The genomes of the yaws bacterium, Treponema pallidum subsp. pertenue, of nonhuman primate and human origin are not genomically distinct
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37703251
PubMed Central
PMC10499264
DOI
10.1371/journal.pntd.0011602
PII: PNTD-D-23-00281
Knihovny.cz E-resources
- MeSH
- Bacteria MeSH
- Yaws * epidemiology MeSH
- Humans MeSH
- Primates MeSH
- Treponema genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Treponema pallidum subsp. pertenue (TPE) is the causative agent of human yaws. Yaws is currently reported in 13 endemic countries in Africa, southern Asia, and the Pacific region. During the mid-20th century, a first yaws eradication effort resulted in a global 95% drop in yaws prevalence. The lack of continued surveillance has led to the resurgence of yaws. The disease was believed to have no animal reservoirs, which supported the development of a currently ongoing second yaws eradication campaign. Concomitantly, genetic evidence started to show that TPE strains naturally infect nonhuman primates (NHPs) in sub-Saharan Africa. In our current study we tested hypothesis that NHP- and human-infecting TPE strains differ in the previously unknown parts of the genomes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we determined complete (finished) genomes of ten TPE isolates that originated from NHPs and compared them to TPE whole-genome sequences from human yaws patients. We performed an in-depth analysis of TPE genomes to determine if any consistent genomic differences are present between TPE genomes of human and NHP origin. We were able to resolve previously undetermined TPE chromosomal regions (sequencing gaps) that prevented us from making a conclusion regarding the sequence identity of TPE genomes from NHPs and humans. The comparison among finished genome sequences revealed no consistent differences between human and NHP TPE genomes. CONCLUSION/SIGNIFICANCE: Our data show that NHPs are infected with strains that are not only similar to the strains infecting humans but are genomically indistinguishable from them. Although interspecies transmission in NHPs is a rare event and evidence for current spillover events is missing, the existence of the yaws bacterium in NHPs is demonstrated. While the low risk of spillover supports the current yaws treatment campaign, it is of importance to continue yaws surveillance in areas where NHPs are naturally infected with TPE even if yaws is successfully eliminated in humans.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Deutsches Primatenzentrum GmbH Leibniz Institute for Primate Research Göttingen Germany
See more in PubMed
Lukehart SA, Giacani L. When Is Syphilis Not Syphilis? Or Is It? Sex Transm Dis. 2014;41: 554–555. doi: 10.1097/OLQ.0000000000000179 PubMed DOI PMC
Mitjà O, Asiedu K, Mabey D. Yaws. The Lancet. 2013;381: 763–773. doi: 10.1016/S0140-6736(12)62130-8 PubMed DOI
Asiedu K, Fitzpatrick C, Jannin J. Eradication of Yaws: Historical Efforts and Achieving WHO’s 2020 Target. PLoS Negl Trop Dis. 2014;8: e3016. doi: 10.1371/journal.pntd.0003016 PubMed DOI PMC
Mitjà O, Houinei W, Moses P, Kapa A, Paru R, Hays R, et al.. Mass treatment with single-dose azithromycin for yaws. N Engl J Med. 2015;372: 703–710. doi: 10.1056/NEJMoa1408586 PubMed DOI
Mitjà O, González-Beiras C, Godornes C, Kolmau R, Houinei W, Abel H, et al. Effectiveness of single-dose azithromycin to treat latent yaws: a longitudinal comparative cohort study. Lancet Glob Health. 2017;5: e1268–e1274. doi: 10.1016/S2214-109X(17)30388-1 PubMed DOI
John LN, Beiras CG, Houinei W, Medappa M, Sabok M, Kolmau R, et al. Trial of Three Rounds of Mass Azithromycin Administration for Yaws Eradication. N Engl J Med. 2022;386: 47–56. doi: 10.1056/NEJMoa2109449 PubMed DOI PMC
World Health Organisation. Eradication of yaws—the Morges strategy. Releve Epidemiol Hebd. 2012;87: 189–194. PubMed
Harper KN, Fyumagwa RD, Hoare R, Wambura PN, Coppenhaver DH, Sapolsky RM, et al. Treponema pallidum Infection in the Wild Baboons of East Africa: Distribution and Genetic Characterization of the Strains Responsible. PLOS ONE. 2012;7: e50882. doi: 10.1371/journal.pone.0050882 PubMed DOI PMC
Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IAV, Nordhoff M, et al. Treponema Infection Associated With Genital Ulceration in Wild Baboons. Vet Pathol. 2012;49: 292–303. doi: 10.1177/0300985811402839 PubMed DOI
Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrožová L, Pospíšilová P, et al. Whole Genome Sequence of the Treponema Fribourg-Blanc: Unspecified Simian Isolate Is Highly Similar to the Yaws Subspecies. PLoS Negl Trop Dis. 2013;7: e2172. doi: 10.1371/journal.pntd.0002172 PubMed DOI PMC
Knauf S, Gogarten JF, Schuenemann VJ, De Nys HM, Düx A, Strouhal M, et al. Nonhuman primates across sub-Saharan Africa are infected with the yaws bacterium Treponema pallidum subsp. pertenue. Emerg Microbes Infect. 2018;7: 1–4. doi: 10.1038/s41426-018-0156-4 PubMed DOI PMC
Mediannikov O, Fenollar F, Davoust B, Amanzougaghene N, Lepidi H, Arzouni J-P, et al. Epidemic of venereal treponematosis in wild monkeys: a paradigm for syphilis origin. New Microbes New Infect. 2020;35: 100670. doi: 10.1016/j.nmni.2020.100670 PubMed DOI PMC
Mubemba B, Gogarten JF, Schuenemann VJ, Düx A, Lang A, Nowak K, et al. Geographically structured genomic diversity of non-human primate-infecting Treponema pallidum subsp. pertenue. Microb Genomics. 2020;6: mgen000463. doi: 10.1099/mgen.0.000463 PubMed DOI PMC
Mubemba B, Chanove E, Maetz-Rensing K, Gogarten JF, Duex A, Merkel K, et al. Yaws Disease Caused by Treponema pallidum subspecies pertenue in Wild Chimpanzee, Guinea, 2019. Emerg Infect Dis. 2020;26: 1283–1286. doi: 10.3201/eid2606.191713 PubMed DOI PMC
Chuma IS, Roos C, Atickem A, Bohm T, Anthony Collins D, Grillová L, et al. Strain diversity of Treponema pallidum subsp. pertenue suggests rare interspecies transmission in African nonhuman primates. Sci Rep. 2019;9: 14243. doi: 10.1038/s41598-019-50779-9 PubMed DOI PMC
Gogarten JF, Düx A, Schuenemann VJ, Nowak K, Boesch C, Wittig RM, et al. Tools for opening new chapters in the book of Treponema pallidum evolutionary history. Clin Microbiol Infect. 2016;22: 916–921. doi: 10.1016/j.cmi.2016.07.027 PubMed DOI
Chuma IS, Batamuzi EK, Collins DA, Fyumagwa RD, Hallmaier-Wacker LK, Kazwala RR, et al. Widespread Treponema pallidum Infection in Nonhuman Primates, Tanzania. Emerg Infect Dis. 2018;24: 1002–1009. doi: 10.3201/eid2406.180037 PubMed DOI PMC
Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, et al. Directly Sequenced Genomes of Contemporary Strains of Syphilis Reveal Recombination-Driven Diversity in Genes Encoding Predicted Surface-Exposed Antigens. Front Microbiol. 2019;10: 1691. doi: 10.3389/fmicb.2019.01691 PubMed DOI PMC
Smit AFA, Hubley R, Green P. RepeatMasker. Available: http://repeatmasker.org
Weinstock GM, Norris SJ, Sodergren E, and Šmajs D: Identification of virulence genes in silico: infectious disease genomics. In: Brogden KA, et al.. (eds): Virulence Mechanisms of Bacterial Pathogens, 3rd ed. ASM Press; 2000, Washington, D.C., pp. 251–261.
Čejková D, Zobaníková M, Pospíšilová P, Strouhal M, Mikalová L, Weinstock GM, et al. Structure of rrn operons in pathogenic non-cultivable treponemes: sequence but not genomic position of intergenic spacers correlates with classification of Treponema pallidum and Treponema paraluiscuniculi strains. J Med Microbiol. 2013;62: 196–207. doi: 10.1099/jmm.0.050658–0 PubMed DOI PMC
Štaudová B, Strouhal M, Zobaníková M, Čejková D, Fulton LL, Chen L, et al. Whole Genome Sequence of the Treponema pallidum subsp. endemicum Strain Bosnia A: The Genome Is Related to Yaws Treponemes but Contains Few Loci Similar to Syphilis Treponemes. PLoS Negl Trop Dis. 2014;8: e3261. doi: 10.1371/journal.pntd.0003261 PubMed DOI PMC
Grillová L, Giacani L, Mikalová L, Strouhal M, Strnadel R, Marra C, et al. Sequencing of Treponema pallidum subsp. pallidum from isolate UZ1974 using Anti-Treponemal Antibodies Enrichment: First complete whole genome sequence obtained directly from human clinical material. PLOS ONE. 2018;13: e0202619. doi: 10.1371/journal.pone.0202619 PubMed DOI PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17: 10–12. doi: 10.14806/ej.17.1.200 DOI
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv13033997 Q-Bio. 2013. [cited 15 Nov 2021]. Available: http://arxiv.org/abs/1303.3997
Md Vasimuddin, Misra S, Li H, Aluru S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). 2019. pp. 314–324. doi: 10.1109/IPDPS.2019.00041 DOI
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009;25: 2078–2079. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Broad Institute. Picard Toolkit. 2019. Available: https://broadinstitute.github.io/picard/
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20: 1297–1303. doi: 10.1101/gr.107524.110 PubMed DOI PMC
Breese MR, Liu Y. NGSUtils: a software suite for analyzing and manipulating next-generation sequencing datasets. Bioinforma Oxf Engl. 2013;29: 494–496. doi: 10.1093/bioinformatics/bts731 PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J Comput Biol. 2012;19: 455–477. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Guizelini D, Raittz RT, Cruz LM, Souza EM, Steffens MBR, Pedrosa FO. GFinisher: a new strategy to refine and finish bacterial genome assemblies. Sci Rep. 2016;6: 34963. doi: 10.1038/srep34963 PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34: 3094–3100. doi: 10.1093/bioinformatics/bty191 PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinforma Oxf Engl. 2011;27: 2987–2993. doi: 10.1093/bioinformatics/btr509 PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26: 841–842. doi: 10.1093/bioinformatics/btq033 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative Genomics Viewer. Nat Biotechnol. 2011;29: 24–26. doi: 10.1038/nbt.1754 PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29: 1072–1075. doi: 10.1093/bioinformatics/btt086 PubMed DOI PMC
Bushnell B. BBMap. 2017. Available: sourceforge.net/projects/bbmap/
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2020. Available: https://www.R-project.org/
Signorell A, Aho K, Alfons A, Anderegg N, Aragon T, Arachchige C, et al. DescTools: Tools for Descriptive Statistics. 2021. Available: https://CRAN.R-project.org/package=DescTools
Wickham H, François R, Henry L, Müller K, RStudio. dplyr: A Grammar of Data Manipulation. 2021. Available: https://CRAN.R-project.org/package=dplyr
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35: 1547–1549. doi: 10.1093/molbev/msy096 PubMed DOI PMC
Maděránková D, Mikalová L, Strouhal M, Vadják Š, Kuklová I, Pospíšilová P, et al. Identification of positively selected genes in human pathogenic treponemes: Syphilis-, yaws-, and bejel-causing strains differ in sets of genes showing adaptive evolution. PLoS Negl Trop Dis. 2019;13: e0007463. doi: 10.1371/journal.pntd.0007463 PubMed DOI PMC
Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993;10: 512–526. doi: 10.1093/oxfordjournals.molbev.a040023 PubMed DOI
Beale MA, Noguera-Julian M, Godornes C, Casadellà M, González-Beiras C, Parera M, et al. Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation. Lancet Microbe. 2020;1: e263–e271. doi: 10.1016/S2666-5247(20)30113-0 PubMed DOI
Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana O, et al. Diagnostics for Yaws Eradication: Insights From Direct Next-Generation Sequencing of Cutaneous Strains of Treponema pallidum. Clin Infect Dis. 2018;66: 818–824. doi: 10.1093/cid/cix892 PubMed DOI PMC
Timothy JWS, Beale MA, Rogers E, Zaizay Z, Halliday KE, Mulbah T, et al. Epidemiologic and Genomic Reidentification of Yaws, Liberia. Emerg Infect Dis. 2021;27: 1123–1132. doi: 10.3201/eid2704.204442 PubMed DOI PMC
Čejková D, Zobaníková M, Chen L, Pospíšilová P, Strouhal M, Qin X, et al. Whole Genome Sequences of Three Treponema pallidum ssp. pertenue Strains: Yaws and Syphilis Treponemes Differ in Less than 0.2% of the Genome Sequence. PLoS Negl Trop Dis. 2012;6: e1471. doi: 10.1371/journal.pntd.0001471 PubMed DOI PMC
Strouhal M, Mikalová L, Haviernik J, Knauf S, Bruisten S, Noordhoek GT, et al. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Indonesia: Modular structure of several treponemal genes. PLoS Negl Trop Dis. 2018;12: e0006867. doi: 10.1371/journal.pntd.0006867 PubMed DOI PMC
Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, et al.. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLoS Negl Trop Dis. 2017;11: e0005894. doi: 10.1371/journal.pntd.0005894 PubMed DOI PMC
Giacani L, Brandt SL, Puray-Chavez M, Reid TB, Godornes C, Molini BJ, et al. Comparative Investigation of the Genomic Regions Involved in Antigenic Variation of the TprK Antigen among Treponemal Species, Subspecies, and Strains. J Bacteriol. 2012;194: 4208–4225. doi: 10.1128/JB.00863-12 PubMed DOI PMC
Pinto M, Borges V, Antelo M, Pinheiro M, Nunes A, Azevedo J, et al. Genome-scale analysis of the non-cultivable Treponema pallidum reveals extensive within-patient genetic variation. Nat Microbiol. 2016;2: 1–11. doi: 10.1038/nmicrobiol.2016.190 PubMed DOI
Sepetjian M, Guerraz FT, Salussola D, Thivolet J, Monier JC. [Contribution to the study of the treponeme isolated from monkeys by A. Fribourg-Blanc]. Bull World Health Organ. 1969;40: 141–151. PubMed PMC
Castellani A. Experimental Investigations on Framboesia Tropica (Yaws). Epidemiol Infect. 1907;7: 558–569. doi: 10.1017/s0022172400033520 PubMed DOI PMC
Zimmerman DM, Hardgrove EH, von Fricken ME, Kamau J, Chai D, Mutura S, et al. Endemicity of Yaws and Seroprevalence of Treponema pallidum Antibodies in Nonhuman Primates, Kenya. Emerg Infect Dis. 2019;25: 2147–2149. doi: 10.3201/eid2511.190716 PubMed DOI PMC
Lubinza CKC, Lueert S, Hallmaier-Wacker LK, Ngadaya E, Chuma IS, Kazwala RR, et al. Serosurvey of Treponema pallidum infection among children with skin ulcers in the Tarangire-Manyara ecosystem, northern Tanzania. BMC Infect Dis. 2020;20: 392. doi: 10.1186/s12879-020-05105-4 PubMed DOI PMC
Radolf JD, Kumar S. The Treponema pallidum Outer Membrane. In: Adler B, editor. Spirochete Biology: The Post Genomic Era. Cham: Springer International Publishing; 2018. pp. 1–38. doi: 10.1007/82_2017_44 PubMed DOI PMC
Peng R-R, Wang AL, Li J, Tucker JD, Yin Y-P, Chen X-S. Molecular Typing of Treponema pallidum: A Systematic Review and Meta-Analysis. PLoS Negl Trop Dis. 2011;5: e1273. doi: 10.1371/journal.pntd.0001273 PubMed DOI PMC
Šmajs D, Strouhal M, Knauf S. Genetics of human and animal uncultivable treponemal pathogens. Infect Genet Evol. 2018;61: 92–107. doi: 10.1016/j.meegid.2018.03.015 PubMed DOI
Harper KN, Liu H, Ocampo PS, Steiner BM, Martin A, Levert K, et al. The sequence of the acidic repeat protein (arp) gene differentiates venereal from nonvenereal Treponema pallidum subspecies, and the gene has evolved under strong positive selection in the subspecies that causes syphilis. FEMS Immunol Med Microbiol. 2008;53: 322–332. doi: 10.1111/j.1574-695X.2008.00427.x PubMed DOI
Avershina E, Rudi K. Dominant short repeated sequences in bacterial genomes. Genomics. 2015;105: 175–181. doi: 10.1016/j.ygeno.2014.12.009 PubMed DOI
Mikalová L, Pospíšilová P, Woznicová V, Kuklová I, Zákoucká H, Šmajs D. Comparison of CDC and sequence-based molecular typing of syphilis treponemes: tpr and arp loci are variable in multiple samples from the same patient. BMC Microbiol. 2013;13: 178. doi: 10.1186/1471-2180-13-178 PubMed DOI PMC
Mitjà O, Hays R, Ipai A, Penias M, Paru R, Fagaho D, et al. Single-dose azithromycin versus benzathine benzylpenicillin for treatment of yaws in children in Papua New Guinea: an open-label, non-inferiority, randomised trial. The Lancet. 2012;379: 342–347. doi: 10.1016/S0140-6736(11)61624-3 PubMed DOI
Abdulai AA, Agana-Nsiire P, Biney F, Kwakye-Maclean C, Kyei-Faried S, Amponsa-Achiano K, et al. Community-based mass treatment with azithromycin for the elimination of yaws in Ghana—Results of a pilot study. PLoS Negl Trop Dis. 2018;12: e0006303. doi: 10.1371/journal.pntd.0006303 PubMed DOI PMC
The hare syphilis agent is related to, but distinct from, the treponeme causing rabbit syphilis