Insights From TgF344-AD, a Double Transgenic Rat Model in Alzheimer's Disease Research
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
40116546
PubMed Central
PMC11995940
DOI
10.33549/physiolres.935464
PII: 935464
Knihovny.cz E-resources
- MeSH
- Alzheimer Disease * genetics pathology metabolism MeSH
- Amyloid beta-Protein Precursor genetics metabolism MeSH
- Rats MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Brain pathology metabolism MeSH
- Rats, Inbred F344 MeSH
- Rats, Transgenic * MeSH
- Presenilin-1 genetics MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Amyloid beta-Protein Precursor MeSH
- Presenilin-1 MeSH
Alzheimer's disease (AD), a leading cause of dementia worldwide, is a multifactorial neurodegenerative disorder characterized by amyloid-beta plaques, tauopathy, neuronal loss, neuro-inflammation, brain atrophy, and cognitive deficits. AD manifests as familial early-onset (FAD) with specific gene mutations or sporadic late-onset (LOAD) caused by various genetic and environmental factors. Numerous transgenic rodent models have been developed to understand AD pathology development and progression. The TgF344-AD rat model is a double transgenic model that carries two human gene mutations: APP with the Swedish mutation and PSEN-1 with delta exon 9 mutations. This model exhibits a complete repertoire of AD pathology in an age-dependent manner. This review summarizes multidisciplinary research insights gained from studying TgF344-AD rats in the context of AD pathology. We explore neuropathological findings; electrophysiological assessments revealing disrupted synaptic transmission, reduced spatial coding, network-level dysfunctions, and altered sleep architecture; behavioral studies highlighting impaired spatial memory; alterations in excitatory-inhibitory systems; and molecular and physiological changes in TgF344-AD rats emphasizing their age-related effects. Additionally, the impact of various interventions studied in the model is compiled, underscoring their role in bridging gaps in understanding AD pathogenesis. The TgF344-AD rat model offers significant potential in identifying biomarkers for early detection and therapeutic interventions, providing a robust platform for advancing translational AD research. Key words Alzheimer's disease, Transgenic AD models, TgF344-AD rats, Spatial coding.
See more in PubMed
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT, Nixon RA, Jones DT. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33. doi: 10.1038/s41572-021-00269-y. PubMed DOI PMC
Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–766. doi: 10.1152/physrev.2001.81.2.741. PubMed DOI
Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25:5789. doi: 10.3390/molecules25245789. PubMed DOI PMC
2020 Alzheimer’s disease facts and figures. Alzheimers Dement. Published online March 10, 2020.
Sloane PD, Zimmerman S, Suchindran C, Reed P, Wang L, Boustani M, Sudha S. The public health impact of Alzheimer’s disease, 2000–2050: potential implication of treatment advances. Annu Rev Public Health. 2002;23:213–231. doi: 10.1146/annurev.publhealth.23.100901.140525. PubMed DOI
Ghiso J, Frangione B. Amyloidosis and Alzheimer’s disease. Adv Drug Deliv Rev. 2002;54:1539–1551. doi: 10.1016/S0169-409X(02)00149-7. PubMed DOI
Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–259. doi: 10.1007/BF00308809. PubMed DOI
Wirths O, Zampar S. Neuron Loss in Alzheimer’s Disease: Translation in Transgenic Mouse Models. Int J Mol Sci. 2020;21:8144. doi: 10.3390/ijms21218144. PubMed DOI PMC
Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, Oxidative Stress and the Pathogenesis of Alzheimers Disease. Curr Pharm Des. 2010;16:2766–2778. doi: 10.2174/138161210793176572. PubMed DOI
Rossor MN, Newman S, Frackowiak RS, Lantos P, Kennedy AM. Alzheimer’s disease families with amyloid precursor protein mutations. Ann N Y Acad Sci. 1993;695:198–202. doi: 10.1111/j.1749-6632.1993.tb23052.x. PubMed DOI
Chen B, Marquez-Nostra B, Belitzky E, Toyonaga T, Tong J, Huang Y, Cai Z. PET Imaging in Animal Models of Alzheimer’s Disease. Front Neurosci. 2022;16:872509. doi: 10.3389/fnins.2022.872509. PubMed DOI PMC
Du AT, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, et al. Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain. 2007;130:1159–1166. doi: 10.1093/brain/awm016. PubMed DOI PMC
Ryan NS, Rossor MN. Correlating familial Alzheimer’s disease gene mutations with clinical phenotype. Biomark Med. 2010;4:99–112. doi: 10.2217/bmm.09.92. PubMed DOI PMC
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63:287–303. doi: 10.1016/j.neuron.2009.06.026. PubMed DOI PMC
Wolfe CM, Fitz NF, Nam KN, Lefterov I, Koldamova R. The Role of APOE and TREM2 in Alzheimer’s Disease-Current Understanding and Perspectives. Int J Mol Sci. 2018;20:81. doi: 10.3390/ijms20010081. PubMed DOI PMC
Bierer LM, Haroutunian V, Gabriel S, Knott PJ, Carlin LS, Purohit DP, Perl DP, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem. 1995;64:749–760. doi: 10.1046/j.1471-4159.1995.64020749.x. PubMed DOI
Hardy J, Allsop D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci. 1991;12:383–388. doi: 10.1016/0165-6147(91)90609-V. PubMed DOI
Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995;373:523–527. doi: 10.1038/373523a0. PubMed DOI
Benedikz E, Kloskowska E, Winblad B. The rat as an animal model of Alzheimer’s disease. J Cell Mol Med. 2009;13:1034–1042. doi: 10.1111/j.1582-4934.2009.00781.x. PubMed DOI PMC
Cohen RM, Rezai-Zadeh K, Weitz TM, Rentsendorj A, Gate D, Spivak I, Bholat Y, et al. A transgenic Alzheimer rat with plaques, tau pathology, behavioral impairment, oligomeric aβ, and frank neuronal loss. J Neurosci. 2013;33:6245–6256. doi: 10.1523/JNEUROSCI.3672-12.2013. PubMed DOI PMC
Do Carmo S, Cuello AC. Modeling Alzheimer’s disease in transgenic rats. Mol Neurodegener. 2013;8:37. doi: 10.1186/1750-1326-8-37. PubMed DOI PMC
Folkesson R, Malkiewicz K, Kloskowska E, Nilsson T, Popova E, Bogdanovic N, Ganten U, et al. A transgenic rat expressing human APP with the Swedish Alzheimer’s disease mutation. Biochem Biophys Res Commun. 2007;358:777–782. doi: 10.1016/j.bbrc.2007.04.195. PubMed DOI
Kloskowska E, Pham TM, Nilsson T, Zhu S, Oberg J, Codita A, Pedersen LA, et al. Cognitive impairment in the Tg6590 transgenic rat model of Alzheimer’s disease. J Cell Mol Med. 2010;14:1816–1823. doi: 10.1111/j.1582-4934.2009.00809.x. PubMed DOI PMC
Echeverria V, Ducatenzeiler A, Alhonen L, Janne J, Grant SM, Wandosell F, Muro A, et al. Rat transgenic models with a phenotype of intracellular Abeta accumulation in hippocampus and cortex. J Alzheimers Dis. 2004;6:209–219. doi: 10.3233/JAD-2004-6301. PubMed DOI
Echeverria V, Ducatenzeiler A, Dowd E, Jänne J, Grant SM, Szyf M, Wandosell F, et al. Altered mitogen-activated protein kinase signaling, tau hyperphosphorylation and mild spatial learning dysfunction in transgenic rats expressing the beta-amyloid peptide intracellularly in hippocampal and cortical neurons. Neuroscience. 2004;129:583–592. doi: 10.1016/j.neuroscience.2004.07.036. PubMed DOI
Leon WC, Canneva F, Partridge V, Allard S, Ferretti MT, DeWilde A, Vercauteren F, et al. A novel transgenic rat model with a full Alzheimer’s-like amyloid pathology displays pre-plaque intracellular amyloid-beta-associated cognitive impairment. J Alzheimers Dis. 2010;20:113–126. doi: 10.3233/JAD-2010-1349. PubMed DOI
Galeano P, Martino Adami PV, Do Carmo S, Blanco E, Rotondaro C, Capani F, Castaño EM, et al. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer’s disease. Front Behav Neurosci. 2014;8:321. doi: 10.3389/fnbeh.2014.00321. PubMed DOI PMC
Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, et al. The McGill Transgenic Rat Model of Alzheimer’s Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci. 2018;10:250. doi: 10.3389/fnagi.2018.00250. PubMed DOI PMC
Rorabaugh JM, Chalermpalanupap T, Botz-Zapp CA, Fu VM, Lembeck NA, Cohen RM, Weinshenker D. Chemogenetic locus coeruleus activation restores reversal learning in a rat model of Alzheimer’s disease. Brain. 2017;140:3023–3038. doi: 10.1093/brain/awx232. PubMed DOI PMC
Bac B, Hicheri C, Weiss C, Buell A, Vilcek N, Spaeni C, Geula C, et al. The TgF344-AD rat: behavioral and proteomic changes associated with aging and protein expression in a transgenic rat model of Alzheimer’s disease. Neurobiol Aging. 2023;123:98–110. doi: 10.1016/j.neurobiolaging.2022.12.015. PubMed DOI PMC
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer’s disease. Transl Neurodegener. 2022;11:26. doi: 10.1186/s40035-022-00300-6. PubMed DOI PMC
Pentkowski NS, Berkowitz LE, Thompson SM, Drake EN, Olguin CR, Clark BJ. Anxiety-like behavior as an early endophenotype in the TgF344-AD rat model of Alzheimer’s disease. Neurobiol Aging. 2018;61:169–176. doi: 10.1016/j.neurobiolaging.2017.09.024. PubMed DOI PMC
Berkowitz LE, Harvey RE, Drake E, Thompson SM, Clark BJ. Progressive impairment of directional and spatially precise trajectories by TgF344-Alzheimer’s disease rats in the Morris Water Task. Sci Rep. 2018;8:16153. doi: 10.1038/s41598-018-34368-w. PubMed DOI PMC
Proskauer Pena SL, Mallouppas K, Oliveira AMG, Zitricky F, Nataraj A, Jezek K. Early Spatial Memory Impairment in a Double Transgenic Model of Alzheimer’s Disease TgF-344 AD. Brain Sci. 2021;11:1300. doi: 10.3390/brainsci11101300. PubMed DOI PMC
Sagalajev B, Lennartz L, Vieth L, Gunawan CT, Neumaier B, Drzezga A, Visser-Vandewalle V, et al. TgF344-AD Rat Model of Alzheimer’s Disease: Spatial Disorientation and Asymmetry in Hemispheric Neurodegeneration. J Alzheimers Dis Rep. 2023;7:1085–1094. doi: 10.3233/ADR-230038. PubMed DOI PMC
Chaudry O, Ndukwe K, Xie L, Figueiredo-Pereira M, Serrano P, Rockwell P. Females exhibit higher GluA2 levels and outperform males in active place avoidance despite increased amyloid plaques in TgF344-Alzheimer’s rats. Sci Rep. 2022;12:19129. doi: 10.1038/s41598-022-23801-w. PubMed DOI PMC
Srivastava H, Lasher AT, Nagarajan A, Sun LY. Sexual dimorphism in the peripheral metabolic homeostasis and behavior in the TgF344-AD rat model of Alzheimer’s disease. Aging Cell. 2023;22:e13854. doi: 10.1111/acel.13854. PubMed DOI PMC
Tournier BB, Barca C, Fall AB, Gloria Y, Meyer L, Ceyzériat K, Millet P. Spatial reference learning deficits in absence of dysfunctional working memory in the TgF344-AD rat model of Alzheimer’s disease. Genes Brain Behav. 2021;20:e12712. doi: 10.1111/gbb.12712. PubMed DOI
Fowler CF, Goerzen D, Devenyi GA, Madularu D, Chakravarty MM, Near J. Neurochemical and cognitive changes precede structural abnormalities in the TgF344-AD rat model. Brain Commun. 2022;4:fcac072. doi: 10.1093/braincomms/fcac072. PubMed DOI PMC
Saré RM, Cooke SK, Krych L, Zerfas PM, Cohen RM, Smith CB. Behavioral Phenotype in the TgF344-AD Rat Model of Alzheimer’s Disease. Front Neurosci. 2020;14:601. doi: 10.3389/fnins.2020.00601. PubMed DOI PMC
Pentkowski NS, Bouquin SJ, Maestas-Olguin CR, Villasenor ZM, Clark BJ. Differential effects of chronic stress on anxiety-like behavior and contextual fear conditioning in the TgF344-AD rat model of Alzheimer’s disease. Behav Brain Res. 2022;418:113661. doi: 10.1016/j.bbr.2021.113661. PubMed DOI
Hope T, Tilling KM, Gedling K, Keene JM, Cooper SD, Fairburn CG. The structure of wandering in dementia. Int J Geriat Psychiatry. 1994;9:149–155. doi: 10.1002/gps.930090209. DOI
Klement D, Blahna K, Nekovářová T. Novel behavioral tasks for studying spatial cognition in rats. Physiol Res. 2008;57(Suppl 3):S161–S165. doi: 10.33549/physiolres.931609. PubMed DOI
O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–175. doi: 10.1016/0006-8993(71)90358-1. PubMed DOI
Jezek K, Lee BB, Kelemen E, McCarthy KM, McEwen BS, Fenton AA. Stress-induced out-of-context activation of memory. PLoS Biol. 2010;8:e1000570. doi: 10.1371/journal.pbio.1000570. PubMed DOI PMC
Jezek K, Wesierska M, Fenton A. Hippocampus-dependent retrieval and hippocampus-independent extinction of place avoidance navigation, and stress-induced out-of-context activation of a memory revealed by reversible lesion experiments in rats. Physiol Res. 2002;51(Suppl 1):S35–S47. doi: 10.33549/physiolres.930000.51.S35. PubMed DOI
Kapl S, Tichanek F, Zitricky F, Jezek K. Context-independent expression of spatial code in hippocampus. Sci Rep. 2022;12:20711. doi: 10.1038/s41598-022-25006-7. PubMed DOI PMC
Silva A, Martínez MC. Spatial memory deficits in Alzheimer’s disease and their connection to cognitive maps’ formation by place cells and grid cells. Front Behav Neurosci. 2022;16:1082158. doi: 10.3389/fnbeh.2022.1082158. PubMed DOI PMC
Cayzac S, Mons N, Ginguay A, Allinquant B, Jeantet Y, Cho YH. Altered hippocampal information coding and network synchrony in APP-PS1 mice. Neurobiol Aging. 2015;36:3200–3213. doi: 10.1016/j.neurobiolaging.2015.08.023. PubMed DOI
Cacucci F, Yi M, Wills TJ, Chapman P, O’Keefe J. Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model. Proc Natl Acad Sci U S A. 2008;105:7863–7868. doi: 10.1073/pnas.0802908105. PubMed DOI PMC
Galloway CR, Ravipati K, Singh S, Lebois EP, Cohen RM, Levey AI, Manns JR. Hippocampal place cell dysfunction and the effects of muscarinic M1 receptor agonism in a rat model of Alzheimer’s disease. Hippocampus. 2018;28:568–585. doi: 10.1002/hipo.22961. PubMed DOI PMC
Broussard JI, Redell JB, Maynard ME, Zhao J, Moore A, Mills RW, Hood KN, et al. Impaired Experience-Dependent Refinement of Place Cells in a Rat Model of Alzheimer’s Disease. J Alzheimers Dis. 2022;86:1907–1916. doi: 10.3233/JAD-215023. PubMed DOI PMC
Nataraj A, Kala A, Proskauer Pena SL, Jezek K, Blahna K. Impaired Dynamics of Positional and Contextual Neural Coding in an Alzheimer’s Disease Rat Model. J Alzheimers Dis. 2024;101:259–276. doi: 10.3233/JAD-231386. PubMed DOI PMC
Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155:853–862. doi: 10.1016/S0002-9440(10)65184-X. PubMed DOI PMC
Smith LA, McMahon LL. Deficits in synaptic function occur at medial perforant path-dentate granule cell synapses prior to Schaffer collateral-CA1 pyramidal cell synapses in the novel TgF344-Alzheimer’s Disease Rat Model. Neurobiol Dis. 2018;110:166–179. doi: 10.1016/j.nbd.2017.11.014. PubMed DOI PMC
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer’s Disease. J Neurosci. 2021;41:5747–5761. doi: 10.1523/JNEUROSCI.0119-21.2021. PubMed DOI PMC
Smith LA, Goodman AM, McMahon LL. Dentate Granule Cells Are Hyperexcitable in the TgF344-AD Rat Model of Alzheimer’s Disease. Front Synaptic Neurosci. 2022;14:826601. doi: 10.3389/fnsyn.2022.826601. PubMed DOI PMC
Hernandez CM, Jackson NL, Hernandez AR, McMahon LL.Impairments in Fear Extinction Memory and Basolateral Amygdala Plasticity in the TgF344-AD Rat Model of Alzheimer’s Disease Are Distinct from Nonpathological Aging eNeuro 20229ENEURO0181-22.2022.10.1523/ENEURO.0181-22.2022 PubMed DOI PMC
Mampay M, Velasco-Estevez M, Rolle SO, Chaney AM, Boutin H, Dev KK, Moeendarbary E, et al. Spatiotemporal immunolocalisation of REST in the brain of healthy ageing and Alzheimer’s disease rats. FEBS Open Bio. 2021;11:146–163. doi: 10.1002/2211-5463.13036. PubMed DOI PMC
Amossé Q, Ceyzériat K, Tsartsalis S, Tournier BB, Millet P. Fluorescence-Activated Cell Sorting-Radioligand Treated Tissue (FACS-RTT) to Determine the Cellular Origin of Radioactive Signal. J Vis Exp. 2021;(175) doi: 10.3791/62883. PubMed DOI
Wallace CH, Oliveros G, Serrano PA, Rockwell P, Xie L, Figueiredo-Pereira M. Timapiprant, a prostaglandin D2 receptor antagonist, ameliorates pathology in a rat Alzheimer’s model. Life Sci Alliance. 2022;5:e202201555. doi: 10.26508/lsa.202201555. PubMed DOI PMC
Tournier BB, Tsartsalis S, Ceyzériat K, Fraser BH, Grégoire MC, Kövari E, Millet P. Astrocytic TSPO Upregulation Appears Before Microglial TSPO in Alzheimer’s Disease. J Alzheimers Dis. 2020;77:1043–1056. doi: 10.3233/JAD-200136. PubMed DOI PMC
Puris E, Auriola S, Petralla S, Hartman R, Gynther M, de Lange ECM, Fricker G. Altered protein expression of membrane transporters in isolated cerebral microvessels and brain cortex of a rat Alzheimer’s disease model. Neurobiol Dis. 2022;169:105741. doi: 10.1016/j.nbd.2022.105741. PubMed DOI
Lennol MP, Sánchez-Domínguez I, Cuchillo-Ibañez I, Camporesi E, Brinkmalm G, Alcolea D, Fortea J, et al. Apolipoprotein E imbalance in the cerebrospinal fluid of Alzheimer’s disease patients. Alzheimers Res Ther. 2022;14:161. doi: 10.1186/s13195-022-01108-2. PubMed DOI PMC
Shen Q, Patten KT, Valenzuela A, Lein PJ, Taha AY. Probing changes in brain esterified oxylipin concentrations during the early stages of pathogenesis in Alzheimer’s Disease transgenic rats. Neurosci Lett. 2022;791:136921. doi: 10.1016/j.neulet.2022.136921. PubMed DOI PMC
Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer’s disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR Biomed. 2021;34:e4510. doi: 10.1002/nbm.4510. PubMed DOI PMC
Soyer A, Goutal S, Leterrier S, Marie S, Larrat B, Selingue E, Winkeler A, et al. [18F]2-fluoro-2-deoxy-sorbitol ([18F]FDS) PET imaging repurposed for quantitative estimation of blood-brain barrier permeability in a rat model of Alzheimer’s disease. Ann Pharm Fr. 2024;82:822–829. doi: 10.1016/j.pharma.2024.04.004. PubMed DOI
Viel C, Brandtner AT, Weißhaar A, Lehto A, Fuchs M, Klein J. Effects of Magnesium Orotate, Benfotiamine and a Combination of Vitamins on Mitochondrial and Cholinergic Function in the TgF344-AD Rat Model of Alzheimer’s Disease. Pharmaceuticals (Basel) 2021;14:1218. doi: 10.3390/ph14121218. PubMed DOI PMC
Jedlička J, Tůma Z, Razak K, Kunc R, Kala A, Proskauer Peña S, Lerchner T, et al. Impact of Aging on Mitochondrial Respiration in Various Organs. Physiol Res. 2022;71(Suppl 2):S227–S236. doi: 10.33549/physiolres.934995. PubMed DOI PMC
Joo IL, Lam WW, Oakden W, Hill ME, Koletar MM, Morrone CD, Stanisz GJ, et al. Early alterations in brain glucose metabolism and vascular function in a transgenic rat model of Alzheimer’s disease. Prog Neurobiol. 2022;217:102327. doi: 10.1016/j.pneurobio.2022.102327. PubMed DOI
Muñoz-Moreno E, Simões RV, Tudela R, López-Gil X, Soria G. Spatio-temporal metabolic rewiring in the brain of TgF344-AD rat model of Alzheimer’s disease. Sci Rep. 2022;12:16958. doi: 10.1038/s41598-022-20962-6. PubMed DOI PMC
Joo IL, Lai AY, Bazzigaluppi P, Koletar MM, Dorr A, Brown ME, Thomason LAM, et al. Early neurovascular dysfunction in a transgenic rat model of Alzheimer’s disease. Sci Rep. 2017;7:46427. doi: 10.1038/srep46427. PubMed DOI PMC
Bazzigaluppi P, Beckett TL, Koletar MM, Lai AY, Joo IL, Brown ME, Carlen PL, et al. Early-stage attenuation of phase-amplitude coupling in the hippocampus and medial prefrontal cortex in a transgenic rat model of Alzheimer’s disease. J Neurochem. 2018;144:669–679. doi: 10.1111/jnc.14136. PubMed DOI
Stoiljkovic M, Kelley C, Stutz B, Horvath TL, Hajós M. Altered Cortical and Hippocampal Excitability in TgF344-AD Rats Modeling Alzheimer’s Disease Pathology. Cereb Cortex. 2019;29:2716–2727. doi: 10.1093/cercor/bhy140. PubMed DOI PMC
van den Berg M, Toen D, Verhoye M, Keliris GA. Alterations in theta-gamma coupling and sharp wave-ripple, signs of prodromal hippocampal network impairment in the TgF344-AD rat model. Front Aging Neurosci. 2023;15:1081058. doi: 10.3389/fnagi.2023.1081058. PubMed DOI PMC
Kreuzer M, Keating GL, Fenzl T, Härtner L, Sinon CG, Hajjar I, Ciavatta V, et al. Sleep/Wake Behavior and EEG Signatures of the TgF344-AD Rat Model at the Prodromal Stage. Int J Mol Sci. 2020;21:9290. doi: 10.3390/ijms21239290. PubMed DOI PMC
Ratner MH, Downing SS, Guo O, Odamah KE, Stewart TM, Kumaresan V, Robitsek RJ, et al. Prodromal dysfunction of α5GABA-A receptor modulated hippocampal ripples occurs prior to neurodegeneration in the TgF344-AD rat model of Alzheimer’s disease. Heliyon. 2021;7:e07895. doi: 10.1016/j.heliyon.2021.e07895. PubMed DOI PMC
Tsai Y, Lu B, Ljubimov AV, Girman S, Ross-Cisneros FN, Sadun AA, Svendsen CN, et al. Ocular changes in TgF344-AD rat model of Alzheimer’s disease. Invest Ophthalmol Vis Sci. 2014;55:523–534. doi: 10.1167/iovs.13-12888. PubMed DOI PMC
Morisset C, Dizeux A, Larrat B, Selingue E, Boutin H, Picaud S, Sahel JA, et al. Retinal functional ultrasound imaging (rfUS) for assessing neurovascular alterations: a pilot study on a rat model of dementia. Sci Rep. 2022;12:19515. doi: 10.1038/s41598-022-23366-8. PubMed DOI PMC
Kolinko Y, Marsalova L, Proskauer Pena S, Kralickova M, Mouton PR. Stereological Changes in Microvascular Parameters in Hippocampus of a Transgenic Rat Model of Alzheimer’s Disease. J Alzheimers Dis. 2021;84:249–260. doi: 10.3233/JAD-210738. PubMed DOI PMC
Bishay J, Beckett TL, Lai AY, Hill ME, McMahon D, McLaurin J. Venular amyloid accumulation in transgenic Fischer 344 Alzheimer’s disease rats. Sci Rep. 2022;12:15287. doi: 10.1038/s41598-022-19549-y. PubMed DOI PMC
Fang X, Tang C, Zhang H, Border JJ, Liu Y, Shin SM, Yu H, et al. Longitudinal characterization of cerebral hemodynamics in the TgF344-AD rat model of Alzheimer’s disease. Geroscience. 2023;45:1471–1490. doi: 10.1007/s11357-023-00773-x. PubMed DOI PMC
Lucking EF, Murphy KH, Burns DP, Jaisimha AV, Barry-Murphy KJ, Dhaliwal P, Boland B, et al. No evidence in support of a prodromal respiratory control signature in the TgF344-AD rat model of Alzheimer’s disease. Respir Physiol Neurobiol. 2019;265:55–67. doi: 10.1016/j.resp.2018.06.014. PubMed DOI
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, Missault S, et al. Altered basal forebrain function during whole-brain network activity at pre- and early-plaque stages of Alzheimer’s disease in TgF344-AD rats. Alzheimers Res Ther. 2022;14:148. doi: 10.1186/s13195-022-01089-2. PubMed DOI PMC
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer’s disease. Front Hum Neurosci. 2024;18:1379923. doi: 10.3389/fnhum.2024.1379923. PubMed DOI PMC
Muñoz-Moreno E, Tudela R, López-Gil X, Soria G. Early brain connectivity alterations and cognitive impairment in a rat model of Alzheimer’s disease. Alzheimers Res Ther. 2018;10:16. doi: 10.1186/s13195-018-0346-2. PubMed DOI PMC
Tudela R, Muñoz-Moreno E, Sala-Llonch R, López-Gil X, Soria G. Resting State Networks in the TgF344-AD Rat Model of Alzheimer’s Disease Are Altered From Early Stages. Front Aging Neurosci. 2019;11:213. doi: 10.3389/fnagi.2019.00213. PubMed DOI PMC
Anckaerts C, Blockx I, Summer P, Michael J, Hamaide J, Kreutzer C, Boutin H, et al. Early functional connectivity deficits and progressive microstructural alterations in the TgF344-AD rat model of Alzheimer’s Disease: A longitudinal MRI study. Neurobiol Dis. 2019;124:93–107. doi: 10.1016/j.nbd.2018.11.010. PubMed DOI
Bochicchio D, Christie L, Lawrence CB, Herholz K, Parker CA, Hinz R, Boutin H. Measurement of Protein Synthesis Rate in Rat by [11C]Leucine PET Imaging: Application to the TgF344-AD Model of Alzheimer’s Disease. Mol Imaging Biol. 2023;25:596–605. doi: 10.1007/s11307-022-01796-0. PubMed DOI PMC
Patten KT, Valenzuela AE, Wallis C, Berg EL, Silverman JL, Bein KJ, Wexler AS, et al. The Effects of Chronic Exposure to Ambient Traffic-Related Air Pollution on Alzheimer’s Disease Phenotypes in Wildtype and Genetically Predisposed Male and Female Rats. Environ Health Perspect. 2021;129:57005. doi: 10.1289/EHP8905. PubMed DOI PMC
Patten KT, Valenzuela AE, Wallis C, Harvey DJ, Bein KJ, Wexler AS, Gorin FA, et al. Hippocampal but Not Serum Cytokine Levels Are Altered by Traffic-Related Air Pollution in TgF344-AD and Wildtype Fischer 344 Rats in a Sex- and Age-Dependent Manner. Front Cell Neurosci. 2022;16:861733. doi: 10.3389/fncel.2022.861733. PubMed DOI PMC
Dutta M, Weigel KM, Patten KT, Valenzuela AE, Wallis C, Bein KJ, Wexler AS, et al. Chronic exposure to ambient traffic-related air pollution (TRAP) alters gut microbial abundance and bile acid metabolism in a transgenic rat model of Alzheimer’s disease. Toxicol Rep. 2022;9:432–444. doi: 10.1016/j.toxrep.2022.03.003. PubMed DOI PMC
Nagarajan A, Srivastava H, Morrow CD, Sun LY. Characterizing the gut microbiome changes with aging in a novel Alzheimer’s disease rat model. Aging (Albany NY) 2023;15:459–471. doi: 10.18632/aging.204484. PubMed DOI PMC
Anderson T, Sharma S, Kelberman MA, Ware C, Guo N, Qin Z, Weinshenker D, et al. Obesity during preclinical Alzheimer’s disease development exacerbates brain metabolic decline. J Neurochem. 2024;168:801–821. doi: 10.1111/jnc.15900. PubMed DOI
Lai AY, Almanza DLV, Ribeiro JA, Hill ME, Mandrozos M, Koletar MM, Stefanovic B, et al. Obesity Facilitates Sex-Specific Improvement In Cognition And Neuronal Function In A Rat Model Of Alzheimer’s Disease. bioRxiv. 2024 doi: 10.1101/2024.01.11.575200. 2024.01.11.575200. DOI
Rutkowsky JM, Roland Z, Valenzuela A, Nguyen AB, Park HH, Six N, Dursun I, et al. The impact of continuous and intermittent ketogenic diets on cognitive behavior, motor function, and blood lipids in TgF344-AD rats. Aging (Albany NY) 2024;16:5811–5828. doi: 10.18632/aging.205741. PubMed DOI PMC
Kavkova M, Zikmund T, Kala A, Salplachta J, Proskauer Pena SL, Kaiser J, Jezek K. Contrast enhanced X-ray computed tomography imaging of amyloid plaques in Alzheimer disease rat model on lab based micro CT system. Sci Rep. 2021;11:5999. doi: 10.1038/s41598-021-84579-x. PubMed DOI PMC
Velasco-Estevez M, Mampay M, Boutin H, Chaney A, Warn P, Sharp A, Burgess E, et al. Infection Augments Expression of Mechanosensing Piezo1 Channels in Amyloid Plaque-Reactive Astrocytes. Front Aging Neurosci. 2018;10:332. doi: 10.3389/fnagi.2018.00332. PubMed DOI PMC
Fang X, Border JJ, Rivers PL, Zhang H, Williams JM, Fan F, Roman RJ. Amyloid beta accumulation in TgF344-AD rats is associated with reduced cerebral capillary endothelial Kir2.1 expression and neurovascular uncoupling. Geroscience. 2023;45:2909–2926. doi: 10.1007/s11357-023-00841-2. PubMed DOI PMC
Monge FA, Fanni AM, Donabedian PL, Hulse J, Maphis NM, Jiang S, Donaldson TN, et al. Selective In Vitro and Ex Vivo Staining of Brain Neurofibrillary Tangles and Amyloid Plaques by Novel Ethylene Ethynylene-Based Optical Sensors. Biosensors (Basel) 2023;13:151. doi: 10.3390/bios13020151. PubMed DOI PMC
Voorhees JR, Remy MT, Cintrón-Pérez CJ, El Rassi E, Khan MZ, Dutca LM, Yin TC, et al. (-)-P7C3-S243 Protects a Rat Model of Alzheimer’s Disease From Neuropsychiatric Deficits and Neurodegeneration Without Altering Amyloid Deposition or Reactive Glia. Biol Psychiatry. 2018;84:488–498. doi: 10.1016/j.biopsych.2017.10.023. PubMed DOI PMC
Stoiljkovic M, Kelley C, Horvath TL, Hajós M. Neurophysiological signals as predictive translational biomarkers for Alzheimer’s disease treatment: effects of donepezil on neuronal network oscillations in TgF344-AD rats. Alzheimers Res Ther. 2018;10:105. doi: 10.1186/s13195-018-0433-4. PubMed DOI PMC
Bazzigaluppi P, Beckett TL, Koletar MM, Hill ME, Lai A, Trivedi A, Thomason L, et al. Combinatorial Treatment Using Umbilical Cord Perivascular Cells and Aβ Clearance Rescues Vascular Function Following Transient Hypertension in a Rat Model of Alzheimer Disease. Hypertension. 2019;74:1041–1051. doi: 10.1161/HYPERTENSIONAHA.119.13187. PubMed DOI PMC
Leplus A, Lauritzen I, Melon C, Kerkerian-Le Goff L, Fontaine D, Checler F. Chronic fornix deep brain stimulation in a transgenic Alzheimer’s rat model reduces amyloid burden, inflammation, and neuronal loss. Brain Struct Funct. 2019;224:363–372. doi: 10.1007/s00429-018-1779-x. PubMed DOI
Ceyzériat K, Zilli T, Fall AB, Millet P, Koutsouvelis N, Dipasquale G, Frisoni GB, et al. Treatment by low-dose brain radiation therapy improves memory performances without changes of the amyloid load in the TgF344-AD rat model. Neurobiol Aging. 2021;103:117–127. doi: 10.1016/j.neurobiolaging.2021.03.008. PubMed DOI
Ceyzériat K, Zilli T, Millet P, Koutsouvelis N, Dipasquale G, Fossey C, Cailly T, et al. Low-dose brain irradiation normalizes TSPO and CLUSTERIN levels and promotes the non-amyloidogenic pathway in pre-symptomatic TgF344-AD rats. J Neuroinflammation. 2022;19:311. doi: 10.1186/s12974-022-02673-x. PubMed DOI PMC
Wu C, Yang L, Li Y, Dong Y, Yang B, Tucker LD, Zong X, et al. Effects of Exercise Training on Anxious-Depressive-like Behavior in Alzheimer Rat. Med Sci Sports Exerc. 2020;52:1456–1469. doi: 10.1249/MSS.0000000000002294. PubMed DOI PMC
Yang L, Wu C, Li Y, Dong Y, Wu CYC, Lee RHC, Brann DW, et al. Long-term exercise pre-training attenuates Alzheimer’s disease-related pathology in a transgenic rat model of Alzheimer’s disease. Geroscience. 2022;44:1457–1477. doi: 10.1007/s11357-022-00534-2. PubMed DOI PMC
Hardy JA, Higgins GA. Alzheimer’s Disease: The Amyloid Cascade Hypothesis. Science. 1992;256:184–185. doi: 10.1126/science.1566067. PubMed DOI
Granzotto A, Sensi SL. Once upon a time, the Amyloid Cascade Hypothesis. Ageing Res Rev. 2024;93:102161. doi: 10.1016/j.arr.2023.102161. PubMed DOI