• This record comes from PubMed

Antimicrobial and ADME properties of methoxylated, methylated and nitrated 2-hydroxynaphthalene-1 carboxanilides

. 2025 ; 13 (1) : 2642. [epub] 20250208

Status PubMed-not-MEDLINE Language English Country Croatia Media electronic-ecollection

Document type Journal Article

BACKGROUND AND PURPOSE: Many new compounds are being prepared to overcome the problem of increasing microbial resistance and the increasing number of infections. EXPERIMENTAL APPROACH: This study includes a series of twenty-seven mono-, di- and trisubstituted 2-hydroxynaphthalene-1-carboxanilides designed as multitarget agents. The compounds are substituted with methoxy, methyl, and nitro groups, as well as additionally with chlorine, bromine, and trifluoromethyl at various positions. All the compounds were evaluated for antibacterial activities against Gram-positive and Gram-negative bacteria and mycobacteria. Cytotoxicity on human cells was also tested. KEY RESULTS: Three compounds showed activity comparable to clinically used drugs. N-(3,5-Dimethylphenyl)-2-hydroxynaphthalene-1-carboxamide (13) showed only antistaphylococcal activity (minimum inhibitory concentration (MIC) = 54.9 μM); 2-hydroxy-N-[2-methyl-5-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (22) and 2-hydroxy-N-[4-nitro-3-(trifluoromethyl)phenyl]naphthalene-1-carboxamide (27) were active across the entire spectrum of tested bacteria/mycobacteria, both against the sensitive set and against resistant isolates (MICs range 0.3 to 92.6 μM). Compound 22 was even active against E. coli (MIC = 23.2 μM). The active agents showed no in vitro cytotoxicity up to a concentration of 30 μM. CONCLUSION: Compounds with trifluoromethyl in the meta-anilide position, experimental lipophilicity expressed as log k (logarithm of the capacity factor) in the range of 0.31 to 0.34 and calculated electron σ parameter for the anilide substituent higher than 0.59 were effective. The investigated compounds meet the definition of Michael acceptors. Based on ADME screening, the investigated compounds 13, 22 and 27 should have suitable physicochemical parameters for good bioavailability in the organism. Therefore, these are promising agents for further study.

See more in PubMed

WHO Bacterial Priority Pathogens List, 2024. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 08 January 2025).

Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399 (2022) 629-655. https://doi.org/10.1016/s0140-6736(21)02724-0 10.1016/s0140-6736(21)02724-0 PubMed DOI PMC

Oliveira M., Antunes W., Mota S., Madureira-Carvalho A., Dinis-Oliveira R.J., Dias da Silva D. An overview of the recent advances in antimicrobial resistance. Microorganisms 12 (2024) 1920. https://doi.org/10.3390/microorganisms12091920 10.3390/microorganisms12091920 PubMed DOI PMC

Jampilek J. Design and discovery of new antibacterial agents: advances, perspectives, challenges. Current Medicinal Chemistry 25 (2018) 4972-5006. https://doi.org/10.2174/0929867324666170918122633 10.2174/0929867324666170918122633 PubMed DOI

Farha M.A., Tu M.M., Brown E.D. Important challenges to finding new leads for new antibiotics. Current Opinion in Microbiology 83 (2025) 102562. https://doi.org/10.1016/j.mib.2024.102562 10.1016/j.mib.2024.102562 PubMed DOI

Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P.B., Glaser P., Aigle B., Bode H.B., Moreira R., Li Y., Luzhetskyy A., Medema M.H., Pernodet J.L., Stadler M., Tormo J.R., Genilloud O., Truman A.W., Weissman K.J., Takano E., Sabatini S., Stegmann E., Brötz-Oesterhelt H., Wohlleben W., Seemann M., Empting M., Hirsch A.K.H., Loretz B., Lehr C.M., Titz A., Herrmann J., Jaeger T., Alt S., Hesterkamp T., Winterhalter M., Schiefer A., Pfarr K., Hoerauf A., Graz H., Graz M., Lindvall M., Ramurthy S., Karlén A., van Dongen M., Petkovic H., Keller A., Peyrane F., Donadio S., Fraisse L., Piddock L.J.V., Gilbert I.H., Moser H.E., Müller R. Towards the sustainable discovery and development of new antibiotics. Nature Reviews Chemistry 5 (2021) 726-749. https://doi.org/10.1038/s41570-021-00313-1 10.1038/s41570-021-00313-1 PubMed DOI PMC

H. Shim Three innovations of next-generation antibiotics: Evolvability, specificity, and non-immunogenicity. Antibiotics 12 (2023) 204. https://doi.org/10.3390/antibiotics12020204 10.3390/antibiotics12020204 PubMed DOI PMC

Yang T., Sui X., Yu B., Shen Y., Cong H. Recent advances in the rational drug design based on multitarget ligands. Current Medicinal Chemistry 27 (2020) 4720–4740. https://doi.org/10.2174/0929867327666200102120652 10.2174/0929867327666200102120652 PubMed DOI

Cook M.A., Wright G.D. The past, present, and future of antibiotics. Science Translational Medicine 14 (2022) eabo7793. https://www.science.org/doi/10.1126/scitranslmed.abo7793 10.1126/scitranslmed.abo7793 PubMed DOI

Maheshwari N., Jermiin L.S., Cotroneo C., Gordon S.V., Shields D.C. Insights into the production and evolution of lantibiotics from a computational analysis of peptides associated with the lanthipeptide cyclase domain. Royal Society Open Science 11 (2024) 240491. https://doi.org/10.1098/rsos.240491 10.1098/rsos.240491 PubMed DOI PMC

Zimina M., Babich O., Prosekov A., Sukhikh S., Ivanova S., Shevchenko M., Noskova S. Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics 9 (2020) 553. https://doi.org/10.3390/antibiotics9090553 10.3390/antibiotics9090553 PubMed DOI PMC

Regen S.L. Membrane-disrupting molecules as therapeutic agents: A cautionary note. JACS Au 1 (2020) 3-7. https://doi.org/10.1021/jacsau.0c00037 10.1021/jacsau.0c00037 PubMed DOI PMC

Lin L., Chi J., Yan Y., Luo R., Feng X., Zheng Y., Xian D., Li X., Quan G., Liu D., Wu C., Lu C., Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharmaceutica Sinica B 11 (2021) 2609-2644. https://doi.org/10.1016/j.apsb.2021.07.014 10.1016/j.apsb.2021.07.014 PubMed DOI PMC

Benfield A.H., Henriques S.T. Mode-of-action of antimicrobial peptides: membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology 2 (2020) 610997. https://doi.org/10.3389/fmedt.2020.610997 10.3389/fmedt.2020.610997 PubMed DOI PMC

Garvey M. Antimicrobial Peptides demonstrate activity against resistant bacterial pathogens. Infectious Disease Reports 15 (2023) 454-469. https://doi.org/10.3390/idr15040046 10.3390/idr15040046 PubMed DOI PMC

Chakrapani G., Zare M., Ramakrishna S. Current trends and definitions in high-performance antimicrobial strategies. Current Opinion in Biomedical Engineering 23 (2022) 100407. https://doi.org/10.1016/j.cobme.2022.100407 10.1016/j.cobme.2022.100407 DOI

Iaconis A., De Plano L.M., Caccamo A., Franco D., Conoci S. Anti-biofilm strategies: A focused review on innovative approaches. Microorganisms 12 (2024) 639. https://doi.org/10.3390/microorganisms12040639 10.3390/microorganisms12040639 PubMed DOI PMC

Tabuchi F., Mikami K., Miyauchi M., Sekimizu K., Miyashita A. Discovery of new AMR drugs targeting modulators of antimicrobial activity using in vivo silkworm screening systems. The Journal of Antibiotics 78 (2025) 69–77. https://doi.org/10.1038/s41429-024-00788-2 10.1038/s41429-024-00788-2 PubMed DOI PMC

Lorente-Torres B., Llano-Verdeja J., Castanera P., Ferrero H.A., Fernandez-Martinez S., Javadimarand F., Mateos L.M., Letek M., Mourenza A. Innovative strategies in drug repurposing to tackle intracellular bacterial pathogens. Antibiotics 13 (2024) 834. https://doi.org/10.3390/antibiotics13090834 10.3390/antibiotics13090834 PubMed DOI PMC

Abavisani M., Khoshrou A., Eshaghian S., Karav S., Sahebkar A. Overcoming antibiotic resistance: the potential and pitfalls of drug repurposing. Journal of Drug Targeting (2025). https://doi.org/10.1080/1061186X.2024.2424895 10.1080/1061186X.2024.2424895 PubMed DOI

Moradi F., Ghaedi A., Fooladfar Z., Bazrgar A. Recent advance on nanoparticles or nanomaterials with anti-multidrug resistant bacteria and antibacterial biofilm properties: A systematic review. Heliyon 9 (2023) e22105. https://doi.org/10.1016/j.heliyon.2023.e22105 10.1016/j.heliyon.2023.e22105 PubMed DOI PMC

Christ C., Waldl A., Liu Y., Johnson L., Auer V., Cardozo O., Farias P. M. A., Andrade A. C. D. S., Stingl A., Himly M., Punz B., Li S., Wang G., Li Y. Nano-scaled advanced materials for antimicrobial applications – mechanistic insight, functional performance measures, and potentials towards sustainability and circularity. Environmental Science: Nano (2025). https://doi.org/10.1039/D4EN00798K 10.1039/D4EN00798K DOI

Talevi A. Multitarget pharmacology: Possibilities and limitations of the "skeleton key approach" from a medicinal chemist perspective. Frontiers in Pharmacology 6 (2015) 205. https://doi.org/10.3389/fphar.2015.00205 10.3389/fphar.2015.00205 PubMed DOI PMC

Gray D.A., Wenzel M. Multitarget approaches against multiresistant superbugs. ACS Infectious Diseases 6 (2020) 1346-1365. https://doi.org/10.1021/acsinfecdis.0c00001 10.1021/acsinfecdis.0c00001 PubMed DOI PMC

Feng J., Zheng Y., Ma W., Ihsan A., Hao H., Cheng G., Wang X. Multitarget antibacterial drugs: An effective strategy to combat bacterial resistance. Pharmacology & Therapeutics 252 (2023) 108550. https://doi.org/10.1016/j.pharmthera.2023.108550 10.1016/j.pharmthera.2023.108550 PubMed DOI

Lin S., Chen Y., Sun Y., Yu G., Liao X., Yang Q. Evaluation of multitarget iridium(III)-based metallodrugs in combating antimicrobial resistance and infections caused by Staphylococcus aureus. RSC Advances 14 (2024) 16194-16206. https://doi.org/10.1039/D4RA02152E 10.1039/D4RA02152E PubMed DOI PMC

Bremner J.B. An update review of approaches to multiple action-based antibacterials. Antibiotics 12 (2023) 865. https://doi.org/10.3390/antibiotics12050865 10.3390/antibiotics12050865 PubMed DOI PMC

Kauerova T., Perez-Perez M.J., Kollar P. Salicylanilides and Their Anticancer Properties. International Journal of Molecular Sciences 24 (2023) 1728. https://doi.org/10.3390/ijms24021728 10.3390/ijms24021728 PubMed DOI PMC

Stelitano G., Sammartino J.C., Chiarelli L.R. Multitargeting compounds: A promising strategy to overcome multi-drug resistant tuberculosis. Molecules 25 (2020) 1239. https://doi.org/10.3390/molecules25051239 10.3390/molecules25051239 PubMed DOI PMC

Gargantilla M., Persoons L., Kauerova T., del Rio N., Daelemans D., Priego E.M., Kollar P., Perez-Perez M.J. Hybridization approach to identify salicylanilides as inhibitors of tubulin polymerization and signal transducers and activators of transcription 3 (STAT3). Pharmaceuticals 15 (2022) 835. https://doi.org/10.3390/ph15070835 10.3390/ph15070835 PubMed DOI PMC

Copp J.N., Pletzer D., Brown A.S., Van der Heijden J., Miton C.M., Edgar R.J., Rich M.H., Little R.F., Williams E.M., Hancock R.E.W., Tokuriki N., Ackerley D.F. Mechanistic understanding enables the rational design of salicylanilide combination therapies for gram-negative infections. mBio 11 (2020) e02068-20. https://doi.org/10.1128/mbio.02068-20 10.1128/mbio.02068-20 PubMed DOI PMC

Yokoyama T., Mizuguchi M., Nabeshima Y., Nakagawa Y., Okada T., Toyooka N., Kusaka K. Rafoxanide, a salicylanilide anthelmintic, interacts with human plasma protein transthyretin. The FEBS Journal 290 (2023) 5158-5170. https://doi.org/10.1111/febs.16915 10.1111/febs.16915 PubMed DOI

Blake S., Shaabani N., Eubanks L.M., Maruyama J., Manning J.T., Beutler N., Paessler S., Ji H., Teijaro J.R., Janda K.D. Salicylanilides reduce SARS-CoV-2 replication and suppress induction of inflammatory cytokines in a rodent model. ACS Infectious Diseases 7 (2021) 2229-2237. https://doi.org/10.1021/acsinfecdis.1c00253 10.1021/acsinfecdis.1c00253 PubMed DOI

Kushkevych I., Kollar P., Ferreira A.L., Palma D., Duarte A., Lopes M.M., Bartos M., Pauk K., Imramovsky A., Jampilek J. Antimicrobial effect of salicylamide derivatives against intestinal sulfate-reducing bacteria. Journal of Applied Biomedicine 14 (2016) 125-130. https://doi.org/10.1016/j.jab.2016.01.005 10.1016/j.jab.2016.01.005 DOI

Imramovsky A., Pesko M., Kralova K., Vejsova M., Stolarikova J., Vinsova J., Jampilek J. Investigating spectrum of biological activity of 4- and 5-chloro-2-hydroxy-N-[2-(arylamino)-1-alkyl-2-oxoethyl]benzamides. Molecules 16 (2011) 2414-30. https://doi.org/10.3390/molecules16032414 10.3390/molecules16032414 PubMed DOI PMC

Imramovsky A., Pesko M., Ferriz J.M., Kralova K., Vinsova J., Jampilek J. Photosynthesis-Inhibiting efficiency of 4-chloro-2-(chlorophenylcarbamoyl)phenyl alkylcarbamates. Bioorganic & Medicinal Chemistry Letters 21 (2011) 4564-4567. https://doi.org/10.1016/j.bmcl.2011.05.118 10.1016/j.bmcl.2011.05.118 PubMed DOI

Bak A., Kos J., Michnova H., Gonec T., Pospisilova S., Kozik V., Cizek A., Smolinski A., Jampilek J. Consensus-based pharmacophore mapping for new set of N-(disubstituted-phenyl)-3-hydroxyl-naphthalene-2-carboxamides. International Journal of Molecular Sciences 21 (2020), 6583. https://doi.org/10.3390/ijms21186583 10.3390/ijms21186583 PubMed DOI PMC

Kos J., Kapustikova I., Clements C., Gray A.I., Jampilek J. 3-Hydroxynaphthalene-2-carboxanilides and their antitrypanosomal activity. Monatshefte für Chemie - Chemical Monthly 149 (2018) 887–892. https://doi.org/10.1007/s00706-017-2099-1 10.1007/s00706-017-2099-1 DOI

Kauerova T., Kos J., Gonec T., Jampilek J., Kollar P. Antiproliferative and pro-apoptotic effect of novel nitro-substituted hydroxynaphthanilides on human cancer cell lines. International Journal of Molecular Sciences 17 (2016) 1219. https://doi.org/10.3390/ijms17081219 10.3390/ijms17081219 PubMed DOI PMC

Gonec T., Bobal P., Sujan J., Pesko M., Guo J., Kralova K., Pavlacka L., Vesely L., Kreckova E., Kos J., Coffey A., Kollar P., Imramovsky A., Placek L., Jampilek J. Investigating the spectrum of biological activity of substituted quinoline-2-carboxamides and their isosteres. Molecules 17 (2012) 613-644. https://doi.org/10.3390/molecules17010613 10.3390/molecules17010613 PubMed DOI PMC

Gonec T., Kos J., Nevin E., Govender R., Pesko M., Tengler J., Kushkevych I., Stastna V., Oravec M., Kollar P., O'Mahony J, Kralova K, Coffey A, Jampilek J. Preparation and biological properties of ring-substituted naphthalene-1-carboxanilides. Molecules 19 (2014) 10386-409. https://doi.org/10.3390/molecules190710386 10.3390/molecules190710386 PubMed DOI PMC

Gonec T., Pindjakova D., Vrablova L., Strharsky T., Michnova H., Kauerova T., Kollar P., Oravec M., Jendrzejewska I., Cizek A., Jampilek J. Antistaphylococcal activities and ADME-related properties of chlorinated arylcarbamoylnaphthalenylcarbamates. Pharmaceuticals 15 (2022) 715. https://doi.org/10.3390/ph15060715 10.3390/ph15060715 PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Govender R., Keltosova S., Chambel B., Pereira D., Kollar P., Imramovsky A., O’Mahony J., Coffey A., Cizek A., Kralova K., Jampilek J. Antibacterial and herbicidal activity of ring-substituted 2-hydroxynaphthalene-1-carboxanilides. Molecules 18 (2013) 9397-9419. https://doi.org/10.3390/molecules18089397 10.3390/molecules18089397 PubMed DOI PMC

Gonec T., Kos J., Zadrazilova I., Pesko M., Keltosova S., Tengler J., Bobal P., Kollar P., Cizek A., Kralova K., Jampilek J. Antimycobacterial and herbicidal activity of ring-substituted 1-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 21 (2013) 6531-6541. https://doi.org/10.1016/j.bmc.2013.08.030 10.1016/j.bmc.2013.08.030 PubMed DOI

Kos J., Nevin E., Soral M., Kushkevych I., Gonec T., Bobal P., Kollar P., Coffey A., O'Mahony J., Liptaj T., Kralova K., Jampilek J. Synthesis and antimycobacterial properties of ring-substituted 6-hydroxynaphthalene-2-carboxanilides. Bioorganic and Medicinal Chemistry 23 (2015) 2035-2043. https://doi.org/10.1016/j.bmc.2015.03.018 10.1016/j.bmc.2015.03.018 PubMed DOI

Allgauer D.S., Jangra H., Asahara H., Li Z., Chen Q., Zipse H., Ofial A.R., Mayr H., Quantification and theoretical analysis of the electrophilicities of Michael acceptors. Journal of the American Chemical Society 139 (2017) 13318–13329. https://doi.org/10.1021/jacs.7b05106 10.1021/jacs.7b05106 PubMed DOI

Ma Y., Li L., He S., Shang C., Sun Y., Liu N., Meek T.D., Wang Y., Shang L. Application of dually activated Michael acceptor to the rational design of reversible covalent inhibitor for enterovirus 71 3C protease. Journal of Medicinal Chemistry 62 (2019) 6146–6162. https://doi.org/10.1021/acs.jmedchem.9b00387 10.1021/acs.jmedchem.9b00387 PubMed DOI

Lee K.M., Le P., Sieber S.A., Hacker S.M. Degrasyn exhibits antibiotic activity against multi-resistant Staphylococcus aureus by modifying several essential cysteines. Chemical Communications 56 (2020) 2929-2932. https://doi.org/10.1039/C9CC09204H 10.1039/C9CC09204H PubMed DOI

Piesche M., Roos J., Kühn B., Fettel J., Hellmuth N., Brat C., Maucher I.V., Awad O., Matrone C., Comerma Steffensen S.G., Manolikakes G., Heinicke U., Zacharowski K.D., Steinhilber D., Maier T.J. The emerging therapeutic potential of nitro fatty acids and other Michael acceptor-containing drugs for the treatment of inflammation and cancer. Frontiers in Pharmacology 11 (2020) 1297. https://doi.org/10.3389/fphar.2020.01297 10.3389/fphar.2020.01297 PubMed DOI PMC

Liang S.T., Chen C., Chen R.X., Li R., Chen W.L., Jiang G.H., Du L.L. Michael acceptor molecules in natural products and their mechanism of action. Frontiers in Pharmacology 13 (2022) 1033003. https://doi.org/10.3389/fphar.2022.1033003 10.3389/fphar.2022.1033003 PubMed DOI PMC

Andres C.M.C., Perez de la Lastra J.M., Bustamante Munguira E., Juan C.A., Perez-Lebena E., Michael acceptors as anticancer compounds: Coincidence or causality? International Journal of Molecular Sciences 25 (2024) 6099. https://doi.org/10.3390/ijms25116099 10.3390/ijms25116099 PubMed DOI PMC

Otevrel J., Mandelova Z., Pesko M., Guo J., Kralova K., Sersen F., Vejsova M., Kalinowski D.S., Kovacevic Z., Coffey A., Csollei J., Richardson D.R., Jampilek J. Investigating the spectrum of biological activity of ring-substituted salicylanilides and carbamoylphenylcarbamates. Molecules 15 (2010) 8122-8142. https://doi.org/10.3390/molecules15118122 10.3390/molecules15118122 PubMed DOI PMC

Gonec T., Pospisilova S., Kauerova T., Kos J., Dohanosova J., Oravec M., Kollar P., Coffey A., Liptaj T., Cizek A., Jampilek J. N-Alkoxyphenylhydroxynaphthalenecarboxamides and their antimycobacterial activity. Molecules 21 (2016) 1068. https://doi.org/10.3390/molecules21081068 10.3390/molecules21081068 PubMed DOI PMC

Michnova H., Pospisilova S., Gonec T., Kapustikova I., Kollar P., Kozik V., Musiol R., Jendrzejewska I., Vanco J., Travnicek Z., Cizek A., Bak A., Jampilek J. Bioactivity of methoxylated and methylated 1-hydroxynaphthalene-2-carboxanilides: comparative molecular surface analysis. Molecules 24 (2019) 2991. https://doi.org/10.3390/molecules24162991 10.3390/molecules24162991 PubMed DOI PMC

ACD/Percepta ver. 2012. Advanced Chemistry Development, Inc., Toronto ON, Canada, 2012. https://www.acdlabs.com/products/percepta-platform/

EZChrom Elite software ver. 3.3.2. Agilent, Santa Clara, CA, USA. https://ezchrom-elite.software.informer.com/3.3/

Zadrazilova I., Pospisilova S., Pauk K., Imramovsky A., Vinsova J., Cizek A., Jampilek J. In vitro bactericidal activity of 4- and 5-chloro-2-hydroxy-N-[1-oxo-1-(phenylamino)alkan-2-yl]benzamides against MRSA. BioMed Research International 2015 (2015) 349534. https://doi.org/10.1155/2015/349534 10.1155/2015/349534. PubMed DOI PMC

Nubel U., Dordel J., Kurt K., Strommenger B., Westh H., Shukla S.K., Zemlickova H., Leblois R., Wirth T., Jombart T., Balloux F., Witte W. A Timescale for evolution, population expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus aureus. PLOS Pathogens 6 (2010) e1000855. https://doi.org/10.1371/journal.ppat.1000855 10.1371/journal.ppat.1000855 PubMed DOI PMC

Oravcova V., Zurek L., Townsend A., Clark A.B., Ellis J.C., Cizek A., Literak I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environmental Microbiology 16 (2014) 939-949. https://doi.org/10.1111/1462-2920.12213 10.1111/1462-2920.12213 PubMed DOI

Weinstein M.P., Patel J.B. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: M07-A11, 11. edition, Committee for Clinical Laboratory Standards, Wayne, PA, 2018. https://clsi.org/media/1928/m07ed11_sample.pdf

Schwalbe R., Steele-Moore L., Goodwin A.C. Antimicrobial Susceptibility Testing Protocols, CRC Press, Boca Raton, FL, USA, 2007. https://doi.org/10.1201/9781420014495 10.1201/9781420014495 DOI

GraphPad Prism 5.00 software. GraphPadSoftware, San Diego, CA, USA. http://www.graphpad.com

Global Laboratory Standards for a Healthier World. https://clsi.org/ (accessed on 08 January 2025).

Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H., Wang S., Zhao G., Zhang Y. Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLOS One 3 (2008) e2375. https://doi.org/10.1371/journal.pone.0002375 10.1371/journal.pone.0002375 PubMed DOI PMC

Griffith D.E., Aksamit T., Brown-Elliott B.A., Catanzaro A., Daley C., Gordin F., Holland S.M., Horsburgh R., Huitt G., Iademarco M.F., Iseman M., Olivier K., Ruoss S., von Reyn C.F., Wallace R.J., Winthrop K., ATS Mycobacterial Diseases Subcommittee, American Thoracic Society, Infectious Disease Society of America . An official ATS/IDSA statement: diagnosis, treatment, and prevention of non-tuberculous mycobacterial diseases. American Journal of Respiratory and Critical Care Medicine 175 (2007) 367–416. https://doi.org/10.1164/rccm.200604-571ST 10.1164/rccm.200604-571ST PubMed DOI

NTM Lung Disease. https://www.lung.org/lung-health-diseases/lung-disease-lookup/nontuberculous-mycobacteria/learn-about-nontuberculosis-mycobacteria (accessed on 08 January 2025).

About Non-tuberculous Mycobacteria (NTM) Infections. Available online: https://www.cdc.gov/nontuberculous-mycobacteria/about/index.html (accessed on 08 January 2025).

Sharma S.K., Upadhyay V. Epidemiology, diagnosis & treatment of non-tuberculous mycobacterial diseases. Indian Journal of Medical Research 152 (2020) 185-226. https://doi.org/10.4103/ijmr.ijmr_902_20 10.4103/ijmr.ijmr_902_20 PubMed DOI PMC

Wallace R.J., Nash D.R., Tsukamura M., Blacklock Z.M., Silcox V.A. Human disease due to Mycobacterium smegmatis get access arrow. The Journal of Infectious Diseases 158 (1988) 52-59. https://doi.org/10.1093/infdis/158.1.52 10.1093/infdis/158.1.52 PubMed DOI

Wang C.J., Song Y., Li T., Hu J., Chen X., Li H. Mycobacterium smegmatis skin infection following cosmetic procedures: Report of two cases. Clinical, Cosmetic and Investigational Dermatology 15 (2022) 535-540. https://doi.org/10.2147/CCID.S359010 10.2147/CCID.S359010 PubMed DOI PMC

Akram S.M., Rawla P. Mycobacterium kansasii Infection. StatPearls Publishing, Treasure Island, FL, USA, 2025. https://www.ncbi.nlm.nih.gov/sites/books/NBK430906/ (accessed on 08 January 2025). PubMed

Koirala J. Mycobacterium Kansasii Clinical Presentation. Available online: https://emedicine.medscape.com/article/223230-clinical?form=fpf (accessed on 08 January 2025).

Portela C.A., Smart K.F., Tumanov S., Cook G.M., Villas-Boas S.G. Global metabolic response of Enterococcus faecalis to oxygen. Journal of Bacteriology 196 (2014) 2012-2022. https://doi.org/10.1128/JB.01354-13 10.1128/JB.01354-13 PubMed DOI PMC

Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. Available online: https://www.ncbi.nlm.nih.gov/books/NBK190432/ (accessed on 08 January 2025). PubMed

Ramos S., Silva V., Dapkevicius M.d.L.E., Igrejas G., Poeta P. Enterococci, from harmless bacteria to a pathogen. Microorganisms 8 (2020) 1118. https://doi.org/10.3390/microorganisms8081118 10.3390/microorganisms8081118 PubMed DOI PMC

Gilmore M.S., Salamzade R., Selleck E., Bryan N., Mello S.S., Manson A.L., Earl A.M. Genes contributing to the unique biology and intrinsic antibiotic resistance of Enterococcus faecalis. mBio 11 (2020) e02962-20. https://doi.org/10.1128/mbio.02962-20 10.1128/mbio.02962-20 PubMed DOI PMC

Fang W.Y., Ravindar L., Rakesh K.P., Manukumar H.M., Shantharam C.S., Alharbi N.S., Qin H.L. Synthetic approaches and pharmaceutical applications of chloro-containing molecules for drug discovery: A critical review. European Journal of Medicinal Chemistry 173 (2019) 117-153. https://doi.org/10.1016/j.ejmech.2019.03.063 10.1016/j.ejmech.2019.03.063 PubMed DOI PMC

Korona-Glowniak I., Nitek W., Tejchman W., Zeslawska E. Influence of chlorine and methyl substituents and their position on the antimicrobial activities and crystal structures of 4-methyl-1,6-diphenylpyrimidine-2(1H)-selenone derivatives. Acta Crystallographica Section C: Structural Chemistry 77 (2021) 649-658. https://doi.org/10.1107/S205322962100975X 10.1107/S205322962100975X PubMed DOI

Krawczyk-Lebek A., Zarowska B., Janeczko T., Kostrzewa-Suslow E. Antimicrobial activity of chalcones with a chlorine atom and their glycosides. International Journal of Molecular Sciences 25 (2024) 9718. https://doi.org/10.3390/ijms25179718 10.3390/ijms25179718 PubMed DOI PMC

Perz M., Szymanowska D., Janeczko T., Kostrzewa-Suslow E. Antimicrobial properties of flavonoid derivatives with bromine, chlorine, and nitro group obtained by chemical synthesis and biotransformation studies. International Journal of Molecular Sciences 25 (2024) 5540. https://doi.org/10.3390/ijms25105540 10.3390/ijms25105540 PubMed DOI PMC

Kerns E.H., Di L. Drug-Like Properties: Concepts. Structure Design and Methods: From ADME to Toxicity Optimization; Academic Press, San Diego, CA, USA, 2008.

Kruger A., Maltarollo V.G., Wrenger C., Kronenberger T. ADME profiling in drug discovery and a new path paved on silica. In Drug Discovery and Development—New Advances, Gaitonde V., Karmakar P., Trivedi A., Eds., IntechOpen, Rijeka, Croatia, 2019. Available online: https://www.intechopen.com/chapters/66969 (accessed on 08 January 2025).

Rozakis R. What is pharmacokinetics and ADME? Allucent Clinical Research Organization™, 2024. Available online: https://www.allucent.com/resources/blog/what-pharmacokinetics-and-adme (accessed on 08 January 2025).

Lipinski C.A., Lombardo F., Dominy B.W., Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews 46 (2001) 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0 10.1016/S0169-409X(00)00129-0 PubMed DOI

Benet L.Z. Solubility-permeability interplay in facilitating the prediction of drug disposition routes, extent of absorption, food effects, brain penetration and drug induced liver injury potential. Journal of Pharmaceutical Sciences 112 (2023) 2326-2331. https://doi.org/10.1016/j.xphs.2023.07.006 10.1016/j.xphs.2023.07.006 PubMed DOI PMC

Schneider G. Prediction of Drug-Like Properties. Landes Bioscience, Austin, TX, USA. Available online: https://www.ncbi.nlm.nih.gov/books/NBK6404/ (accessed on 08 January 2025).

Veber D.F., Johnson S.R., Cheng H.Y., Smith B.R., Ward K.W., Kopple K.D. Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry 45 (2002) 2615-2623. https://doi.org/10.1021/jm020017n 10.1021/jm020017n PubMed DOI

Lopez-Yerena A., Perez M., Vallverdu-Queralt A., Escribano-Ferrer E. Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics 12 (2020) 1123. https://doi.org/10.3390/pharmaceutics12111123 10.3390/pharmaceutics12111123 PubMed DOI PMC

Lipinski C.A. Compound properties and drug quality. In The Practice of Medicinal Chemistry, 3rd ed, Wermuth C.G., Ed., Academic Press, Burlington, MA, USA, 2008, pp. 481-490.

Van de Waterbeemd H. In silico models to predict oral absorption. In Comprehensive Medicinal Chemistry II, Taylor J.B., Triggle D.J., Eds., Elsevier, Amsterdam, Netherlands, 2007, pp. 669-697.

Muehlbacher M., Spitzer G.M., Liedl K.R., Kornhuber J. Qualitative prediction of blood-brain barrier permeability on a large and refined dataset. Journal of Computer-Aided Molecular Design 25 (2011) 1095-1106. https://doi.org/10.1007/s10822-011-9478-1 10.1007/s10822-011-9478-1 PubMed DOI PMC

Carpenter T.S., Kirshner D.A., Lau E.Y., Wong S.E., Nilmeier J.P., Lightstone F.C. A method to predict blood-brain barrier permeability of drug-like compounds using molecular dynamics simulations. Biophysical Journal 107 (2014) 630-641. https://doi.org/10.1016/j.bpj.2014.06.024 10.1016/j.bpj.2014.06.024 PubMed DOI PMC

Yadav J., El Hassani M., Sodhi J., Lauschke V.M., Hartman J.H., Russell L.E. Recent developments in in vitro and in vivo models for improved translation of preclinical pharmacokinetics and pharmacodynamics data. Drug Metabolism Reviews 53 (2021) 207-233. https://doi.org/10.1080/03602532.2021.1922435 10.1080/03602532.2021.1922435 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...