Cross-species chromosome painting and repetitive DNA mapping illuminate the karyotype evolution in true crocodiles (Crocodylidae)
Language English Country Austria Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
200401/2022-0
Conselho Nacional de Desenvolvimento Científico e Tecnológico
302928/2021-9
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2020/11772-8
Fundação de Amparo à Pesquisa do Estado de São Paulo
PubMed
37493806
DOI
10.1007/s00412-023-00806-6
PII: 10.1007/s00412-023-00806-6
Knihovny.cz E-resources
- Keywords
- Chromosome, Crocodylia, Cytogenomics, FISH, Molecular cytogenetics, WCP,
- MeSH
- Alligators and Crocodiles * genetics MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotype MeSH
- Chromosome Painting MeSH
- Evolution, Molecular MeSH
- Comparative Genomic Hybridization MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Crocodilians have maintained very similar karyotype structures and diploid chromosome numbers for around 100 million years, with only minor variations in collinearity. Why this karyotype structure has largely stayed unaltered for so long is unclear. In this study, we analyzed the karyotypes of six species belonging to the genera Crocodylus and Osteolaemus (Crocodylidae, true crocodiles), among which the Congolian endemic O. osborni was included and investigated. We utilized various techniques (differential staining, fluorescence in situ hybridization with repetitive DNA and rDNA probes, whole chromosome painting, and comparative genomic hybridization) to better understand how crocodile chromosomes evolved. We studied representatives of three of the four main diploid chromosome numbers found in crocodiles (2n = 30/32/38). Our data provided new information about the species studied, including the identification of four major chromosomal rearrangements that occurred during the karyotype diversification process in crocodiles. These changes led to the current diploid chromosome numbers of 2n = 30 (fusion) and 2n = 38 (fissions), derived from the ancestral state of 2n = 32. The conserved cytogenetic tendency in crocodilians, where extant species keep near-ancestral state, contrasts with the more dynamic karyotype evolution seen in other major reptile groups.
Departamento de Genética e Evolução Universidade Federal de São Carlos São Carlos São Paulo Brazil
Department of Biology Faculty of Science Khon Kaen University Muang Khon Kaen 40002 Thailand
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Department of Zoology National Museum of the Czech Republic Prague Czech Republic
Faculdade de Ciências UNESP Bauru São Paulo Brazil
Institute for Applied Ecology University of Canberra Canberra Australia
Institute of Animal Physiology and Genetics Czech Academy of Sciences 27721 Liběchov Czech Republic
Institute of Human Genetics Jena University Hospital Jena Germany
Institute of Vertebrate Biology of the Czech Academy of Sciences Brno Czech Republic
See more in PubMed
Amavet P, Markariani R, Fenocchio A (2003) Comparative cytogenetic analysis of the South American alligators Caiman latirostris and Caiman yacare (Reptilia, Alligatoridae) from Argentina. Caryologia 56:489–493. https://doi.org/10.1080/00087114.2003.10589361 DOI
Ariyaraphong N, Wongloet W, Wattanadilokchatkun P, Panthum T, Singchat W, Thong T, Lisachov A, Ahmad SF, Muangmai N, Han K, Duengkae P, Temsiripong Y, Srikulnath K (2023) Should the identification guidelines for Siamese Crocodiles be revised? Differing post-occipital scute scale numbers show phenotypic variation does not result from hybridization with Saltwater Crocodiles. Biology 12:535. https://doi.org/10.3390/biology12040535 DOI PMC
Axelrod DI (1952) A theory of Angiosperm evolution. Evolution 1:29–60. https://doi.org/10.2307/2405502 DOI
Barreiros JP (2016) Crocodylia: Uma longa história de sucesso evolutivo. Atlântida. Revista de Cultura 61:137–148
Bernardi G (2007) The neoselectionist theory of genome evolution. Proc Natl Acad Sci 104:8385–8390. https://doi.org/10.1073/pnas0701652104 PubMed DOI PMC
Bista B, Valenzuela (2020) Turtle insights into the evolution of the reptilian karyotype and the genomic architecture of sex determination. Genes 11:416. https://doi.org/10.3390/genes11040416 PubMed DOI PMC
Brochu CA (2003) Phylogenetic approaches toward Crocodylian history. Ann Rev Earth Planet Sci 31:357–397. https://doi.org/10.1146/annurev.earth.31.100901.141308 DOI
Brochu CA (2006) A new miniature horned crocodile from the Quaternary of Aldraba Atoll Western Indian Ocean. Copeia 2:149–158. https://doi.org/10.1643/0045-8511(2006)6[149:ANMHCF]2.0.CO;2 DOI
Brochu CA (2007) Morphology relationships and biogeographical significance of an extinct horned crocodile (Crocodylia Crocodylidae) from the Quaternary of Madagascar. Zool J Linn Soc 150:835–863. https://doi.org/10.1111/j.1096-3642.2007.00315.x DOI
Bronzati M, Montefeltro FC, Langer MC (2015) Diversification events and the effects of mass extinction on Crocodyliformes evolutionary history. R Soc Open Sci 2:140385. https://doi.org/10.1098/rsos.140385 PubMed DOI PMC
Chavananikul V, Wattanodorn S, Youngprapakorn P (1994) Karyotypes of 5 species of crocodile kept in Samutprakan Crocodile Farm and Zoo. In: Crocodiles. The 12th Working Meeting of the Crocodile Specialist Group. IUCN, Gland, pp 58–62
Cioffi MB, Liehr T, Trifonov V, Molina WF, Bertollo LAC (2013) Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family. Cytogenet Genome Res 141:186–194. https://doi.org/10.1159/000354039 PubMed DOI
Cohen MM, Clark HF (1967) The somatic chromosomes of five crocodilian species. Cytogenet 6:193–203. https://doi.org/10.1159/000129941 DOI
Cohen MM, Gans C (1970) The chromosomes of the order Crocodilia. Cytogenet Genome Res 9:81–105. https://doi.org/10.1159/000130080 DOI
Colston TJ, Kulkarni P, Jetz W, Pyron RA (2020) Phylogenetic and spatial distribution of evolutionary diversification, isolation, and threat in turtles and crocodilians (non-avian archosauromorphs). BMC Evol Biol 20:1–16. https://doi.org/10.1186/s12862-020-01642-3 DOI
Cronquist A (1968) The Evolution and Classification of Flowering Plants. United States of America, Boston
Deakin JE, Ezaz T (2019) Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomic approaches. Cytogenet Genome Res 157:7–20. https://doi.org/10.1159/000495974 PubMed DOI
Degrandi TM, Barcellos SA, Costa AL, Garnero ADV, Hass I, Gunski RJ (2020) Introducing the bird chromosome database: an overview of cytogenetic studies in birds. Cytogenet Genome Res 160(4):199–205. https://doi.org/10.1159/000507768 PubMed DOI
Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484. https://doi.org/10.1080/10635150490445698 PubMed DOI
Eaton MJ, Martin A, Thorbjarnarson J, Amato G (2009) Species-level diversification of African dwarf crocodiles (Genus Osteolaemus): a geographic and phylogenetic perspective. Mol Phylogenet Evol 50:496–506. https://doi.org/10.1016/j.ympev.2008.11.009 PubMed DOI
Farré M, Narayan J, Slavov GT, Damas J, Auvil L, Li C, Jarvis ED, Burt DW, Griffin DK, Larkin DM (2016) Novel insights into chromosome evolution in birds, archosaurs, and reptiles. Genome Biol Evol 8(8):2442–2251. https://doi.org/10.1093/gbe/evw166 PubMed DOI PMC
Ferguson-Smith MA, Trifonov V (2007) Mammalian karyotype evolution. Nat Rev Genet 8:950–962. https://doi.org/10.1038/nrg2199 PubMed DOI
Fitch WM (1971) Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool 20:406–416 DOI
Furo IO, Kretschmer R, O’Brien PCM, Pereira JC, Garnero ADV, Gunski RJ, O’Connor RE, Griffin DK, Ferguson-Smith GAJB, de Oliveira MA, EHC, (2020) Chromosomal evolution in the phylogenetic context: a remarkle haryotype reorganization in neotropical Parrot Myiopsitta monachus (Psittacidae). Front Genet 11:721. https://doi.org/10.3389/fgene.2020.00721 PubMed DOI PMC
Gill F, Donsker D, Rasmussen P (2022) IOC World Bird List (v121). https://www.worldbirdnames.org/new/ . Accessed 18 July 2022
Green RE, Braun EL, Armstrong J, Earl D, Nguyen N, Hickey G, Vandewege MW, St John JA, Capella-Gutiérrez S, Castoe TA (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346:1254449. https://doi.org/10.1126/science.1254449 PubMed DOI PMC
Grigg G, Seebacher F, Franklin CE (2001) Crocodilian Biology and Evolution. Surrey Beatty & Sons, Chipping Norton
Grigg G, Kirshner D (2015) Biology and evolution of crocodylians. Cornell University Press, Ithaca and London
Hay JM, Sarre SD, Lambert DM, Allendorf FW, Daugherty CH (2010) Genetic diversity and taxonomy: a reassessment of species designation in tuatara (Sphenodon: Reptilia). Conserv Genet 11:1063–1081. https://doi.org/10.1007/s10592-009-9952-7 DOI
Hekkala E, Shirley MH, Amato G, Austin JD, Charter S, Thorbjarnarson J, Vliet KA, Houck ML, Desalle R, Blum MJ (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20:4199–4215. https://doi.org/10.1111/j.1365-294X.2011.05245.x PubMed DOI
Hekkala E, Gatesy J, Narechania A, Meredith R, Russelo M, Aardema ML, Jensen E, Montanari S, Brochu C, Norel M, Amato G (2021) Paleogenomics illuminates the evolutionary history of the extinct Holocene “horned” crocodile of Madagascar Voay robustus. Commun Biol 4:505. https://doi.org/10.1038/s42003-021-02017-0 PubMed DOI PMC
Iwabe N, Hara Y, Kumazawa Y, Shibamoto K, Saito Y, Miyata T, Katoh K (2005) Sister group relationship of turtles to the bird-crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22:810–813. https://doi.org/10.1093/molbev/msi075 PubMed DOI
Jablonski D, Roy K, Valentine JW (2006) Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106. https://doi.org/10.1126/science.1130880 PubMed DOI
Janes DE, Organ CL, Fujita MK, Shedlock AM, Edwards SV (2010) Genome evolution in Reptilia the sister group of mammals. Annu Rev Genomics Hum Genet 11:239–264. https://doi.org/10.1146/annurev-genom-082509-141646 DOI
Janke A, Arnason U (1997) The complete mitochondrial genome of Alligator mississippiensis and the separation between recent Archosauria (birds and crocodiles). Mol Biol Evol 14:1266–1272. https://doi.org/10.1093/oxfordjournals.molbev.a025736 PubMed DOI
Johnson Pokorná M, Altmanová M, Rovatsos M, Velenský P, Vodička R, Rehák I, Kratochvíl L (2016) First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis). Cytogenet Genome Res 148:284–291. https://doi.org/10.1159/000447340 PubMed DOI
Kasai F, O’Brien PCM, Martin S, Ferguson-Smith MA (2012) Extensive homology of chicken macrochromosomes in the karyotypes of Trachemys scripta elegans and Crocodylus niloticus revealed by chromosome painting despite long divergence times. Cytogenet Genome Res 136:303–307. https://doi.org/10.1159/000338111 PubMed DOI
Kawagoshi T, Nishida C, Ota H, Kumazawa Y, Endo H, Matsuda Y (2008) Molecular structures of centromeric heterochromatin and karyotypic evolution in the Siamese crocodile (Crocodylus siamensis) (Crocodylidae Crocodylia). Chromosome Res 16:1119–1132. https://doi.org/10.1007/s10577-008-1263-1 PubMed DOI
Kawai A, Nishida-Umehara C, Ishijima J, Tsuda Y, Ota H, Matsuda Y (2007) Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet Genome Res 117:92–102. https://doi.org/10.1159/000103169 PubMed DOI
King M, Honeycutt R, Contreras N (1986) Chromosomal repatterning in crocodiles: C G and N-banding and the in situ hybridization of 18S and 26S rRNA cistrons. Genetica 70:191–201 DOI
Kretschmer R, Ferguson-Smith MA, de Oliveira EHC (2018) Karyotype evolution in birds: from conventional staining to chromosome painting. Genes 9:181. https://doi.org/10.3390/genes9040181 PubMed DOI PMC
Kretschmer R, Furo IO, Cioffi MB, Gunski RJ, Garnero ADV, O’Brien PCM, Ferguson-Smith MA, de Freitas TRO, de Oliveira EHC (2020) Extensive chromosomal fissions and repetitive DNA accumulation shaped the atypical karyotypes of two Ramphastidae (Aves: Piciformes) species. Biol J Linn Soc 130:839–849. https://doi.org/10.1093/biolinnean/blaa086 DOI
Kretschmer R, Rodrigues BS, Barcellos SA, Costa AL, Cioffi MB, Garnero AV, Gunski RJ, de Oliveira EHC, Griffin DK (2021) Karyotype evolution and genomic organization of repetitive DNAs in the saffron finch Sicalis flaveola (Passeriformes Aves). Animals 11:1456. https://doi.org/10.3390/ani11051456 PubMed DOI
Lee MSY, Yates AM (2018) Tip-dating and homoplasy: reconciling the shallow molecular divergences of modern gharials with their long fossil record. Proc Royal Soc B 285:20181071. https://doi.org/10.1098/rspb.2018.1071 DOI
Lemskaya NA, Romanenko SA, Golenishchev FN, Rubtsova NV, Sablina OV, Serdukova NA, O’Brien PCM, Fu B, Yiğit N, Ferguson-Smith MA, Yang F, Graphodatsky AS (2010) Chromosomal evolution of Arvicolinae (Cricetidae Rodentia) III Karyotype relationships of ten Microtus species. Chromosome Res 18:459–471. https://doi.org/10.1007/s10577-010-9124-0 PubMed DOI
Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x DOI
Lui JF, Valencia EFT, Boer JA (1994) Karyotypic analysis and chromosome biometry of cell cultures of the yellow throated alligator (Caiman latirostris DAUDIN). Rev Bras Genet 17:165–169
Maddison WP, Maddison DR (2018) Mesquite: a modular system for evolutionary analysis. Version 3.4. https://www.mesquiteproject.org . Accessed 10 Feb 2019
Marin J, Hedges SB (2016) Time best explains global variation in species richness of amphibians birds and mammals. J Biogeogr 43:1069–1079. https://doi.org/10.1111/jbi.12709 DOI
Martin S (2008) Global diversity of crocodiles (Crocodilia Reptilia) in freshwater. Hydrobiologia 595:587–591. https://doi.org/10.1007/s10750-007-9030-4 DOI
McAliley LR, Willis RE, Ray DA, White PS, Brochu CA, Densmore LD (2006) Are crocodiles really monophyletic?—evidence for subdivisions from sequence and morphological data. Mol Phylogenet Evol 39:16–32. https://doi.org/10.1016/j.ympev.2006.01.012 PubMed DOI
McPeek MA, Brown JA (2007) Clade age and not diversification rate explains species richness among Animal taxa. Am Nat 169:4. https://doi.org/10.1086/512135 DOI
Meredith RW, Hekkala ER, Amato G, Gatesy J (2011) A phylogenetic hypothesis for Crocodylus (Crocodylia) based on mitochondrial DNA: evidence for a trans-Atlantic voyage from Africa to the New World. Mol Phylogenet Evol 60:183–191. https://doi.org/10.1016/j.ympev.2011.03.026 PubMed DOI
Nanda I, Karl E, Griffin DK, Schartl M, Schmid M (2007) Chromosome repatterning in three representative parrots (Psittaciformes) inferred from comparative chromosome painting. Cytogenet Genome Res 117:43–53. https://doi.org/10.1159/000103164 PubMed DOI
Nicolai MPJ, Matzke NJ (2019) Trait-based range expansion aided in the global radiation of Crocodylidae. Glob Ecol Biogeogr 28:1244–1258. https://doi.org/10.1111/geb.12929 DOI
Nishida C, Tsuda Y, Ishijima J, Ando J, Fujiwara A, Matsuda Y, Griffin DK (2007) The molecular basis of chromosome orthologies and sex chromosomal differentiation in palaeognathous birds. Chromosome Res 15(6):721–734. https://doi.org/10.1007/s10577-007-1157-7 DOI
Nishida C, Ishijima J, Kosaka A, Tanabe H, Habermann FA, Griffin DK, Matsuda Y (2008) Characterization of chromosome structures of Falconinae (Falconidae, Falconiformes, Aves) by chromosome painting and delineation of chromosome rearrangements during their differentiation. Chromosome Res 16:171–181. https://doi.org/10.1007/s10577-007-1210-6 DOI
Noronha RCR, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Pieczarka JCN (2009) Neo-XY body: an analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet Genome Res 124:37–43. https://doi.org/10.1159/000200086 PubMed DOI
O’Connor RE, Kiazim L, Skinner B, Fonseka G, Joseph S, Jennings R, Larkin DM, Griffin DK (2019) Patterns of microchromosome organization remain highly conserved throughout avian evolution. Chromosoma 128(1):21–29. https://doi.org/10.1007/s00412-018-0685-6 PubMed DOI
Oaks JR (2011) A time-calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65:3285–3297. https://doi.org/10.1111/j.1558-5646.2011.01373.x PubMed DOI
Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, Liehr T, Al-Rikabi A, Feldberg E, Hatanaka T, Scholz S, Meurer A, Cioffi MB (2021) Revisiting the karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a half-century delay: bridging the gap in the chromosomal evolution of Reptiles. Cells 10:1397. https://doi.org/10.3390/cells10061397 PubMed DOI PMC
Olmo E, Signorino GG (2022) Chromorep a reptile chromosomes database available online. https://www.chromorepunivpmit/?q=node/13 . Accessed 24 Aug 2022
Pan T, Miao J-S, Zhang H-B, Yan P, Lee P-S, Jiang X-Y, Ouyang J-H, Dneg Y-P, Zhang B-W, Wu X-B (2021) Near-complete phylogeny of extant Crocodylia (Reptilia) using mitogenome-based data. Zool J Linn Soc 191:1075–1089. https://doi.org/10.1093/zoolinnean/zlaa074 DOI
Porter CA, Haiduk MW, de Queiroz K (1994) Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia 1994:302–313. https://doi.org/10.2307/1446980 DOI
Pough FH (2022) Biodiversity of Reptiles. In: Encyclopedia of Biodiversity, 3rd ed. Elsevier Inc, Dutch, pp-1–22
Rodionov AV (1996) Micro vs macro: structural-functional organization of avian micro- and macrochromosomes. Genetika 32(5):597–608 PubMed
Romanenko SA, Perelman PL, Trifonov VA, Graphodatsky AS (2012) Chromosomal evolution in Rodentia. Heredity 108:4–16. https://doi.org/10.1038/hdy.2011.110 . (Epub 2011 Nov 16) PubMed DOI
Sambrook J, Russell DW (2001) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York
Schmid M (1980) Chromosome banding in Amphibia IV differentiation of GC and AT-rich regions in Anura. Chromosoma 77:83–103 PubMed DOI
Sember A, Bertollo LAC, Ráb P, Yano CF, Hatanaka T, de Oliveira EA, Cioffi MB (2018) Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes Erythrinidae). Front Genet 9:71. https://doi.org/10.3389/fgene.2018.00071 PubMed DOI PMC
Shirley MH, Vliet KA, Carr AN, Austin JD (2014) Rigorous approaches to species delimitation have significant implications for African crocodilian systematics and conservation. Proc Royal Soc B 281:20132483. https://doi.org/10.1098/rspb.2013.2483 DOI
Shirley MH, Carr AN, Nestler JH, Vliet KA, Brochu CA (2018) Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray 1844). Zootaxa 4504:151–193. https://doi.org/10.11646/ZOOTAXA.4504.2.1 PubMed DOI
Simões TR, Kinney-Broderick G, Pierce SE (2022) An exceptionally preserved Sphenodon-like sphenodontian reveals deep time conservation of the tuatara skeleton and ontogeny. Commun Biol 5:195. https://doi.org/10.1038/s42003-022-03144-y PubMed DOI PMC
Skinner B, Griffin D (2012) Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity 108:37–41. https://doi.org/10.1038/hdy.2011.99 PubMed DOI
Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A (2018) Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma 127:141–150. https://doi.org/10.1007/s00412-017-0651-8 PubMed DOI
Srikulnath K, Thapana W, Muangmai N (2015) Role of chromosome changes in Crocodylus evolution and diversity. Genom Inform 13:102–111. https://doi.org/10.5808/GI.2015.13.4.102 DOI
Srikulnath K, Ahmad SF, Singchat W, Panthum T (2021) Why do some vertebrates have microchromosomes? Cells 10(9):2182. https://doi.org/10.3390/cells10092182 PubMed DOI PMC
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306. https://doi.org/10.1016/0014-4827(72)90558-7 PubMed DOI
Uetz P, Freed P, Aguilar R, Hošek J (2023) The Reptile Database Available online. http://wwwreptile-database.org . Accessed 3 April 2023
Uno Y, Nishida C, Tarui H, Ishishita S, Takagi C, Nishimura O, Ishijima J, Ota H, Kosaka A, Matsubara K, Murakami Y, Kuratani S, Ueno N, Agata K, Matsuda Y (2012) Inference of the protokaryotypes of amniotes and tetrapods and the evolutionary processes of microchromosomes from comparative gene mapping. PLoS ONE 7:e53027. https://doi.org/10.1371/journal.pone.0053027 PubMed DOI PMC
Valenzuela N, Adams DC (2011) Chromosome number and sex determination coevolve in turtles. Evolution 65:1808–1813. https://doi.org/10.1111/j.1558-5646.2011.01258.x DOI
Valenzuela N, Lance VA (2004) Temperature-dependent sex determination in vertebrates. Smithsonian Books, Washington, DC
Wang J, Su W, Hu Y, Li S, O’Brien PCM, Ferguson-Smith MA, Yang F, Nie W (2022) Comparative chromosome maps between the stone curlew and three ciconiiform species (the grey heron little egret and crested ibis). BMC Ecol Evol 22:1–13. https://doi.org/10.1186/s12862-022-01979-x DOI
Willis JC (1922) Age and area: a study of geographical distribution and origin of species. Cambridge University Press, Cambridge
Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP (2009) Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T (ed) Fluorescense In Situ Hybridization (FISH)—Application Guide. Springer Protocols Handbooks, Heidelberg, pp 35–32 DOI
Zwick MS, Hanson RE, Islam-Faridi MN, Stelly DM, Wing RA, Price HJ, Mcnight TD (1997) A rapid procedure for the isolation of C0t–1 DNA from plants. Genome 40:138–142. https://doi.org/10.1139/g97-020 PubMed DOI