF, Christie CH, Dimitropoulos D, Dutta S, et al. The RCSB Protein Data Bank: new resources for research and education. Nucleic Acids Res. 2013;41:D475–82. doi: 10.1093/nar/gks1200. PubMed DOI PMC

Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 2018;46:W296–303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Doerr S, Harvey MJ, Noé F, De Fabritiis GHTMD. High-Throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput [Internet]. 2016 [cited 2016 Aug 30];12:1845–52. Available from: http://pubs.acs.org/doi/abs/10.1021/acs.jctc.6b00049. PubMed

Bas DC, Rogers DM, Jensen JH. Very fast prediction and rationalization of pKa values for protein–ligand complexes. Proteins Struct Funct Bioinforma. 2008;73:765–83. doi: 10.1002/prot.22102. PubMed DOI

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79:926–35. doi: 10.1063/1.445869. DOI

Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot BL, et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods. 2017;14:71–3. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Frieden C, Wang H, Ho CMW. A mechanism for lipid binding to apoE and the role of intrinsically disordered regions coupled to domain-domain interactions. Proc Natl Acad Sci U S A. 2017;114:6292–7. doi: 10.1073/pnas.1705080114. PubMed DOI PMC

Feenstra K, Anton H, Berk, Berendsen Herman JC. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen‐rich systems. J Comput Chem. 1999;20:786–98. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Harvey MJ, De Fabritiis G. An implementation of the smooth particle Mesh Ewald Method on GPU Hardware. J Chem Theory Comput. 2009;5:2371–7. doi: 10.1021/ct900275y. PubMed DOI

Harvey MJ, Giupponi G, Fabritiis GD. ACEMD: accelerating Biomolecular Dynamics in the Microsecond Time Scale. J Chem Theory Comput. 2009;5:1632–9. doi: 10.1021/ct9000685. PubMed DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step Molecular Dynamics through Hydrogen Mass Repartitioning. J Chem Theory Comput. 2015;11:1864–74. doi: 10.1021/ct5010406. PubMed DOI

Naritomi Y, Fuchigami S. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions. J Chem Phys. 2011;134:065101. doi: 10.1063/1.3554380. PubMed DOI

Doerr S, Harvey MJ, Noé F, De Fabritiis GHTMD. High-throughput Molecular Dynamics for Molecular Discovery. J Chem Theory Comput. 2016;12:1845–52. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Swails J. ParmEd [Internet]. 2010 [cited 2018 Mar 8]. Available from: https://github.com/ParmEd/ParmEd.

Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J Chem Theory Comput. 2013;9:3084–95. doi: 10.1021/ct400341p. PubMed DOI

Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1–2:19–25. doi: 10.1016/j.softx.2015.06.001. DOI

Kabsch W, Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–637. doi: 10.1002/bip.360221211. PubMed DOI

Aqvist J, Medina C, Samuelsson JE. A new method for predicting binding affinity in computer-aided drug design. Protein Eng. 1994;7:385–91. doi: 10.1093/protein/7.3.385. PubMed DOI

Miller BRI, McGee TDJr, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: an efficient program for end-state Free Energy Calculations. J Chem Theory Comput American Chemical Society. 2012;8:3314–21. doi: 10.1021/ct300418h. PubMed DOI

Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–61. doi: 10.1517/17460441.2015.1032936. PubMed DOI PMC

Weiser J, Shenkin PS, Still WC. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) J Comput Chem. 1999;20:217–30. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A. DOI

Lin Y-T, Seo J, Gao F, Feldman HM, Wen H-L, Penney J, et al. APOE4 causes widespread Molecular and Cellular alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived brain cell types. Neuron. 2018;98:1141–1154e7. doi: 10.1016/j.neuron.2018.05.008. PubMed DOI PMC

Fedorova V, Pospisilova V, Vanova T, Amruz Cerna K, Abaffy P, Sedmik J et al. Glioblastoma and cerebral organoids: development and analysis of an in vitro model for glioblastoma migration. Mol Oncol [Internet]. [cited 2023 Mar 14];n/a. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/1878-0261.13389. PubMed PMC

Nezvedová M, Jha D, Váňová T, Gadara D, Klímová H, Raška J, et al. Single cerebral organoid Mass Spectrometry of Cell-Specific protein and glycosphingolipid traits. Anal Chem American Chemical Society. 2023;95:3160–7. doi: 10.1021/acs.analchem.2c00981. PubMed DOI PMC

Fedorova V, Vanova T, Elrefae L, Pospisil J, Petrasova M, Kolajova V, et al. Differentiation of neural rosettes from human pluripotent stem cells in vitro is sequentially regulated on a molecular level and accomplished by the mechanism reminiscent of secondary neurulation. Stem Cell Res. 2019;40:101563. doi: 10.1016/j.scr.2019.101563. PubMed DOI

Miranda AM, Bravo FV, Chan RB, Sousa N, Di Paolo G, Oliveira TG. Differential lipid composition and regulation along the hippocampal longitudinal axis. Transl Psychiatry. 2019;9:144. doi: 10.1038/s41398-019-0478-6. PubMed DOI PMC

Huynh K, Barlow CK, Jayawardana KS, Weir JM, Mellett NA, Cinel M, et al. High-throughput plasma lipidomics: detailed mapping of the Associations with Cardiometabolic Risk factors. Cell Chem Biol. 2019;26:71–84e4. doi: 10.1016/j.chembiol.2018.10.008. PubMed DOI

Xuan Q, Hu C, Yu D, Wang L, Zhou Y, Zhao X, et al. Development of a high Coverage Pseudotargeted Lipidomics Method based on Ultra-High Performance Liquid Chromatography–Mass Spectrometry. Anal Chem American Chemical Society. 2018;90:7608–16. doi: 10.1021/acs.analchem.8b01331. PubMed DOI PMC

Chetty PS, Mayne L, Lund-Katz S, Englander SW, Phillips MC. Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci Proceedings of the National Academy of Sciences. 2017;114:968–73. doi: 10.1073/pnas.1617523114. PubMed DOI PMC

Lindner K, Beckenbauer K, van Ek LC, Titeca K, de Leeuw SM, Awwad K, et al. Isoform- and cell-state-specific lipidation of ApoE in astrocytes. Cell Rep. 2022;38:110435. doi: 10.1016/j.celrep.2022.110435. PubMed DOI

Proitsi P, Kim M, Whiley L, Pritchard M, Leung R, Soininen H, et al. Plasma lipidomics analysis finds long chain cholesteryl esters to be associated with Alzheimer’s disease. Transl Psychiatry. 2015;5:e494. doi: 10.1038/tp.2014.127. PubMed DOI PMC

MahmoudianDehkordi S, Ahmed AT, Bhattacharyya S, Han X, Baillie RA, Arnold M et al. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. PubMed PMC

Bossu P, Salani F, Ciaramella A, Sacchinelli E, Mosca A, Banaj N, et al. Anti-inflammatory Effects of Homotaurine in patients with amnestic mild cognitive impairment. Front Aging Neurosci Frontiers Media SA. 2018;10:1–8. PubMed PMC

Donovan EL, Pettine SM, Hickey MS, Hamilton KL, Miller BF. Lipidomic analysis of human plasma reveals ether-linked lipids that are elevated in morbidly obese humans compared to lean. Diabetol Metab Syndr BioMed Central. 2013;5:1–13. PubMed PMC

Huang Y-WA, Zhou B, Nabet AM, Wernig M, Südhof TC. Differential Signaling mediated by ApoE2, ApoE3, and ApoE4 in human neurons Parallels Alzheimer’s Disease Risk. J Neurosci Society for Neuroscience. 2019;39:7408–27. doi: 10.1523/JNEUROSCI.2994-18.2019. PubMed DOI PMC

Berson A, Barbash S, Shaltiel G, Goll Y, Hanin G, Greenberg DS et al. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s disease impairs cortical splicing and cognitive function in mice. EMBO Mol Med. John Wiley & Sons, Ltd; 2012;4:730–42. PubMed PMC

Uddin MdS, Kabir MdT, Al Mamun A, Abdel-Daim MM, Barreto GE, Ashraf GM. APOE and Alzheimer’s Disease: evidence mounts that Targeting APOE4 may combat Alzheimer’s pathogenesis. Mol Neurobiol. 2019;56:2450–65. doi: 10.1007/s12035-018-1237-z. PubMed DOI

Martens YA, Zhao N, Liu C-C, Kanekiyo T, Yang AJ, Goate AM, et al. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron. 2022;110:1304–17. doi: 10.1016/j.neuron.2022.03.004. PubMed DOI PMC

Fitz NF, Cronican AA, Saleem M, Fauq AH, Chapman R, Lefterov I, et al. Abca1 deficiency affects Alzheimer’s disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. J Neurosci Off J Soc Neurosci. 2012;32:13125–36. doi: 10.1523/JNEUROSCI.1937-12.2012. PubMed DOI PMC

Rawat V, Wang S, Sima J, Bar R, Liraz O, Gundimeda U, et al. ApoE4 alters ABCA1 membrane trafficking in astrocytes. J Neurosci Society for Neuroscience. 2019;39:9611–22. doi: 10.1523/JNEUROSCI.1400-19.2019. PubMed DOI PMC

Lanfranco MF, Ng CA, Rebeck GW. ApoE lipidation as a therapeutic target in Alzheimer’s Disease. Int J Mol Sci. 2020;21:6336. doi: 10.3390/ijms21176336. PubMed DOI PMC

Liao F, Li A, Xiong M, Bien-Ly N, Jiang H, Zhang Y, et al. Targeting of nonlipidated, aggregated apoE with antibodies inhibits amyloid accumulation. J Clin Invest. 2018;128:2144–55. doi: 10.1172/JCI96429. PubMed DOI PMC

Huang Y, von Eckardstein A, Wu S, Maeda N, Assmann G. A plasma lipoprotein containing only apolipoprotein E and with gamma mobility on electrophoresis releases cholesterol from cells. Proc Natl Acad Sci U S A. 1994;91:1834–8. doi: 10.1073/pnas.91.5.1834. PubMed DOI PMC

Burgess JW, Gould DR, Marcel YL. The HepG2 extracellular matrix contains separate heparinase- and lipid-releasable pools of ApoE. Implications for hepatic lipoprotein metabolism. J Biol Chem. 1998;273:5645–54. doi: 10.1074/jbc.273.10.5645. PubMed DOI

DeMattos RB, Curtiss LK, Williams DL. A minimally lipidated form of cell-derived apolipoprotein E exhibits isoform-specific stimulation of Neurite Outgrowth in the absence of exogenous lipids or Lipoproteins*. J Biol Chem. 1998;273:4206–12. doi: 10.1074/jbc.273.7.4206. PubMed DOI

LaDu MJ, Stine WB, Narita M, Getz GS, Reardon CA, Bu G. Self-assembly of HEK cell-secreted ApoE particles resembles ApoE enrichment of lipoproteins as a ligand for the LDL receptor-related protein. Biochemistry. 2006;45:381–90. doi: 10.1021/bi051765s. PubMed DOI PMC

Koldamova R, Staufenbiel M, Lefterov I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J Biol Chem. 2005;280:43224–35. doi: 10.1074/jbc.M504513200. PubMed DOI

Wahrle SE, Jiang H, Parsadanian M, Hartman RE, Bales KR, Paul SM, et al. Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem. 2005;280:43236–42. doi: 10.1074/jbc.M508780200. PubMed DOI

Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH, et al. Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem. 1994;269:22358–65. doi: 10.1016/S0021-9258(17)31797-0. PubMed DOI

Dong LM, Weisgraber KH. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem. 1996;271:19053–7. doi: 10.1074/jbc.271.32.19053. PubMed DOI

Ray A, Ahalawat N, Mondal J. Atomistic insights into structural differences between E3 and E4 isoforms of apolipoprotein E. Biophys J. 2017;113:2682–94. doi: 10.1016/j.bpj.2017.10.006. PubMed DOI PMC

Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, et al. Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry. 2000;39:11657–66. doi: 10.1021/bi000099m. PubMed DOI

Acharya P, Segall ML, Zaiou M, Morrow J, Weisgraber KH, Phillips MC, et al. Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim Biophys Acta BBA - Mol Cell Biol Lipids. 2002;1584:9–19. PubMed

Raulin A-C, Kraft L, Al-Hilaly YK, Xue W-F, McGeehan JE, Atack JR, et al. The molecular basis for apolipoprotein E4 as the major risk factor for late-onset Alzheimer’s Disease. J Mol Biol. 2019;431:2248–65. doi: 10.1016/j.jmb.2019.04.019. PubMed DOI PMC

Dong J, Peters-Libeu CA, Weisgraber KH, Segelke BW, Rupp B, Capila I, et al. Interaction of the N-terminal domain of apolipoprotein E4 with heparin. Biochemistry. 2001;40:2826–34. doi: 10.1021/bi002417n. PubMed DOI

Segelke BW, Forstner M, Knapp M, Trakhanov SD, Parkin S, Newhouse YM, et al. Conformational flexibility in the apolipoprotein E amino-terminal domain structure determined from three new crystal forms: implications for lipid binding. Protein Sci Publ Protein Soc. 2000;9:886–97. doi: 10.1110/ps.9.5.886. PubMed DOI PMC

Huang RY-C, Garai K, Frieden C, Gross ML. Hydrogen/Deuterium exchange and Electron-transfer dissociation Mass Spectrometry Determine the Interface and Dynamics of Apolipoprotein E oligomerization. Biochemistry. 2011;50:9273–82. doi: 10.1021/bi2010027. PubMed DOI PMC

Gau B, Garai K, Frieden C, Gross ML. Mass Spectrometry-Based protein footprinting characterizes the Structures of Oligomeric Apolipoprotein E2, E3, and E4. Biochemistry. Am Chem Soc. 2011;50:8117–26. PubMed PMC

Frieden C. ApoE: the role of conserved residues in defining function. Protein Sci Publ Protein Soc. 2015;24:138–44. doi: 10.1002/pro.2597. PubMed DOI PMC

Yamada H, Tamada T, Kosaka M, Miyata K, Fujiki S, Tano M, et al. Crystal lattice engineering,’ an approach to engineer protein crystal contacts by creating intermolecular symmetry: crystallization and structure determination of a mutant human RNase 1 with a hydrophobic interface of leucines. Protein Sci Publ Protein Soc. 2007;16:1389–97. doi: 10.1110/ps.072851407. PubMed DOI PMC

Wang C, Najm R, Xu Q, Jeong D-E, Walker D, Balestra ME, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med. 2018;24:647–57. doi: 10.1038/s41591-018-0004-z. PubMed DOI PMC

Alzheon Inc. A Phase 3, Multicenter, Randomized, Double-blind, Placebo-controlled Study of the Efficacy, Safety and Biomarker Effects of ALZ-801 in Subjects With Early Alzheimer’s Disease and APOE4/4 Genotype [Internet]. clinicaltrials.gov; 2022 Jun. Report No.: NCT04770220. Available from: https://clinicaltrials.gov/ct2/show/NCT04770220.

Blanchard JW, Akay LA, Davila-Velderrain J, von Maydell D, Mathys H, Davidson SM et al. APOE4 impairs myelination via cholesterol dysregulation in oligodendrocytes. Nat Nat Publishing Group; 2022;1–11. PubMed PMC

van der Kant R, Langness VF, Herrera CM, Williams DA, Fong LK, Leestemaker Y, et al. Cholesterol metabolism is a Druggable Axis that independently regulates tau and Amyloid-β in iPSC-Derived Alzheimer’s disease neurons. Cell Stem Cell. 2019;24:363–375e9. doi: 10.1016/j.stem.2018.12.013. PubMed DOI PMC

Liu C-C, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, et al. Peripheral apoE4 enhances Alzheimer’s pathology and impairs cognition by compromising cerebrovascular function. Nat Neurosci Nature Publishing Group. 2022;25:1020–33. doi: 10.1038/s41593-022-01127-0. PubMed DOI PMC

Yamazaki Y, Zhao N, Caulfield TR, Liu C-C, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol. 2019;15:501–18. doi: 10.1038/s41582-019-0228-7. PubMed DOI PMC

Wang L, Dou Z. Apolipoprotein E regulates chromatin stability and senescence. Nat Aging Nature Publishing Group. 2022;2:282–4. doi: 10.1038/s43587-022-00190-3. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...