Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
531-D110-D585-21
Faculty of Biology; University of Gdańsk
18-11378S
Czech Science Foundation
2015/18/A/NZ8/00149
National Science Centre
PubMed
37700257
PubMed Central
PMC10496321
DOI
10.1186/s12870-023-04436-z
PII: 10.1186/s12870-023-04436-z
Knihovny.cz E-resources
- Keywords
- Mycoheterotrophy, Nitrogen, Orchids, Phosphorus, Stoichiometry, Trophic modes,
- MeSH
- Acclimatization MeSH
- Analysis of Variance MeSH
- Nitrogen MeSH
- Phosphorus MeSH
- Mycorrhizae * MeSH
- Carbon * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nitrogen MeSH
- Phosphorus MeSH
- Carbon * MeSH
BACKGROUND: Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS: We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION: The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
See more in PubMed
Smith SE, Read D. In: Mycorrhizal symbiosis [Internet]. Third edit. Smith SE, Read D, editors. London: Academic Press; 2008. pp. 1–9.
Ågren GI, Weih M. Multi-dimensional plant element Stoichiometry—Looking beyond Carbon, Nitrogen, and Phosphorus. Front Plant Sci. 2020;11:23. PubMed PMC
Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett. 2007;10(12):1135–42. PubMed
Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A. 2004;101(30):11001–6. PubMed PMC
Wright SJ. Low phosphorus levels limit carbon capture by amazonian forests. Nature Publishing Group; 2022. PubMed
Behie SW, Bidochka MJ. Nutrient transfer in plant-fungal symbioses. Trends Plant Sci [Internet] 2014;19(11):734–40. PubMed
George E, Marschner H, Jakobsen I. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit Rev Biotechnol. 1995;15(3–4):257–70.
van der Heijden MGA, Martin FM, Selosse MA, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205(4):1406–23. PubMed
Gorzelak MA, Asay AK, Pickles BJ, Simard SW. Inter-plant communication through mycorrhizal networks mediates complex adaptive behaviour in plant communities. AoB Plants [Internet]. 2015;7. PubMed PMC
Cahanovitc R, Livne-Luzon S, Angel R, Klein T. Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks. ISME J. 2022;16(5):1420–9. PubMed PMC
McKendrick SL, Leake JR, Taylor DL, Read DJ. Symbiotic germination and development of myco-heterotrophic plants in nature: Ontogeny of Corallorhiza trifida and characterization of its mycorrhizal fungi. New Phytol. 2000;145(3):523–37. PubMed
Leake JR. The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol. 1994;127(2):171–216. PubMed
Merckx VSFT, Mycoheterotrophy. The biology of plants living on fungi. Mycoheterotrophy Biol Plants Living Fungi. 2013;1–356.
Gebauer G, Meyer M. 15 N and 13 C natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol. 2003;160(1):209–23. PubMed
Lallemand F, Figura T, Damesin C, Fresneau C, Griveau C, Fontaine N, et al. Mixotrophic orchids do not use photosynthates for perennial underground organs. New Phytol. 2019;221(1):12–7. PubMed
Hynson N, Madsen T, Selosse M, Adam I, Ogura-Tsujita Y, Roy M et al. The physiological ecology of mycoheterotrophy. In: Mycoheterotrophy: The Biology of Plants Living on Fungi. 2013. p. 297–342.
Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol. 2005;166(2):639–53. PubMed
Preiss K, Adam IKU, Gebauer G. Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially myco-heterotrophic orchids. Proc R Soc B Biol Sci. 2010;277(1686):1333–6. PubMed PMC
Selosse M-A, Roy M. Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci. 2009;14(2):64–70. PubMed
Stöckel M, Těšitelová T, Jersáková J, Bidartondo MI, Gebauer G. Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytol. 2014;202(2):606–15. PubMed
Figueiredo AF, Boy J, Guggenberger G. Common Mycorrhizae Network: a review of the Theories and Mechanisms behind Underground interactions. Front Fungal Biol. 2021;2:1–13. PubMed PMC
Johnson NC. Resource Stoichiometry elucidates the structure and function of Arbuscular Mycorrhizas across Scales. Source New Phytol. 2010;185(3):631–47. PubMed
Sterner R, Elser JJ. Ecological stoichiometry: the Biology of Elements from Molecules to the Biosphere. In 2002. p. 439.
Van de Waal DB, Elser JJ, Martiny AC, Sterner RW, Cotner JB. Editorial: progress in ecological stoichiometry. Front Microbiol. 2018;9:1–5. PubMed PMC
Yang X, Ma Y, Zhang J, Bai H, Shen Y. How arbuscular mycorrhizal fungi drives herbaceous plants’ C: N: P stoichiometry? A meta-analysis. Sci Total Environ. 2023;862:160807. PubMed
Schwartz MW, Hoeksema JD. Specialization and resource trade: biological markets as a model of mutualisms. Ecology. 1998;79(3):1029–38.
Gomes SIF, van Bodegom PM, Merckx VSFT, Soudzilovskaia NA. Environmental drivers for cheaters of arbuscular mycorrhizal symbiosis in tropical rainforests. New Phytol. 2019;223(3):1575–83. PubMed PMC
Sheldrake M, Rosenstock NP, Revillini D, Olsson PA, Joseph Wright S, Turner BL. A phosphorus threshold for mycoheterotrophic plants in tropical forests. Proc R Soc B Biol Sci. 2017;284(1848). PubMed PMC
Roy M, Gonneau C, Rocheteau A, Berveiller D, Thomas JC, Damesin C, et al. Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ. Ecol Monogr. 2013;83(1):95–117.
Dawson HR, Shek KL, Maxwell TM, Reed PB, Bomfim B, Bridgham SD et al. Agnostic fungi: plant functional types and tissue stoichiometry explain nutrient transfer in common arbuscular mycorrhizal networks of temperate grasslands. bioRxiv [Internet]. 2023; Available from: https://www.biorxiv.org/content/early/2023/06/01/2022.10.05.511035.
Rasmussen HN. Terrestrial orchids: from seed to mycotrophic plant. Cambridge, UK: Cambridge University Press; 1995. p. 433.
Stöckel M, Meyer C, Gebauer G. The degree of mycoheterotrophic carbon gain in green, variegated and vegetative albino individuals of Cephalanthera damasonium is related to leaf chlorophyll concentrations. New Phytol. 2011;189(3):790–6. PubMed
Jacquemyn H, Merckx VSFT. Mycorrhizal symbioses and the evolution of trophic modes in plants. J Ecol. 2019;107(4):1567–81.
Perez-Lamarque B, Selosse MA, Öpik M, Morlon H, Martos F. Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol. 2020;226(6):1822–35. PubMed
Abadie JC, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA. Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Can J Bot. 2006;84(9):1462–77.
Gonneau C, Jersáková J, de Tredern E, Till-Bottraud I, Saarinen K, Sauve M, et al. Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. J Ecol. 2014;102(5):1183–94.
Hynson NA, Schiebold JMI, Gebauer G. Plant family identity distinguishes patterns of carbon and nitrogen stable isotope abundance and nitrogen concentration in mycoheterotrophic plants associated with ectomycorrhizal fungi. Ann Bot. 2016;118(3):467–79. PubMed PMC
Reich PB, Oleksyn J, Wright IJ, Niklas KJ, Hedin L, Elser JJ. Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes. Proc R Soc B Biol Sci [Internet] 2010;277(1683):877–83. PubMed PMC
Imhof S, Massicotte H, Melville L, Peterson R. Subterranean Morphology and Mycorrhizal Structures. In: Mycoheterotrophy: The Biology of Plants Living on Fungi. 2013. p. 157–214.
Balzergue C, Chabaud M, Barker D, Bécard G, Rochange S. High phosphate reduces host ability to develop arbuscular mycorrhizal symbiosis without affecting root calcium spiking responses to the fungus. Front Plant Sci. 2013;4.426. PubMed PMC
Bhalla K, Qu X, Kretschmer M, Kronstad JW. The phosphate language of fungi. Trends Microbiol [Internet] 2022;30(4):338–49. PubMed PMC
Das D, Paries M, Hobecker K, Gigl M, Dawid C, Lam HM et al. PHOSPHATE STARVATION RESPONSE transcription factors enable arbuscular mycorrhiza symbiosis. Nat Commun. 2022;13(1). PubMed PMC
Allen K, Fisher JB, Phillips RP, Powers JS, Brzostek ER. Modeling the Carbon cost of Plant Nitrogen and Phosphorus Uptake Across Temperate and Tropical forests the fixation and uptake of. Nitrogen Model. 2020;3(May):1–12.
Hou E, Luo Y, Kuang Y, Chen C, Lu X, Jiang L, et al. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nat Commun [Internet] 2020;11(1):1–9. PubMed PMC
Nurfadilah S, Swarts ND, Dixon KW, Lambers H, Merritt DJ. Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot. 2013;111(6):1233–41. PubMed PMC
Figura T, Tylová E, Jersáková J, Vohník M, Ponert J. Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination. Mycorrhiza. 2021;31(2):231–41. PubMed
Davis B, Lim WH, Lambers H, Dixon KW, Read DJ. Inorganic phosphorus nutrition in green-leaved terrestrial orchid seedlings. Ann Bot. 2022;129(6):669–78. PubMed PMC
Kühn R, Pedersen H, Cribb P. Field guide to the orchids of Europe and the Mediterranean. Kew Publishing; 2019.
Zhang H, Wu H, Yu Q, Wang Z, Wei C, Long M, et al. Sampling date, Leaf Age and Root size: implications for the study of Plant C:N:P Stoichiometry. PLoS One [Internet] 2013;8(4):1–8. PubMed PMC
Gebauer G, Preiss K, Gebauer AC. Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol. 2016;211(1):11–5. PubMed
R Core Team. R: a Language and Environment for Statistical Computing. Vienna, Austria; 2013.
Tian D, Yan Z, Niklas KJ, Han W, Kattge J, Reich PB, et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl Sci Rev. 2018;5(5):728–39.
Warton DI, Duursma RA, Falster DS, Taskinen S. Smatr 3– an R package for estimation and inference about allometric lines. Methods Ecol Evol. 2012;3(2):257–9.
Lallemand F, Martin-Magniette ML, Gilard F, Gakière B, Launay-Avon A, Delannoy É, et al. In situ transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. Plant J. 2019;98(5):826–41. PubMed
Selosse MA, Petrolli R, Mujica MI, Laurent L, Perez-Lamarque B, Figura T, et al. The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Ann Bot. 2022;129(3):259–70. PubMed PMC
Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, et al. Genome size diversity in orchids: consequences and evolution. Ann Bot. 2009;104(3):469–81. PubMed PMC
Jersáková J, Trávníček P, Kubátová B, Krejčíková J, Urfus T, Liu Z-J, et al. Genome size variation in Orchidaceae subfamily Apostasioideae: filling the phylogenetic gap. Bot J Linn Soc. 2013;172(1):95–105.
Chumová Z, Záveská E, Hloušková P, Ponert J, Schmidt P-A, Čertner M, et al. Repeat proliferation and partial endoreplication jointly shape the patterns of genome size evolution in orchids. Plant J. 2021;107(2):511–24. PubMed
Jacquemyn H, Brys R, Waud M, Evans A, Figura T, Selosse MA. Mycorrhizal Communities and Isotope Signatures in two partially mycoheterotrophic Orchids. Front Plant Sci. 2021;12:1–9. PubMed PMC
May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, et al. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza. 2020;30(1):51–61. PubMed
Rasmussen HN, Rasmussen FN. Orchid mycorrhiza: implications of a mycophagous life style. Oikos. 2009;118(3):334–45.
Elser JJ, Fagan WF, Kerkhoff AJ, Swenson NG, Enquist BJ. Biological stoichiometry of plant production: metabolism, scaling and ecological response to global change. New Phytol. 2010;186(3):593–608. PubMed
He J-S, Wang X, Schmid B, Flynn D, Li X, Reich P, et al. Taxonomic identity, phylogeny, climate and soil fertility as drivers of leaf traits across chinese grassland biomes. J Plant Res. 2010;123:551–61. PubMed
Milla R, Palacio S, Maestro-Martínez M, Montserrat-Martí G. Leaf exchange in a Mediterranean shrub: water, nutrient, non-structural carbohydrate and osmolyte dynamics. Tree Physiol. 2007;27(7):951–60. PubMed
Dearnaley JDW, Cameron DD. Nitrogen transport in the orchid mycorrhizal symbiosis – further evidence for a mutualistic association. New Phytologist: Blackwell Publishing Ltd; 2017. pp. 10–2. PubMed
Fochi V, Chitarra W, Kohler A, Voyron S, Singan VR, Lindquist EA, et al. Fungal and plant gene expression in the Tulasnella calospora–serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New Phytol. 2017;213(1):365–79. PubMed
Suetsugu K, Yamato M, Miura C, Yamaguchi K, Takahashi K, Ida Y, et al. Comparison of green and albino individuals of the partially mycoheterotrophic orchid Epipactis helleborine on molecular identities of mycorrhizal fungi, nutritional modes and gene expression in mycorrhizal roots. Mol Ecol. 2017;26(6):1652–69. PubMed
Cameron DD, Johnson I, Leake JR, Read DJ. Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot. 2007;99(5):831–4. PubMed PMC
Zhang J, Elser JJ, Carbon Nitrogen: Phosphorus stoichiometry in fungi: a meta-analysis. Front Microbiol. 2017;8:1–9. PubMed PMC
Elser JJ, Fagan WF, Denno RF, Dobberfuhl DR, Folarin A, Huberty A, et al. Nutritional constraints in terrestrial and freshwater food webs. Nature. 2000;408(6812):578–80. PubMed
Bougoure J, Ludwig M, Brundrett M, Cliff J, Clode P, Kilburn M, et al. High-resolution secondary ion mass spectrometry analysis of carbon dynamics in mycorrhizas formed by an obligately myco-heterotrophic orchid. Plant Cell Environ. 2014;37(5):1223–30. PubMed
Kuga Y, Sakamoto N, Yurimoto H. Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms. New Phytol. 2014;202(2):594–605. PubMed
Schiebold JMI, Bidartondo MI, Karasch P, Gravendeel B, Gebauer G. You are what you get from your fungi: Nitrogen stable isotope patterns in Epipactis species. Ann Bot. 2017;119(7):1085–95. PubMed PMC
Pumplin N, Harrison MJ. Live-cell imaging reveals Periarbuscular membrane domains and Organelle Location in Medicago truncatula roots during Arbuscular Mycorrhizal Symbiosis. Plant Physiol. 2009;151(2):809–19. PubMed PMC
Jąkalski M, Minasiewicz J, Caius J, May M, Selosse M-A, Delannoy E. The genomic impact of Mycoheterotrophy in Orchids. Front Plant Sci. 2021;12:1–16. PubMed PMC
McCormick MK, Whigham DF, O’Neill JP, Becker JJ, Werner S, Rasmussen HN, et al. Abundance and distribution of Corallorhiza odontorhiza reflect variations in climate and ectomycorrhizae. Ecol Monogr [Internet] 2009;79(4):619–35.
Frenken T, Wierenga J, Gsell AS, van Donk E, Rohrlack T, Van de Waal DB. Changes in N:P supply ratios affect the ecological stoichiometry of a toxic cyanobacterium and its fungal parasite. Front Microbiol. 2017;8:1–11. PubMed PMC
Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Peñuelas J, Richter A, Sardans J, et al. The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecol Monogr. 2015;85(2):133–55.
Jiang Y, Hu X, Yuan Y, Guo X, Chase MW, Ge S, et al. The Gastrodia menghaiensis (Orchidaceae) genome provides new insights of orchid mycorrhizal interactions. BMC Plant Biol. 2022;22(1):1–14. PubMed PMC
Xing K, Zhao M, Niinemets Ü, Niu S, Tian J, Jiang Y. Relationships between Leaf Carbon and Macronutrients across Woody Species and Forest Ecosystems Highlight how Carbon is allocated to Leaf Structural function. 2021;12:1–13. PubMed PMC
Rees TAV, Raven JA. The maximum growth rate hypothesis is correct for eukaryotic photosynthetic organisms, but not cyanobacteria. New Phytol [Internet] 2021;230(2):601–11. PubMed PMC
Krawczyk E. Wybrane aspekty biologii storzana bezlistnego (Epipogium aphyllum, Orchidaceae) w Polsce „Some aspects of ghost orchid’s biology (Epipogium aphyllum, Orchidaceae) in Poland. University of Gdańsk; 2016.
Selosse MA, Richard F, He X, Simard SW. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol. 2006;21(11):621–8. PubMed
Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP. Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev. 2012;26(1):39–60.
Van Der Heijden MGA, Horton TR. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J Ecol. 2009;97(6):1139–50.
Vitousek PM, Farrington H. Nutrient limitation and Soil Development: experimental test of a Biogeochemical Theory. Biogeohem. 1997;37:63–75.