Impacts of an anxiolytic drug on fish behaviour and habitat use in a natural landscape
Language English Country Great Britain, England Media print-electronic
Document type Journal Article
Grant support
Faculty of Science, Lund University
Wenner-Gren Foundation
The Danish Rod and Net Licence Funds (HB)
Swedish Research Council
Swedish Research Council Formas
PubMed
40925568
PubMed Central
PMC12419885
DOI
10.1098/rspb.2025.1443
Knihovny.cz E-resources
- Keywords
- behaviour, benzodiazepine, fish, home range, oxazepam, predation, telemetry,
- MeSH
- Anti-Anxiety Agents * adverse effects MeSH
- Water Pollutants, Chemical * adverse effects toxicity MeSH
- Behavior, Animal * drug effects MeSH
- Cyprinidae * physiology MeSH
- Ecosystem * MeSH
- Oxazepam * adverse effects MeSH
- Predatory Behavior drug effects MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Anti-Anxiety Agents * MeSH
- Water Pollutants, Chemical * MeSH
- Oxazepam * MeSH
Pharmaceutical contaminants reaching natural aquatic ecosystems can affect fish behaviour, modifying activity patterns, foraging behaviour and antipredator responses. While laboratory-based studies can offer key insights, assessing the ecological relevance of these findings requires field-based approaches. Therefore, we examined the effects of oxazepam, a widely prescribed anxiolytic drug, on the behaviour of a cyprinid fish (the common roach, Rutilus rutilus) in the wild, combining slow-release exposure implants with continuous tracking via acoustic telemetry. To add ecological realism, we created a landscape of fear with an uneven distribution of resources (macrophytes) and exposure to predators (pike, Esox lucius), additionally testing the effects of the drug on roach habitat selection and predator-prey interactions. Fish exposed to the drug showed an increased swimming activity and speed, but exhibited a more constrained spatial distribution in the pond, favouring areas with higher refuge availability. Both exposed and unexposed fish modified their habitat use in the presence of predators. Exposed fish appeared to get closer to the predators when these were caged, but not when predators were free-roaming. Our findings highlight the importance of considering ecological context to understand how pharmaceuticals affect fish behaviour, which is crucial for assessing risks at population and ecosystem levels.
Aquatic Ecology Unit Department of Biology Lund University Lund 223 62 Sweden
National Institute of Aquatic Resources Danish Technical University 8600 Silkeborg Denmark
See more in PubMed
Calisto V, Esteves VI. 2009. Psychiatric pharmaceuticals in the environment. Chemosphere 77, 1257–1274. ( 10.1016/j.chemosphere.2009.09.021) PubMed DOI
Grabicová K, Grabic R, Fedorova G, Kolářová J, Turek J, Brooks BW, Randák T. 2020. Psychoactive pharmaceuticals in aquatic systems: a comparative assessment of environmental monitoring approaches for water and fish. Environ. Pollut. 261, 114150. ( 10.1016/j.envpol.2020.114150) PubMed DOI
Patel M, Kumar R, Kishor K, Mlsna T, Pittman CU, Mohan D. 2019. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem. Rev. 119, 3510–3673. ( 10.1021/acs.chemrev.8b00299) PubMed DOI
Saaristo M, et al. 2018. Direct and indirect effects of chemical contaminants on the behaviour, ecology and evolution of wildlife. Proc. R. Soc. B 285, 20181297. ( 10.1098/rspb.2018.1297) DOI
Brodin T, Piovano S, Fick J, Klaminder J, Heynen M, Jonsson M. 2014. Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioural alterations. Phil. Trans. R. Soc. B 369, 20130580. ( 10.1098/rstb.2013.0580) PubMed DOI PMC
Wilkinson J. 2022. Pharmaceutical pollution of the world ’ s rivers. Proc. Natl. Acad. Sci. USA 119, e2113947119. ( 10.1073/pnas.2113947119) PubMed DOI PMC
Cerveny D, Brodin T, Cisar P, McCallum ES, Fick J. 2020. Bioconcentration and behavioral effects of four benzodiazepines and their environmentally relevant mixture in wild fish. Sci.Total Environ. 702, 134780. ( 10.1016/j.scitotenv.2019.134780) PubMed DOI
Martin JM, Saaristo M, Tan H, Bertram MG, Nagarajan-Radha V, Dowling DK, Wong BBM. 2019. Field-realistic antidepressant exposure disrupts group foraging dynamics in mosquitofish. Biol. Lett. 15, 20190615. ( 10.1098/rsbl.2019.0615) PubMed DOI PMC
Brodin T, Fick J, Jonsson M, Klaminder J. 2013. Dilute concentrations of a psychiatric drug alter behavior of fish from natural populations. Science 339, 814–815. ( 10.1126/science.1226850) PubMed DOI
Chabenat A, Bidel F, Knigge T, Bellanger C. 2021. Alteration of predatory behaviour and growth in juvenile cuttlefish by fluoxetine and venlafaxine. Chemosphere 277, 130169. ( 10.1016/j.chemosphere.2021.130169) PubMed DOI
McCallum ES, Dey CJ, Cerveny D, Bose APH, Brodin T. 2021. Social status modulates the behavioral and physiological consequences of a chemical pollutant in animal groups. Ecol. Appl. 31, 2454. ( 10.1002/eap.2454) DOI
Michelangeli M, Martin JM, Pinter-Wollman N, Ioannou CC, McCallum ES, Bertram MG, Brodin T. 2022. Predicting the impacts of chemical pollutants on animal groups. Trends Ecol. Evol. 37, 789–802. ( 10.1016/j.tree.2022.05.009) PubMed DOI
Hamilton PB, Cowx IG, Oleksiak MF, Griffiths AM, Grahn M, Stevens JR, Carvalho GR, Nicol E, Tyler CR. 2016. Population‐level consequences for wild fish exposed to sublethal concentrations of chemicals – a critical review. Fish Fish. 17, 545–566. ( 10.1111/faf.12125) DOI
Wang W, Xu N, Zhang L, Andersen KH, Klaminder J. 2021. Anthropogenic forcing of fish boldness and its impacts on ecosystem structure. Glob. Chang. Biol. 27, 1239–1249. ( 10.1111/gcb.15473) DOI
Wong BBM, Candolin U. 2015. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673. ( 10.1093/beheco/aru183) DOI
Pyle G, Ford AT. 2017. Behaviour revised: contaminant effects on aquatic animal behaviour. Aquat. Toxicol. 182, 226–228. ( 10.1016/j.aquatox.2016.11.008) PubMed DOI
Nilsen E, Smalling KL, Ahrens L, Gros M, Miglioranza KSB, Picó Y, Schoenfuss HL. 2019. Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environ. Toxicol. Chem. 38, 46–60. ( 10.1002/etc.4290) PubMed DOI
Bertram MG, et al. 2022. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol. Rev. 97, 1346–1364. ( 10.1111/brv.12844) PubMed DOI PMC
Hussey NE, et al. 2015. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642. ( 10.1126/science.1255642) PubMed DOI
Brönmark C, Hellström G, Baktoft H, Hansson LA, McCallum ES, Nilsson PA, Skov C, Brodin T, Hulthén K. 2023. Ponds as experimental arenas for studying animal movement: current research and future prospects. Mov. Ecol. 11, 15. ( 10.1186/s40462-023-00419-9) PubMed DOI PMC
Hellström G, Klaminder J, Jonsson M, Fick J, Brodin T. 2016. Upscaling behavioural studies to the field using acoustic telemetry. Aquat. Toxicol. 170, 384–389. ( 10.1016/j.aquatox.2015.11.005) PubMed DOI
Lennox RJ, et al. 2023. Positioning aquatic animals with acoustic transmitters. Methods Ecol. Evol. 14, 2514–2530. ( 10.1111/2041-210x.14191) DOI
Baktoft H, et al. 2015. Performance assessment of two whole-lake acoustic positional telemetry systems - is reality mining of free-ranging aquatic animals technologically possible? PLoS One 10, e0126534. ( 10.1371/journal.pone.0126534) PubMed DOI PMC
McCallum ES, Cerveny D, Fick J, Brodin T. 2019. Slow-release implants for manipulating contaminant exposures in aquatic wildlife: a new tool for field ecotoxicology. Environ. Sci. Technol. 53, 8282–8290. ( 10.1021/acs.est.9b01975) PubMed DOI
Bertram MG, Brand JA, Thoré ESJ, Cerveny D, McCallum ES, Michelangeli M, Martin JM, Fick J, Brodin T. 2025. Slow-release pharmaceutical implants in ecotoxicology: validating functionality across exposure scenarios. ACS Environ. Au 5, 69–75. ( 10.1021/acsenvironau.4c00056) PubMed DOI PMC
Barry MJ. 2018. Effects of three phamaceuticals on the responses of tadpoles to predator alarm cues. Toxicol. Environ. Chem. 100, 205–213. ( 10.1080/02772248.2018.1485925) DOI
Bose APH, et al. 2022. Pharmaceutical pollution disrupts the behavior and predator-prey interactions of two widespread aquatic insects. iScience 25, 105672. ( 10.1016/j.isci.2022.105672) PubMed DOI PMC
Klaminder J, Jonsson M, Leander J, Fahlman J, Brodin T, Fick J, Hellström G. 2019. Less anxious salmon smolt become easy prey during downstream migration. Sci. Total Environ. 687, 488–493. ( 10.1016/j.scitotenv.2019.05.488) PubMed DOI
Saaristo M, Lagesson A, Bertram MG, Fick J, Klaminder J, Johnstone CP, Wong BBM, Brodin T. 2019. Behavioural effects of psychoactive pharmaceutical exposure on European perch (Perca fluviatilis) in a multi-stressor environment. Sci. Total Environ. 655, 1311–1320. ( 10.1016/j.scitotenv.2018.11.228) PubMed DOI
Bleicher SS. 2017. The landscape of fear conceptual framework: definition and review of current applications and misuses. PeerJ 5, e3772. ( 10.7717/peerj.3772) PubMed DOI PMC
Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS. 2019. Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol. Evol. 34, 355–368. ( 10.1016/j.tree.2019.01.004) PubMed DOI
Palmer MS, Gaynor KM, Becker JA, Abraham JO, Mumma MA, Pringle RM. 2022. Dynamic landscapes of fear: understanding spatiotemporal risk. Trends Ecol. Evol. 37, 911–925. ( 10.1016/j.tree.2022.06.007) PubMed DOI
Laundré JW, Hernández L, Altendorf KB. 2001. Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, USA. Can. J. Zool. 79, 1401–1409. ( 10.1139/z01-094) DOI
Brown JS, Kotler BP. 2004. Hazardous duty pay and the foraging cost of predation. Ecol. Lett. 7, 999–1014. ( 10.1111/J.1461-0248.2004.00661.X) DOI
Nathan R, et al. 2022. Big-data approaches lead to an increased understanding of the ecology of animal movement. Science 375, eabg1780. ( 10.1126/science.abg1780) PubMed DOI
Gunnarsson L, Jauhiainen A, Kristiansson E, Nerman O, Larsson DGJ. 2008. Evolutionary conservation of human drug targets in organisms used for environmental risk assessments. Environ. Sci. Technol. 42, 5807–5813. ( 10.1021/es8005173) PubMed DOI
Tsang SY, Ng SK, Xu Z, Xue H. 2007. The evolution of GABAA receptor-like genes. Mol. Biol. Evol. 24, 599–610. ( 10.1093/molbev/msl188) PubMed DOI
Fick J, et al. 2017. Screening of benzodiazepines in thirty European rivers. Chemosphere 176, 324–332. ( 10.1016/j.chemosphere.2017.02.126) PubMed DOI
Vergeynst J, Baktoft H, Mouton A, De Mulder T, Nopens I, Pauwels I. 2020. The influence of system settings on positioning accuracy in acoustic telemetry, using the YAPS algorithm. Anim. Biotelem. 8, 25. ( 10.1186/s40317-020-00211-1) DOI
Gupte PR, Beardsworth CE, Spiegel O, Lourie E, Toledo S, Nathan R, Bijleveld AI. 2022. A guide to pre‐processing high‐throughput animal tracking data. J. Anim. Ecol. 91, 287–307. ( 10.1111/1365-2656.13610) PubMed DOI PMC
Villegas‐Ríos D, Freitas C, Moland E, Thorbjørnsen SH, Olsen EM. 2020. Inferring individual fate from aquatic acoustic telemetry data. Methods Ecol. Evol. 11, 1186–1198. ( 10.1111/2041-210x.13446) DOI
Noonan MJ, et al. 2021. Estimating encounter location distributions from animal tracking data. Methods Ecol. Evol. 12, 1158–1173. ( 10.1111/2041-210x.13597) DOI
Linløkken AN, Bergman E, Greenberg L. 2010. Effect of temperature and roach Rutilus rutilus group size on swimming speed and prey capture rate of perch Perca fluviatilis and R. rutilus. J. Fish Biol. 76, 900–912. ( 10.1111/j.1095-8649.2010.02545.x) DOI
Olden JD, Neff BD. 2001. Cross-correlation bias in lag analysis of aquatic time series. Mar. Biol. 138, 1063–1070. ( 10.1007/s002270000517) DOI
Calabrese JM, Fleming CH, Gurarie E. 2016. ctmm: An R package for analyzing animal relocation data as a continuous‐time stochastic process. Methods Ecol. Evol. 7, 1124–1132. ( 10.1111/2041-210x.12559) DOI
Fleming CH, et al. 2022. Population‐level inference for home‐range areas. Methods Ecol. Evol. 13, 1027–1041. ( 10.1111/2041-210x.13815) DOI
Alston JM, Fleming CH, Kays R, Streicher JP, Downs CT, Ramesh T, Reineking B, Calabrese JM. 2023. Mitigating pseudoreplication and bias in resource selection functions with autocorrelation‐informed weighting. Methods Ecol. Evol. 14, 643–654. ( 10.1111/2041-210x.14025) DOI
Cullen JA, Poli CL, Fletcher Jr RJ, Valle D. 2022. Identifying latent behavioural states in animal movement with M4, a nonparametric Bayesian method. Methods Ecol. Evol. 13, 432–446. ( 10.1111/2041-210x.13745) DOI
Greenacre M. 2021. Compositional data analysis. Annu. Rev. Stat. Appl. 8, 271–299. ( 10.1146/annurev-statistics-042720-124436) DOI
Oksanen J, et al. 2020.
Long JA, Nelson TA. 2013. Measuring dynamic interaction in movement data. Trans. GIS 17, 62–77. ( 10.1111/j.1467-9671.2012.01353.x) DOI
Jacobson P, Bergstrom U, Eklof J. 2019. Size-dependent diet composition and feeding of Eurasian perch (Perca fluviatilis) and northern pike (Esox lucius) in the Baltic Sea. Boreal Env. Res. 24, 137–153.
Skov C, Nilsson PA. 2018. Biology and ecology of pike. Boca Ratón, FL: CRC Press. ( 10.1201/9781315119076) DOI
Eklöv P, Persson L. 1995. Species-specific antipredator capacities and prey refuges: interactions between piscivorous perch (Perca fluviatilis) and juvenile perch and roach (Rutilus rutilus). Behav. Ecol. Sociobiol. 37, 169–178. ( 10.1007/s002650050178) DOI
Martin CW, Fodrie FJ, Heck KL, Mattila J. 2010. Differential habitat use and antipredator response of juvenile roach (Rutilus rutilus) to olfactory and visual cues from multiple predators. Oecologia 162, 893–902. ( 10.1007/s00442-010-1564-x) PubMed DOI
Christensen B, Persson L. 1993. Species-specific antipredatory behaviours: effects on prey choice in different habitats. Behav. Ecol. Sociobiol. 32, 1–9. ( 10.1007/BF00172217) DOI
Brönmark C, Skov C, Brodersen J, Nilsson PA, Hansson LA. 2008. Seasonal migration determined by a trade-off between predator avoidance and growth. PLoS One 3, e1957. ( 10.1371/journal.pone.0001957) PubMed DOI PMC
Klaminder J, Hellström G, Fahlman J, Jonsson M, Fick J, Lagesson A, Bergman E, Brodin T. 2016. Drug-induced behavioral changes: using laboratory observations to predict field observations. Front. Environ. Sci. 4, 00081. ( 10.3389/fenvs.2016.00081) DOI
Brodin T, Nordling J, Lagesson A, Klaminder J, Hellström G, Christensen B, Fick J. 2017. Environmental relevant levels of a benzodiazepine (oxazepam) alters important behavioral traits in a common planktivorous fish, (Rutilus rutilus). J. Toxicol. Env. Health A 80, 963–970. ( 10.1080/15287394.2017.1352214) PubMed DOI
Hellström G, Brodin T, Jonsson M, Olsen H, Leander J, Fahlman J, Fick J, Klaminder J. 2020. Environmentally relevant concentrations of the common anxiolytic pharmaceutical oxazepam do not have acute effect on spawning behavior in mature male Atlantic salmon (Salmo salar) parr. J. Appl. Ichthyol. 36, 105–112. ( 10.1111/jai.13980) DOI
Mancuso CE, Tanzi MG, Gabay M. 2004. Paradoxical reactions to benzodiazepines: literature review and treatment options. Pharmacotherapy 24, 1177–1185. ( 10.1592/phco.24.13.1177.38089) PubMed DOI
Miczek KA, Fish EW, De Bold JF. 2003. Neurosteroids, GABAA receptors, and escalated aggressive behavior. Horm. Behav. 44, 242–257. ( 10.1016/j.yhbeh.2003.04.002) PubMed DOI
Calabrese EJ. 2008. Pain and U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit. Rev. Toxicol. 38, 579–590. ( 10.1080/10408440802026281) PubMed DOI
de Abreu MS, Koakoski G, Ferreira D, Oliveira TA, da Rosa JGS, Gusso D, Giacomini ACV, Piato AL, Barcellos LJG. 2014. Diazepam and fluoxetine decrease the stress response in zebrafish. PLoS One 9, e103232. ( 10.1371/journal.pone.0103232) PubMed DOI PMC
Lorenzi V, Choe R, Schlenk D. 2016. Effects of environmental exposure to diazepam on the reproductive behavior of fathead minnow, Pimephales promelas. Environ. Toxicol. 31, 561–568. ( 10.1002/tox.22069) PubMed DOI
Cunha DL, de Araujo FG, Marques M. 2017. Psychoactive drugs: occurrence in aquatic environment, analytical methods, and ecotoxicity—a review. Environ. Sci. Pollut. Res. 24, 24076–24091. ( 10.1007/s11356-017-0170-4) DOI
Mazzitelli JY, Budzinski H, Cachot J, Geffard O, Marty P, Chiffre A, François A, Bonnafe E, Geret F. 2018. Evaluation of psychiatric hospital wastewater toxicity: what is its impact on aquatic organisms? Environ. Sci. Pollut. Res. 25, 26090–26102. ( 10.1007/s11356-018-2501-5) DOI
Jamet JL. 1994. Feeding activity of adult roach (Rutilus rutilus (L.)), perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)) in eutrophic Lake Aydat (France). Aquat. Sci. 56, 376–387. ( 10.1007/BF00877183/METRICS) DOI
Lagesson A, Brodin T, Fahlman J, Fick J, Jonsson M, Persson J, Byström P, Klaminder J. 2018. No evidence of increased growth or mortality in fish exposed to oxazepam in semi-natural ecosystems. Sci. Total Environ. 615, 608–614. ( 10.1016/j.scitotenv.2017.09.070) PubMed DOI
Fahlman J, Hellström G, Jonsson M, Fick JB, Rosvall M, Klaminder J. 2021. Impacts of oxazepam on perch (Perca fluviatilis) behavior: fish familiarized to lake conditions do not show predicted anti-anxiety response. Environ. Sci. Technol. 55, 3624–3633. ( 10.1021/acs.est.0c05587) PubMed DOI PMC
Fleming CH, Calabrese JM, Mueller T, Olson KA, Leimgruber P, Fagan WF. 2014. From fine-scale foraging to home ranges: a semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, E154–E167. ( 10.1086/675504) PubMed DOI
Sandoval HN, et al. 2025. Data from: Impacts of an anxiolytic drug on fish behaviour and habitat use in a natural landscape. Dryad Digital Repository. ( 10.5061/dryad.c2fqz61mh) DOI
Sandoval Herrera N, McCallum ES, Baktoft H, Brőnmark C, Cerveny D, Hansson LAet al. 2025. Supplementary material from: Impacts of an anxiolytic drug on fish behaviour and habitat use in a natural landscape. Figshare ( 10.6084/m9.figshare.c.8010489) DOI