Validating a clinically based MS-MLPA threshold through comparison with Sanger sequencing in glioblastoma patients

. 2025 Jan 29 ; 17 (1) : 16. [epub] 20250129

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články, srovnávací studie, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39881389

Grantová podpora
NU21-04-00100 Agentura Pro Zdravotnický Výzkum České Republiky
MH CZ - DRO 0064165 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 39881389
PubMed Central PMC11776323
DOI 10.1186/s13148-025-01822-2
PII: 10.1186/s13148-025-01822-2
Knihovny.cz E-zdroje

BACKGROUND: Glioblastoma is the commonest malignant brain tumor and has a very poor prognosis. Reduced expression of the MGMT gene (10q26.3), influenced primarily by the methylation of two differentially methylated regions (DMR1 and DMR2), is associated with a good response to temozolomide treatment. However, suitable methods for detecting the methylation of the MGMT gene promoter and setting appropriate cutoff values are debated. RESULTS: A cohort of 108 patients with histologically and genetically defined glioblastoma was retrospectively examined with methylation-specific Sanger sequencing (sSeq) and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) methods. The DMR2 region was methylated in 29% of samples, whereas DMR1 was methylated in 12% of samples. Methylation detected with the MS-MLPA method using probes MGMT_215, MGMT_190, and MGMT_124 from the ME012-A1 kit (located in DMR1 and DMR2) correlated with the methylation of the corresponding CpG dinucleotides detected with sSeq (p = 0.005 for probe MGMT_215; p < 0.001 for probe MGMT_190; p = 0.016 for probe MGMT_124). The threshold for methylation detection with the MS-MLPA method was calculated with a ROC curve analysis and principal components analysis of the data obtained with the MS-MLPA and sSeq methods, yielding a weighted value of 0.362. Thus, methylation of the MGMT gene promoter was confirmed in 36% of samples. These patients had statistically significantly better overall survival (p = 0.003). CONCLUSIONS: Our results show that the threshold for methylation detection with the MS-MLPA method determined here is useful from a diagnostic perspective because it allows the stratification of patients who will benefit from specific treatment protocols, including temozolomide. Detailed analysis of the MGMT gene promoter enables the more-precise and personalized treatment of patients with glioblastoma.

Zobrazit více v PubMed

Ostrom QT, Shoaf ML, Cioffi G, Waite K, Kruchko C, Wen PY, et al. National-level overall survival patterns for molecularly-defined diffuse glioma types in the United States. Neuro Oncol. 2023;25(4):799–807. PubMed PMC

Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021;23(8):1231–51. PubMed PMC

Weller M, van den Bent M, Preusser M, Le Rhun E, Tonn JC, Minniti G, et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol. 2021;18(3):170–86. PubMed PMC

Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med. 2000;343(19):1350–4. PubMed

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003. PubMed

Costello JF, Futscher BW, Tano K, Graunke DM, Pieper RO. Graded methylation in the promoter and body of the O6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem. 1994;269(25):17228–37. PubMed

Leske H, Camenisch Gross U, Hofer S, Neidert MC, Leske S, Weller M, et al. MGMT methylation pattern of long-term and short-term survivors of glioblastoma reveals CpGs of the enhancer region to be of high prognostic value. Acta Neuropathol Commun. 2023;11(1):139. PubMed PMC

Malley DS, Hamoudi RA, Kocialkowski S, Pearson DM, Collins VP, Ichimura K. A distinct region of the MGMT CpG island critical for transcriptional regulation is preferentially methylated in glioblastoma cells and xenografts. Acta Neuropathol. 2011;121(5):651–61. PubMed

Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60. PubMed PMC

Buyuktepe M, Kaplan I, Bayatli E, Dogan H, Ugur HC. Significance of O6-methyl guanine methyltransferase promoter methylation in high grade glioma patients: optimal cutoff point, CpG locus, and genetic assay. J Neurooncol. 2023;164(1):171–7. PubMed

Siller S, Lauseker M, Karschnia P, Niyazi M, Eigenbrod S, Giese A, et al. The number of methylated CpG sites within the MGMT promoter region linearly correlates with outcome in glioblastoma receiving alkylating agents. Acta Neuropathol Commun. 2021;9(1):35. PubMed PMC

Malmström A, Łysiak M, Kristensen BW, Hovey E, Henriksson R, Söderkvist P. Do we really know who has an MGMT methylated glioma? Results of an international survey regarding use of MGMT analyses for glioma. Neurooncol Pract. 2020;7(1):68–76. PubMed PMC

Jeuken J, Cornelissen S, Boots-Sprenger S, Gijsen S, Wesseling P. Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn. 2006;8(4):433–43. PubMed PMC

Mansouri A, Hachem LD, Mansouri S, Nassiri F, Laperriere NJ, Xia D, et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: refining the approach based on emerging evidence and current challenges. Neuro Oncol. 2019;21(2):167–78. PubMed PMC

Zemanová Z, Kramar F, Babická L, Ransdorfová S, Melichercíková J, Hrabal P, et al. Molecular cytogenetic stratification of recurrent oligodendrogliomas: utility of interphase fluorescence in situ hybridization (I-FISH). Folia Biol (Praha). 2006;52(3):71–8. PubMed

Möllemann M, Wolter M, Felsberg J, Collins VP, Reifenberger G. Frequent promoter hypermethylation and low expression of the MGMT gene in oligodendroglial tumors. Int J Cancer. 2005;113(3):379–85. PubMed

Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics. 2002;18(11):1427–31. PubMed

Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengauer T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Bioinformatics. 2005;21(21):4067–8. PubMed

The Galaxy Community. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update, Nucleic Acids Research, 2024. 10.1093/nar/gkae410. Accessed Feb 2024 PubMed PMC

Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. 2023. Accessed Mar 2024.

Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011;12:77. PubMed PMC

Therneau T. A Package for Survival Analysis in R_. R package version 3.5-3. 2023. https://CRAN.R-project.org/package=survival. Accessed March 2024.

Stupp R, van den Bent MJ, Hegi ME. Optimal role of temozolomide in the treatment of malignant gliomas. Curr Neurol Neurosci Rep. 2005;5(3):198–206. PubMed

Thomas-Joulié A, Tran S, El Houari L, Seyve A, Bielle F, Birzu C, et al. Prognosis of glioblastoma patients improves significantly over time interrogating historical controls. Eur J Cancer. 2024;202: 114004. PubMed

Jeuken JW, Cornelissen SJ, Vriezen M, Dekkers MM, Errami A, Sijben A, et al. MS-MLPA: an attractive alternative laboratory assay for robust, reliable, and semiquantitative detection of MGMT promoter hypermethylation in gliomas. Lab Invest. 2007;87(10):1055–65. PubMed

Park CK, Kim J, Yim SY, Lee AR, Han JH, Kim CY, et al. Usefulness of MS-MLPA for detection of MGMT promoter methylation in the evaluation of pseudoprogression in glioblastoma patients. Neuro Oncol. 2011;13(2):195–202. PubMed PMC

Trabelsi S, Mama N, Ladib M, Karmeni N, Haddaji Mastouri M, Chourabi M, et al. MGMT methylation assessment in glioblastoma: MS-MLPA versus human methylation 450K beadchip array and immunohistochemistry. Clin Transl Oncol. 2016;18(4):391–7. PubMed

Christians A, Hartmann C, Benner A, Meyer J, von Deimling A, Weller M, et al. Prognostic value of three different methods of MGMT promoter methylation analysis in a prospective trial on newly diagnosed glioblastoma. PLoS ONE. 2012;7(3): e33449. PubMed PMC

Gibson D, Vo AH, Lambing H, Bhattacharya P, Tahir P, Chehab FF, et al. A systematic review of high impact CpG sites and regions for MGMT methylation in glioblastoma [A systematic review of MGMT methylation in GBM]. BMC Neurol. 2024;24(1):103. PubMed PMC

Everhard S, Tost J, El Abdalaoui H, Crinière E, Busato F, Marie Y, et al. Identification of regions correlating MGMT promoter methylation and gene expression in glioblastomas. Neuro Oncol. 2009;11(4):348–56. PubMed PMC

Szylberg M, Sokal P, Śledzińska P, Bebyn M, Krajewski S, Szylberg Ł, et al. Promoter methylation as a prognostic factor in primary glioblastoma: a single-institution observational study. Biomedicines. 2022;10(8):2030. PubMed PMC

Richard S, Tachon G, Milin S, Wager M, Karayan-Tapon L. Dual MGMT inactivation by promoter hypermethylation and loss of the long arm of chromosome 10 in glioblastoma. Cancer Med. 2020;9(17):6344–53. PubMed PMC

Bady P, Delorenzi M, Hegi ME. Sensitivity analysis of the MGMT-STP27 model and impact of genetic and epigenetic context to predict the MGMT methylation status in gliomas and other tumors. J Mol Diagn. 2016;18(3):350–61. PubMed

Low JP, Satgunaseelan L, Wright D. Biallelic MGMT loss in a case of IDH-wild-type adult glioblastoma: a case for concurrent epigenomic and molecular karyotype testing. Pathology. 2023;55(4):551–4. PubMed

Ramalho-Carvalho J, Pires M, Lisboa S, Graça I, Rocha P, Barros-Silva JD, et al. Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations. PLoS ONE. 2013;8(3): e58206. PubMed PMC

Miele E, Anghileri E, Calatozzolo C, Lazzarini E, Patrizi S, Ciolfi A, et al. Clinicopathological and molecular landscape of 5-year IDH-wild-type glioblastoma survivors: a multicentric retrospective study. Cancer Lett. 2024;588: 216711. PubMed

van der Meulen M, Ramos RC, Voisin MR, Patil V, Wei Q, Singh O, et al. Differences in methylation profiles between long-term survivors and short-term survivors of IDH-wild-type glioblastoma. Neurooncol Adv. 2024;6(1):vdae001. PubMed PMC

Chehade G, Lawson TM, Lelotte J, Daoud L, Di Perri D, Whenham N, et al. Long-term survival in patients with IDH-wildtype glioblastoma: clinical and molecular characteristics. Acta Neurochir (Wien). 2023;165(4):1075–85. PubMed

Lhotska H, Zemanova Z, Cechova H, Ransdorfova S, Lizcova L, Kramar F, et al. Genetic and epigenetic characterization of low-grade gliomas reveals frequent methylation of the MLH3 gene. Genes Chromosom Cancer. 2015;54(11):655–67. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...