Resistome in the indoor dust samples from workplaces and households: a pilot study
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39691696
PubMed Central
PMC11649746
DOI
10.3389/fcimb.2024.1484100
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic resistance gene, antimicrobial resistance, hospital, indoor environment, microbiome,
- MeSH
- antibakteriální látky farmakologie MeSH
- Bacteria genetika izolace a purifikace účinky léků klasifikace MeSH
- bakteriální geny genetika MeSH
- bakteriální léková rezistence genetika MeSH
- charakteristiky rodiny MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- metagenom MeSH
- mikrobiologie vzduchu MeSH
- pilotní projekty MeSH
- prach * analýza MeSH
- pracoviště * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- znečištění vzduchu ve vnitřním prostředí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- prach * MeSH
The antibiotic resistance genes (ARGs) limit the susceptibility of bacteria to antimicrobials, representing a problem of high importance. Current research on the presence of ARGs in microorganisms focuses mainly on humans, livestock, hospitals, or wastewater. However, the spectrum of ARGs in the dust resistome in workplaces and households has gone relatively unexplored. This pilot study aimed to analyze resistome in indoor dust samples from participants' workplaces (a pediatric hospital, a maternity hospital, and a research center) and households and compare two different approaches to the ARGs analysis; high-throughput quantitative PCR (HT-qPCR) and whole metagenome shotgun sequencing (WMGS). In total, 143 ARGs were detected using HT-qPCR, with ARGs associated with the macrolides, lincosamides, and streptogramin B (MLSB) phenotype being the most abundant, followed by MDR (multi-drug resistance) genes, and genes conferring resistance to aminoglycosides. A higher overall relative quantity of ARGs was observed in indoor dust samples from workplaces than from households, with the pediatric hospital being associated with the highest relative quantity of ARGs. WMGS analysis revealed 36 ARGs, of which five were detected by both HT-qPCR and WMGS techniques. Accordingly, the efficacy of the WMGS approach to detect ARGs was lower than that of HT-qPCR. In summary, our pilot data revealed that indoor dust in buildings where people spend most of their time (workplaces, households) can be a significant source of antimicrobial-resistant microorganisms, which may potentially pose a health risk to both humans and animals.
Department of Gynecology and Obstetrics Faculty of Medicine Masaryk University Brno Czechia
Department of Gynecology and Obstetrics University Hospital Brno Brno Czechia
Department of Neonatology University Hospital Brno Brno Czechia
Department of Pediatric Otorhinolaryngology Faculty of Medicine Masaryk University Brno Czechia
Department of Pediatric Otorhinolaryngology University Hospital Brno Brno Czechia
Zobrazit více v PubMed
Abdelrahman D. N., Taha A. A., Dafaallah M. M., Mohammed A. A., El Hussein A. R. M., Hashim A. I., et al. . (2020). [amp]]beta;-lactamases (bla TEM, bla SHV, bla CTXM-1, bla VEB, bla OXA-1) and class C β-lactamases gene frequency in Pseudomonas aeruginosa isolated from various clinical specimens in Khartoum State, Sudan: a cross sectional study. F1000Research 9, 774. doi: 10.12688/f1000research.24818.3 PubMed DOI PMC
Acman M., Wang R., van Dorp L., Shaw L. P., Wang Q., Luhmann N., et al. . (2022). Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene blaNDM. Nat. Commun. 13, 1131. doi: 10.1038/s41467-022-28819-2 PubMed DOI PMC
Allemann A., Kraemer J. G., Korten I., Ramsey K., Casaulta C., Wüthrich D., et al. . (2019). Nasal resistome development in infants with cystic fibrosis in the first year of life. Front. Microbiol. 10. doi: 10.3389/fmicb.2019.00212 PubMed DOI PMC
An X.-L., Xu J.-X., Xu M.-R., Zhao C.-X., Li H., Zhu Y.-G., et al. . (2023). Dynamics of microbial community and potential microbial pollutants in shopping malls. mSystems 8, e00576–e00522. doi: 10.1128/msystems.00576-22 PubMed DOI PMC
Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (Accessed June 29, 2024).
Ayobami O., Willrich N., Harder T., Okeke I. N., Eckmanns T., Markwart R. (2019). The incidence and prevalence of hospital-acquired (carbapenem-resistant) Acinetobacter baumannii in Europe, Eastern Mediterranean and Africa: a systematic review and meta-analysis. Emerg. Microbes Infect. 8, 1747–1759. doi: 10.1080/22221751.2019.1698273 PubMed DOI PMC
Bagra K., Kneis D., Padfield D., Szekeres E., Teban-Man A., Coman C., et al. . (2024). Contrary effects of increasing temperatures on the spread of antimicrobial resistance in river biofilms. mSphere 9, e00573–e00523. doi: 10.1128/msphere.00573-23 PubMed DOI PMC
Bai H., He L.-Y., Wu D.-L., Gao F.-Z., Zhang M., Zou H.-Y., et al. . (2022). Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. Environ. Int. 158, 106927. doi: 10.1016/j.envint.2021.106927 PubMed DOI
Barberán A., Ladau J., Leff J. W., Pollard K. S., Menninger H. L., Dunn R. R., et al. . (2015). Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. U. S. A 112, 5756–5761. doi: 10.1073/pnas.1420815112 PubMed DOI PMC
Bich V. T. N., Thanh L. V., Thai P. D., Van Phuong T. T., Oomen M., Driessen C., et al. . (2019). An exploration of the gut and environmental resistome in a community in northern Vietnam in relation to antibiotic use. Antimicrob. Resist. Infect. Control 8, 1–10. doi: 10.1186/s13756-019-0645-9 PubMed DOI PMC
Boissy R. J., Romberger D. J., Roughead W. A., Weissenburger-Moser L., Poole J. A., LeVan T. D. (2014). Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities. PloS One 9, e95578. doi: 10.1371/journal.pone.0095578 PubMed DOI PMC
Bonadonna L., Briancesco R., Coccia A. M. (2017). Analysis of microorganisms in hospital environments and potential risks. Indoor Air Qual. Healthc. Facil, 53–62. doi: 10.1007/978-3-319-49160-8_5 DOI
Brink A. J. (2019). Epidemiology of carbapenem-resistant Gram-negative infections globally. Curr. Opin. Infect. Dis. 32, 609–616. doi: 10.1097/QCO.0000000000000608 PubMed DOI
Cain A. K., Hamidian M. (2023). Portrait of a killer: Uncovering resistance mechanisms and global spread of Acinetobacter baumannii. PloS Pathog. 19, e1011520. doi: 10.1371/journal.ppat.1011520 PubMed DOI PMC
Carr V. R., Witherden E. A., Lee S., Shoaie S., Mullany P., Proctor G. B., et al. . (2020). Abundance and diversity of resistomes differ between healthy human oral cavities and gut. Nat. Commun. 11, 693. doi: 10.1038/s41467-020-14422-w PubMed DOI PMC
Chauhan B. V., Higgins Jones D., Banerjee G., Agrawal S., Sulaiman I. M., Jia C., et al. . (2023). Indoor bacterial and fungal burden in “Moldy” versus “Non-moldy” Homes: A case study employing advanced sequencing techniques in a US metropolitan area. Pathogens 12, 1006. doi: 10.3390/pathogens12081006 PubMed DOI PMC
Chen S., Zhou Y., Chen Y., Gu J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinforma. Oxf. Engl. 34, i884–i890. doi: 10.1093/bioinformatics/bty560 PubMed DOI PMC
Chng K. R., Li C., Bertrand D., Ng A. H. Q., Kwah J. S., Low H. M., et al. . (2020). Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26, 941–951. doi: 10.1038/s41591-020-0894-4 PubMed DOI PMC
Christoff A. P., Sereia A. F., Hernandes C., de Oliveira L. F. (2019). Uncovering the hidden microbiota in hospital and built environments: New approaches and solutions. Exp. Biol. Med. 244, 534–542. doi: 10.1177/1535370218821857 PubMed DOI PMC
Codjoe F. S., Donkor E. S. (2017). Carbapenem resistance: A review. Med. Sci. 6, 1. doi: 10.3390/medsci6010001 PubMed DOI PMC
Corvec S., Dagnelie M.-A., Khammari A., Dréno B. (2019). Taxonomy and phylogeny of Cutibacterium (formerly Propionibacterium) acnes in inflammatory skin diseases. Ann. Dermatol. Venereol 146, 26–30. doi: 10.1016/j.annder.2018.11.002 PubMed DOI
Daw Elbait G., Daou M., Abuoudah M., Elmekawy A., Hasan S. W., Everett D. B., et al. . (2024). Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PloS One 19, e0298325. doi: 10.1371/journal.pone.0298325 PubMed DOI PMC
Ding L.-J., Zhou X.-Y., Zhu Y.-G. (2020). Microbiome and antibiotic resistome in household dust from Beijing, China. Environ. Int. 139, 105702. doi: 10.1016/j.envint.2020.105702 PubMed DOI
Escudeiro P., Pothier J., Dionisio F., Nogueira T. (2019). Antibiotic resistance gene diversity and virulence gene diversity are correlated in human gut and environmental microbiomes. mSphere 4, e00135–e00119. doi: 10.1128/mSphere.00135-19 PubMed DOI PMC
Ewels P., Magnusson M., Lundin S., Käller M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinforma. Oxf. Engl. 32, 3047–3048. doi: 10.1093/bioinformatics/btw354 PubMed DOI PMC
Feng T., Han Q., Su W., Yu Q., Yang J., Li H. (2022). Microbiota and mobile genetic elements influence antibiotic resistance genes in dust from dense urban public places. Environ. pollut. 311, 119991. doi: 10.1016/j.envpol.2022.119991 PubMed DOI
Fernández-Billón M., Llambías-Cabot A. E., Jordana-Lluch E., Oliver A., Macià M. D. (2023). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 5, 100129. doi: 10.1016/j.bioflm.2023.100129 PubMed DOI PMC
Forslund K., Sunagawa S., Coelho L. P., Bork P. (2014). Metagenomic insights into the human gut resistome and the forces that shape it. BioEssays 36, 316–329. doi: 10.1002/bies.201300143 PubMed DOI
Forslund K., Sunagawa S., Kultima J. R., Mende D. R., Arumugam M., Typas A., et al. . (2013). Country-specific antibiotic use practices impact the human gut resistome. Genome Res. 23, 1163–1169. doi: 10.1101/gr.155465.113 PubMed DOI PMC
Frye J. G., Jackson C. R. (2013). Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front. Microbiol. 4. doi: 10.3389/fmicb.2013.00135 PubMed DOI PMC
Fu X., Ou Z., Zhang M., Meng Y., Li Y., Wen J., et al. . (2021). Indoor bacterial, fungal and viral species and functional genes in urban and rural schools in Shanxi Province, China–association with asthma, rhinitis and rhinoconjunctivitis in high school students. Microbiome 9, 1–16. doi: 10.1186/s40168-021-01091-0 PubMed DOI PMC
Gu Z., Eils R., Schlesner M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinforma. Oxf. Engl. 32, 2847–2849. doi: 10.1093/bioinformatics/btw313 PubMed DOI
Gupta M., Lee S., Bisesi M., Lee J. (2019). Indoor microbiome and antibiotic resistance on floor surfaces: an exploratory study in three different building types. Int. J. Environ. Res. Public. Health 16, 4160. doi: 10.3390/ijerph16214160 PubMed DOI PMC
Gwenzi W., Siyawamwaya M. (2022). “Chapter 17 - The environmental resistome: Human exposure, health risks, and research needs,” in Emerging Contaminants in the Terrestrial-Aquatic-Atmosphere Continuum. Ed. Gwenzi W. (Amsterdam, The Netherlands: Elsevier; ), 307–322. doi: 10.1016/B978-0-323-90051-5.00001-8 DOI
Habibi N., Uddin S., Behbehani M., Kishk M., Abdul Razzack N., Zakir F., et al. . (2023). Antibiotic resistance genes in aerosols: baseline from Kuwait. Int. J. Mol. Sci. 24, 6756. doi: 10.3390/ijms24076756 PubMed DOI PMC
Hammoudi Halat D., Ayoub Moubareck C. (2020). The current burden of carbapenemases: review of significant properties and dissemination among gram-negative bacteria. Antibiot. Basel Switz 9, 186. doi: 10.3390/antibiotics9040186 PubMed DOI PMC
Hartmann E. M., Hickey R., Hsu T., Betancourt Román C. M., Chen J., Schwager R., et al. . (2016). Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 50, 9807–9815. doi: 10.1021/acs.est.6b00262 PubMed DOI PMC
Hewitt K. M., Gerba C. P., Maxwell S. L., Kelley S. T. (2012). Office space bacterial abundance and diversity in three metropolitan areas. PloS One 7 (5), e37849. doi: 10.1371/journal.pone.0037849 PubMed DOI PMC
Hullegie S., Venekamp R. P., van Dongen T. M. A., Hay A. D., Moore M. V., Little P., et al. . (2021). Prevalence and antimicrobial resistance of bacteria in children with acute otitis media and ear discharge: A systematic review. Pediatr. Infect. Dis. J. 40, 756. doi: 10.1097/INF.0000000000003134 PubMed DOI PMC
Izawa K., Kubosaki A., Kobayashi N., Akiyama Y., Yamazaki A., Hashimoto K., et al. . (2020). Comprehensive fungal community analysis of house dust using next-generation sequencing. Int. J. Environ. Res. Public. Health 17, 5842. doi: 10.3390/ijerph17165842 PubMed DOI PMC
Khalaf N. F., Al-Obaidi M. J., Mohammed S. W., Al-Malkey M. K., Nayyef H. J., Al-Hur F. J. A., et al. . (2022). Indoor house dust-borne fungi and risk of allergic respiratory diseases in Baghdad city. Rev. Fr. Allergol 62, 401–406. doi: 10.1016/j.reval.2021.05.002 DOI
Kim D.-W., Cha C.-J. (2021). Antibiotic resistome from the One-Health perspective: understanding and controlling antimicrobial resistance transmission. Exp. Mol. Med. 53, 301–309. doi: 10.1038/s12276-021-00569-z PubMed DOI PMC
Klümper U., Gionchetta G., Catão E., Bellanger X., Dielacher I., Elena A. X., et al. . (2024). Environmental microbiome diversity and stability is a barrier to antimicrobial resistance gene accumulation. Commun. Biol. 7, 1–13. doi: 10.1038/s42003-024-06338-8 PubMed DOI PMC
Konecna E., Videnska P., Buresova L., Urik M., Smetanova S., Smatana S., et al. . (2023). Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study. BMC Microbiol. 23, 1–16. doi: 10.1186/s12866-023-02951-5 PubMed DOI PMC
Krakau S., Straub D., Gourlé H., Gabernet G., Nahnsen S. (2022). nf-core/mag: a best-practice pipeline for metagenome hybrid assembly and binning. NAR Genomics Bioinforma 4, lqac007. doi: 10.1093/nargab/lqac007 PubMed DOI PMC
Kunhikannan S., Thomas C. J., Franks A. E., Mahadevaiah S., Kumar S., Petrovski S. (2021). Environmental hotspots for antibiotic resistance genes. MicrobiologyOpen 10, e1197. doi: 10.1002/mbo3.1197 PubMed DOI PMC
La Fauci V., Costa G. B., Genovese C., Palamara M. A. R., Alessi V., Squeri R. (2019). Drug-resistant bacteria on hands of healthcare workers and in the patient area: an environmental survey in Southern Italy’s hospital. Rev. Espanola Quimioter 32, 303–310. PubMed PMC
Li H., Zhou S.-Y.-D., Neilson R., An X.-L., Su J.-Q. (2022). Skin microbiota interact with microbes on office surfaces. Environ. Int. 168, 107493. doi: 10.1016/j.envint.2022.107493 PubMed DOI
Li X., Wu Z., Dang C., Zhang M., Zhao B., Cheng Z., et al. . (2021). A metagenomic-based method to study hospital air dust resistome. Chem. Eng. J. 406, 126854. doi: 10.1016/j.cej.2020.126854 PubMed DOI PMC
Martínez-Martínez L., Pascual A., Jacoby G. A. (1998). Quinolone resistance from a transferable plasmid. Lancet Lond. Engl. 351, 797–799. doi: 10.1016/S0140-6736(97)07322-4 PubMed DOI
Mencía-Ares O., Cabrera-Rubio R., Cobo-Díaz J. F., Álvarez-Ordóñez A., Gómez-García M., Puente H., et al. . (2020). Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome 8, 1–17. doi: 10.1186/s40168-020-00941-7 PubMed DOI PMC
Murray C. J. L., Ikuta K. S., Sharara F., Swetschinski L., Aguilar G. R., Gray A., et al. . (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655. doi: 10.1016/S0140-6736(21)02724-0 PubMed DOI PMC
Nakazawa M. (2024). fmsb: Functions for Medical Statistics Book with some Demographic Data. Available online at: https://cran.r-project.org/web/packages/fmsb/index.html (Accessed June 29, 2024).
Nastasi N., Haines S. R., Bope A., Meyer M. E., Horack J. M., Dannemiller K. C. (2024). Fungal diversity differences in the indoor dust microbiome from built environments on earth and in space. Sci. Rep. 14, 11858. doi: 10.1038/s41598-024-62191-z PubMed DOI PMC
Nielsen K. L., Olsen M. H., Pallejá A., Ebdrup S. R., Sørensen N., Lukjancenko O., et al. . (2021). Microbiome compositions and resistome levels after antibiotic treatment of critically ill patients: an observational cohort study. Microorganisms 9, 2542. doi: 10.3390/microorganisms9122542 PubMed DOI PMC
Oldenburg C. E., Hinterwirth A., Sié A., Coulibaly B., Ouermi L., Dah C., et al. . (2020). Gut resistome after oral antibiotics in preschool children in Burkina Faso: A randomized, controlled trial. Clin. Infect. Dis. 70, 525–527. doi: 10.1093/cid/ciz455 PubMed DOI PMC
Pal C., Bengtsson-Palme J., Kristiansson E., Larsson D. G. J. (2016). The structure and diversity of human, animal and environmental resistomes. Microbiome 4, 1–15. doi: 10.1186/s40168-016-0199-5 PubMed DOI PMC
Palleja A., Mikkelsen K. H., Forslund S. K., Kashani A., Allin K. H., Nielsen T., et al. . (2018). Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat. Microbiol. 3, 1255–1265. doi: 10.1038/s41564-018-0257-9 PubMed DOI
Peterson E., Kaur P. (2018). Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 9. doi: 10.3389/fmicb.2018.02928 PubMed DOI PMC
Potrykus J., Wegrzyn G. (2001). Chloramphenicol-sensitive Escherichia coli strain expressing the chloramphenicol acetyltransferase (cat) gene. Antimicrob. Agents Chemother. 45, 3610–3612. doi: 10.1128/AAC.45.12.3610-3612.2001 PubMed DOI PMC
Puangseree J., Prathan R., Srisanga S., Chuanchuen R. (2024). Molecular basis of the persistence of chloramphenicol resistance among Escherichia coli and Salmonella spp. from pigs, pork and humans in Thailand. PloS One 19, e0304250. doi: 10.1371/journal.pone.0304250 PubMed DOI PMC
R Core Team (2021). R: A language and environment for statistical computing (Vienna, Austria: Foundation for Statistical Computing; ). Available at: https://www.R-project.org/.
Saeli N., Jafari-Ramedani S., Ramazanzadeh R., Nazari M., Sahebkar A., Khademi F. (2024). Prevalence and mechanisms of aminoglycoside resistance among drug-resistant Pseudomonas aeruginosa clinical isolates in Iran. BMC Infect. Dis. 24, 1–9. doi: 10.1186/s12879-024-09585-6 PubMed DOI PMC
Samarra A., Cabrera-Rubio R., Martínez-Costa C., Collado M. C. (2024). Unravelling the evolutionary dynamics of antibiotic resistance genes in the infant gut microbiota during the first four months of life. Ann. Clin. Microbiol. Antimicrob. 23, 72. doi: 10.1186/s12941-024-00725-z PubMed DOI PMC
Schwendener S., Donà V., Perreten V. (2020). The Novel Macrolide Resistance Genes mef(D), msr(F), and msr(H) Are Present on Resistance Islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob. Agents Chemother. 64, e00160–e00120. doi: 10.1128/AAC.00160-20 PubMed DOI PMC
Shan Y., Wu W., Fan W., Haahtela T., Zhang G. (2019). House dust microbiome and human health risks. Int. Microbiol. 22, 297–304. doi: 10.1007/s10123-019-00057-5 PubMed DOI
Silva A., Silva V., López M., Rojo-Bezares B., Carvalho J. A., Castro A. P., et al. . (2023). Antimicrobial resistance, genetic lineages, and biofilm formation in pseudomonas aeruginosa isolated from human infections: an emerging one health concern. Antibiotics 12, 1248. doi: 10.3390/antibiotics12081248 PubMed DOI PMC
Smith B. L., Fernando S., King M. D. (2024). Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: a molecular dynamics study. Sci. Rep. 14, 2742. doi: 10.1038/s41598-024-52536-z PubMed DOI PMC
Stedtfeld R. D., Guo X., Stedtfeld T. M., Sheng H., Williams M. R., Hauschild K., et al. . (2018). Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol. Ecol. 94, fiy130. doi: 10.1093/femsec/fiy130 PubMed DOI PMC
Stege P. B., Hordijk J., Shetty S. A., Visser M., Viveen M. C., Rogers M. R. C., et al. . (2022). Impact of long-term dietary habits on the human gut resistome in the Dutch population. Sci. Rep. 12, 1892. doi: 10.1038/s41598-022-05817-4 PubMed DOI PMC
Sukumar S., Wang F., Simpson C. A., Willet C. E., Chew T., Hughes T. E., et al. . (2023). Development of the oral resistome during the first decade of life. Nat. Commun. 14, 1291. doi: 10.1038/s41467-023-36781-w PubMed DOI PMC
Sun J., Liao X.-P., D’Souza A. W., Boolchandani M., Li S.-H., Cheng K., et al. . (2020. a). Environmental remodeling of human gut microbiota and antibiotic resistome in livestock farms. Nat. Commun. 11, 1427. doi: 10.1038/s41467-020-15222-y PubMed DOI PMC
Sun Y., Fu X., Li Y., Yuan Q., Ou Z., Lindgren T., et al. . (2020. b). Shotgun metagenomics of dust microbiome from flight deck and cabin in civil aviation aircraft. Indoor Air 30, 1199–1212. doi: 10.1111/ina.12707 PubMed DOI
Sunenshine R. H., Wright M.-O., Maragakis L. L., Harris A. D., Song X., Hebden J., et al. . (2007). Multidrug-resistant Acinetobacter infection mortality rate and length of hospitalization. Emerg. Infect. Dis. 13, 97–103. doi: 10.3201/eid1301.060716 PubMed DOI PMC
Tavella T., Turroni S., Brigidi P., Candela M., Rampelli S. (2021). The human gut resistome up to extreme longevity. mSphere 6, e0069121. doi: 10.1128/mSphere.00691-21 PubMed DOI PMC
van Schaik W. (2015). The human gut resistome. Philos. Trans. R. Soc B Biol. Sci. 370, 20140087. doi: 10.1098/rstb.2014.0087 PubMed DOI PMC
Wang B., Xu J., Wang Y., Stirling E., Zhao K., Lu C., et al. . (2023). Tackling soil ARG-carrying pathogens with global-scale metagenomics. Adv. Sci. Weinh 10, e2301980. doi: 10.1002/advs.202301980 PubMed DOI PMC
Wang Y., Hu Y., Liu F., Cao J., Lv N., Zhu B., et al. . (2020). Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 138, 105649. doi: 10.1016/j.envint.2020.105649 PubMed DOI
Wang Y., Lyu N., Liu F., Liu W. J., Bi Y., Zhang Z., et al. . (2021). More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. Environ. Int. 153, 106534. doi: 10.1016/j.envint.2021.106534 PubMed DOI
Weikl F., Tischer C., Probst A. J., Heinrich J., Markevych I., Jochner S., et al. . (2016). Fungal and bacterial communities in indoor dust follow different environmental determinants. PloS One 11, e0154131. doi: 10.1371/journal.pone.0154131 PubMed DOI PMC
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis (New York: Springer-Verlag; ). doi: 10.1007/978-3-319-24277-4 DOI
Willmann M., Vehreschild M. J. G. T., Biehl L. M., Vogel W., Dörfel D., Hamprecht A., et al. . (2019). Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. Lond. 17 (1), 76. doi: 10.1186/s12915-019-0692-y PubMed DOI PMC
Wood D. E., Lu J., Langmead B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 1–13. doi: 10.1186/s13059-019-1891-0 PubMed DOI PMC
Wu D., Jin L., Xie J., Liu H., Zhao J., Ye D., et al. . (2022). Inhalable antibiotic resistomes emitted from hospitals: metagenomic insights into bacterial hosts, clinical relevance, and environmental risks. Microbiome 10, 1–16. doi: 10.1186/s40168-021-01197-5 PubMed DOI PMC
Wüthrich D., Brilhante M., Hausherr A., Becker J., Meylan M., Perreten V. (2019). A Novel Trimethoprim Resistance Gene, dfrA36, Characterized from Escherichia coli from Calves. mSphere 4, e00255–e00219. doi: 10.1128/mSphere.00255-19 PubMed DOI PMC
Yates J. A. F., Frangenberg J., Ibrahim A., Perelo L., bot nf-core, Beber M.E., et al. . (2023). nf-core/funcscan: 1.1.4 - British Beans on Toast (Patch) - 2023-11-07. doi: 10.5281/zenodo.10078888 DOI
Zhang Y., Zhang N., Wang M., Luo M., Peng Y., Li Z., et al. . (2023). The prevalence and distribution of aminoglycoside resistance genes. Biosaf. Health 5, 14–20. doi: 10.1016/j.bsheal.2023.01.001 DOI
Zhao Y., Wang Q., Chen Z., Mao D., Luo Y. (2021). Significant higher airborne antibiotic resistance genes and the associated inhalation risk in the indoor than the outdoor. Environ. pollut. 268, 115620. doi: 10.1016/j.envpol.2020.115620 PubMed DOI
Zhou Z.-C., Liu Y., Lin Z.-J., Shuai X.-Y., Zhu L., Xu L., et al. . (2021). Spread of antibiotic resistance genes and microbiota in airborne particulate matter, dust, and human airways in the urban hospital. Environ. Int. 153, 106501. doi: 10.1016/j.envint.2021.106501 PubMed DOI