Interaction of Carbon Dots with Nucleic Acids Is Driven by Their Surface Charge

. 2026 Jan 12 ; 66 (1) : 591-604. [epub] 20251219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41417616

Carbon dots (CDs) are nanoscale carbon materials with tunable optical properties, low toxicity, and modular functionalization, making them a promising material for biomedical applications. For safe and efficient applications in theranostics, it is essential to assess how CDs interact with biomolecules. Here, we focus on the effect of CDs on the structure and function of nucleic acids (NAs), relevant to NA structural stability, chromatin organization, and gene regulation. We performed more than 150 μs of atomistic molecular dynamics simulations, encompassing a diverse set of NA structures, from canonical DNA and RNA helices through noncanonical motifs such as tetraloops and G-quadruplexes, up to nucleosomes. We simulated their interactions with graphitic CDs with two sizes and distinct surface chemistries: neutral hydrophobic (CD0), negatively charged (CD-), and positively charged (CD+). We identified multiple nonspecific interaction modes including stacking to bases, CH-π contacts, and electrostatic interactions with the NA backbone. All CD types formed contacts with NAs, but only CD+ remained tightly bound and is therefore relevant for NA-related applications. The CD nonspecific binding did not compromise the global NA architecture, and we did not observe any intercalation or base-pair disruption. In the nucleosome, CD+ adsorb to DNA and occasionally bridge adjacent DNA gyres, that may alter local chromatin dynamics. In summary, the surface charge and particle size emerged as the key determinants of NA-CD interactions, providing atomistic guidance for the rational design of CDs optimized for theranostic applications.

Zobrazit více v PubMed

Đorđević L., Arcudi F., Cacioppo M., Prato M.. A Multifunctional Chemical Toolbox to Engineer Carbon Dots for Biomedical and Energy Applications. Nat. Nanotechnol. 2022;17(2):112–130. doi: 10.1038/s41565-021-01051-7. PubMed DOI

Hussain M. M., Khan W. U., Ahmed F., Wei Y., Xiong H.. Recent Developments of Red/NIR Carbon Dots in Biosensing, Bioimaging, and Tumor Theranostics. Chem. Eng. J. 2023;465(April):143010. doi: 10.1016/j.cej.2023.143010. DOI

Chen B. B., Liu M. L., Huang C. Z.. Recent Advances of Carbon Dots in Imaging-Guided Theranostics. TrAC Trends Anal. Chem. 2021;134:116116. doi: 10.1016/j.trac.2020.116116. DOI

Macairan J. R., Jaunky D. B., Piekny A., Naccache R.. Intracellular Ratiometric Temperature Sensing Using Fluorescent Carbon Dots. Nanoscale Adv. 2019;1(1):105–113. doi: 10.1039/C8NA00255J. PubMed DOI PMC

Liu Y., Xu Y., Wen Q.. Carbon Dots for Staining Bacterial Dead Cells and Distinguishing Dead/Alive Bacteria. Anal. Biochem. 2024;687:115432. doi: 10.1016/j.ab.2023.115432. PubMed DOI

Qureshi Z. A., Dabash H., Ponnamma D., Abbas M. K. G.. Carbon Dots as Versatile Nanomaterials in Sensing and Imaging: Efficiency and Beyond. Heliyon. 2024;10(11):e31634. doi: 10.1016/j.heliyon.2024.e31634. PubMed DOI PMC

Lin F., Jia C., Wu F.-G.. Carbon Dots for Intracellular Sensing. Small Struct. 2022;3:na. doi: 10.1002/sstr.202200033. DOI

Barrientos K., Arango J. P., Moncada M. S., Placido J., Patino J., Macias S. L., Maldonado C., Torijano S., Bustamante S., Londono M. E., Jaramillo M.. Carbon Dot-Based Biosensors for the Detection of Communicable and Non -Communicable Diseases. Talanta. 2023;251:123791. doi: 10.1016/j.talanta.2022.123791. PubMed DOI

Santiago A. M., Santos C. I. M., Lourenço L. M. O., Mariz I. F. A., Tomé J. P. C., Maçôas E.. Graphene Quantum Dots and Phthalocyanines Turn-OFF-ON Photoluminescence Nanosensor for Ds-DNA. Nanomaterials. 2022;12(11):1892. doi: 10.3390/nano12111892. PubMed DOI PMC

Lei H., Alu A., Yang J., He X., He C., Ren W., Chen Z., Hong W., Chen L., He X.. Cationic Crosslinked Carbon Dots-Adjuvanted Intranasal Vaccine Induces Protective Immunity against Omicron-Included SARS-CoV-2 Variants. Nat. Commun. 2023;14(1):na. doi: 10.1038/s41467-023-38066-8. PubMed DOI PMC

Unnikrishnan B., Wu R. S., Wei S. C., Huang C. C., Chang H. T.. Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega. 2020;5(20):11248–11261. doi: 10.1021/acsomega.9b04301. PubMed DOI PMC

Lesani P., Mohamad Hadi A. H., Khetarpaul M., Lu Z., New E. J., Zreiqat H.. The Facile Synthesis of Efficient Red-Emissive Two-Photon Carbon Dots for Real-Time Cellular Imaging and High-Resolution Deep-Tissue Imaging. Adv. Photonics Res. 2024;5(1):1–10. doi: 10.1002/adpr.202300245. DOI

Clermont-Paquette A., Larocque K., Piekny A., Naccache R.. Shining a Light on Cells: Amine-Passivated Fluorescent Carbon Dots as Bioimaging Nanoprobes. Mater. Adv. 2024;5(9):3662–3674. doi: 10.1039/D3MA00702B. DOI

Zhang Q. Q., Yang T., Li R. S., Zou H. Y., Li Y. F., Guo J., Liu X. D., Huang C. Z.. A Functional Preservation Strategy for the Production of Highly Photoluminescent Emerald Carbon Dots for Lysosome Targeting and Lysosomal PH Imaging. Nanoscale. 2018;10(30):14705–14711. doi: 10.1039/C8NR03212B. PubMed DOI

Latha B. D., Soumya K., More N., Mounika C., Guduru A. T., Singh G., Kapusetti G.. Fluorescent Carbon Quantum Dots for Effective Tumor Diagnosis: A Comprehensive Review. Biomed. Eng. Adv. 2023;5:100072. doi: 10.1016/j.bea.2023.100072. DOI

Zhu P., Zhao X., Zhu Q., Han X., Tang Y., Liao S., Guo Z., Wang Z., Bi W., Xu Q.. et al. Exploring Multi-Element Co-Doped Carbon Dots as Dual-Mode Probes for Fluorescence/CT Imaging. Chem. Eng. J. 2023;470(April):144042. doi: 10.1016/j.cej.2023.144042. DOI

Yue J., Miao P., Li L., Yan R., Dong W.-F., Mei Q.. Injectable Carbon Dots-Based Hydrogel for Combined Photothermal Therapy and Photodynamic Therapy of Cancer. ACS Appl. Mater. Interfaces. 2022;14(44):49582–49591. doi: 10.1021/acsami.2c15428. PubMed DOI

Mohammadinejad R., Dadashzadeh A., Moghassemi S., Ashrafizadeh M., Dehshahri A., Pardakhty A., Sassan H., Sohrevardi S. M., Mandegary A.. Shedding Light on Gene Therapy: Carbon Dots for the Minimally Invasive Image-Guided Delivery of Plasmids and Noncoding RNAs - A Review. J. Adv. Res. 2019;18:81–93. doi: 10.1016/j.jare.2019.01.004. PubMed DOI PMC

Biswal M. R., Bhatia S.. Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials. 2021;11(4):935. doi: 10.3390/nano11040935. PubMed DOI PMC

Hettiarachchi S. D., Graham R. M., Mintz K. J., Zhou Y., Vanni S., Peng Z., Leblanc R. M.. Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors. Nanoscale. 2019;11(13):6192–6205. doi: 10.1039/C8NR08970A. PubMed DOI PMC

Kaurav H., Verma D., Bansal A., Kapoor D. N., Sheth S.. Progress in Drug Delivery and Diagnostic Applications of Carbon Dots: A Systematic Review. Front. Chem. 2023;11(July):1–22. doi: 10.3389/fchem.2023.1227843. PubMed DOI PMC

Monteiro A. R., Ramos C. I. V., Fateixa S., Neves M. G. P. M. S., Trindade T.. Arrays of Graphene-Quantum Dots-Supported DNA Oligonucleotides as Self-Indicating Porphyrin Carriers. New J. Chem. 2023;47(39):18130–18142. doi: 10.1039/D3NJ03280A. DOI

Stolik S., Delgado J., Pérez A., Anasagasti L.. Measurement of the Penetration Depths of Red and near Infrared Light in Human “Ex Vivo” Tissues. J. Photochem. Photobiol. B Biol. 2000;57(2–3):90–93. doi: 10.1016/S1011-1344(00)00082-8. PubMed DOI

Chen J., Li F., Gu J., Zhang X., Bartoli M., Domena J. B., Zhou Y., Zhang W., Paulino V.. et al. Cancer Cells Inhibition by Cationic Carbon Dots Targeting the Cellular Nucleus. J. Colloid Interface Sci. 2023;637:193–206. doi: 10.1016/j.jcis.2023.01.086. PubMed DOI PMC

Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinos A. B., Zboril R.. Toxicity of Carbon Dots – Effect of Surface Functionalization on the Cell Viability, Reactive Oxygen Species Generation and Cell Cycle. Carbon N.Y. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI

Mao Q., Meng Y., Feng Y., Li H., Ma T.. Organelle Imaging with Carbon Dots: Strategies, Challenges, and Perspectives. Inorg. Chem. Front. 2024;11(3):713–734. doi: 10.1039/D3QI02145A. DOI

Datta K. K. R., Kozák O., Ranc V., Havrdová M., Bourlinos a B., Šafářová K., Holá K., Tománková K., Zoppellaro G., Otyepka M.. et al. Quaternized Carbon Dot-Modified Graphene Oxide for Selective Cell Labelling – Controlled Nucleus and Cytoplasm Imaging. Chem. Commun. 2014;50(74):10782. doi: 10.1039/C4CC02637C. PubMed DOI

D’Angelis do E. S. Barbosa C., Corrêa J. R., Medeiros G. A., Barreto G., Magalhães K. G., de Oliveira A. L., Spencer J., Rodrigues M. O., Neto B. A. D.. Carbon Dots (C-dots) from Cow Manure with Impressive Subcellular Selectivity Tuned by Simple Chemical Modification. Chem. – A Eur. J. 2015;21(13):5055–5060. doi: 10.1002/chem.201406330. PubMed DOI

Han G., Zhao J., Zhang R., Tian X., Liu Z., Wang A., Liu R., Liu B., Han M., Gao X.. et al. Membrane-Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew. Chemie Int. Ed. 2019;58(21):7087–7091. doi: 10.1002/anie.201903005. PubMed DOI

Hua X. W., Bao Y. W., Wu F. G.. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces. 2018;10(13):10664–10677. doi: 10.1021/acsami.7b19549. PubMed DOI

Wang Y., Zhou D., Huang H., Wang Y., Hu Z., Li X.. A Yellow-Emissive Carbon Nanodot-Based Ratiometric Fluorescent Nanosensor for Visualization of Exogenous and Endogenous Hydroxyl Radicals in the Mitochondria of Live Cells. J. Mater. Chem. B. 2019;7(23):3737–3744. doi: 10.1039/C9TB00289H. DOI

Wu M. S., Zhou Z. R., Wang X. Y., Chen B. B., Hafez M. E., Shi J. F., Li D. W., Qian R. C.. Dynamic Visualization of Endoplasmic Reticulum Stress in Living Cells via a Two-Stage Cascade Recognition Process. Anal. Chem. 2022;94(6):2882–2890. doi: 10.1021/acs.analchem.1c04764. PubMed DOI

Jing Y., Liu G., Zhang C., Yu B., Sun J., Lin D., Qu J.. Lipophilic Red-Emitting Carbon Dots for Detecting and Tracking Lipid Droplets in Live Cells. ACS Appl. Bio Mater. 2022;5(3):1187–1193. doi: 10.1021/acsabm.1c01230. PubMed DOI

Peng Z., Han X., Li S., Al-Youbi A. O., Bashammakh A. S., El-Shahawi M. S., Leblanc R. M.. Carbon Dots: Biomacromolecule Interaction, Bioimaging and Nanomedicine. Coord. Chem. Rev. 2017;343:256–277. doi: 10.1016/j.ccr.2017.06.001. DOI

Li S., Wang L., Chusuei C. C., Suarez V. M., Blackwelder P. L., Micic M., Orbulescu J., Leblanc R. M.. Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chem. Mater. 2015;27(5):1764–1771. doi: 10.1021/cm504572b. DOI

Boruah J. S., Sankaranarayanan K., Chowdhury D.. Insight into Carbon Quantum Dot-Vesicles Interactions: Role of Functional Groups. RSC Adv. 2022;12(7):4382–4394. doi: 10.1039/D1RA08809B. PubMed DOI PMC

Pierrat P., Wang R., Kereselidze D., Lux M., Didier P., Kichler A., Pons F., Lebeau L.. Efficient in Vitro and in Vivo Pulmonary Delivery of Nucleic Acid by Carbon Dot-Based Nanocarriers. Biomaterials. 2015;51:290–302. doi: 10.1016/j.biomaterials.2015.02.017. PubMed DOI

Feng L., Zhao A., Ren J., Qu X.. Lighting up Left-Handed Z-DNA: Photoluminescent Carbon Dots Induce DNA B to Z Transition and Perform DNA Logic Operations. Nucleic Acids Res. 2013;41(16):7987–7996. doi: 10.1093/nar/gkt575. PubMed DOI PMC

Paloncýová M., Pykal M., Kührová P., Banáš P., Šponer J., Otyepka M.. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small. 2022;18:2204408. doi: 10.1002/smll.202204408. PubMed DOI

Mocci F., de Villiers Engelbrecht L., Olla C., Cappai A., Casula M. F., Melis C., Stagi L., Laaksonen A., Carbonaro C. M.. Carbon Nanodots from an In Silico Perspective. Chem. Rev. 2022;122(16):13709–13799. doi: 10.1021/acs.chemrev.1c00864. PubMed DOI PMC

Jeong S., Pinals R. L., Dharmadhikari B., Song H., Kalluri A., Debnath D., Wu Q., Ham M.-H., Patra P., Landry M. P.. Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption. Sci. Rep. 2020;10(1):7074. doi: 10.1038/s41598-020-63769-z. PubMed DOI PMC

Wu L., Zhang P., Zhou H., Li J., Shen X., Li T., Kong Z., Hu W., Zhang Y.. Molecular Dynamics Simulation of the Interaction between Graphene Oxide Quantum Dots and DNA Fragment. Materials (Basel). 2022;15(23):8506. doi: 10.3390/ma15238506. PubMed DOI PMC

Kong Z., Hu W., Jiao F., Zhang P., Shen J., Cui B., Wang H., Liang L.. Theoretical Evaluation of DNA Genotoxicity of Graphene Quantum Dots: A Combination of Density Functional Theory and Molecular Dynamics Simulations. J. Phys. Chem. B. 2020;124(42):9335–9342. doi: 10.1021/acs.jpcb.0c05882. PubMed DOI

Galindo-Murillo R., Cheatham T. E.. Ethidium Bromide Interactions with DNA: An Exploration of a Classic DNA-Ligand Complex with Unbiased Molecular Dynamics Simulations. Nucleic Acids Res. 2021;49(7):3735–3747. doi: 10.1093/nar/gkab143. PubMed DOI PMC

Tsai C. C., Jain S. C., Sobell H. M. X. Ray Crystallographic Visualization of Drug Nucleic Acid Intercalative Binding: Structure of an Ethidium Dinucleoside Monophosphate Crystalline Complex, Ethidium: 5 Iodouridylyl(3′5′)­Adenosine. Proc. Natl. Acad. Sci. U. S. A. 1975;72(2):628–632. doi: 10.1073/pnas.72.2.628. PubMed DOI PMC

Li X. L., Hu Y. J., Wang H., Yu B. Q., Yue H. L.. Molecular Spectroscopy Evidence of Berberine Binding to DNA: Comparative Binding and Thermodynamic Profile of Intercalation. Biomacromolecules. 2012;13(3):873–880. doi: 10.1021/bm2017959. PubMed DOI

Lei H., Wang X., Wu C.. Early Stage Intercalation of Doxorubicin to DNA Fragments Observed in Molecular Dynamics Binding Simulations. J. Mol. Graph. Model. 2012;38:279–289. doi: 10.1016/j.jmgm.2012.05.006. PubMed DOI

Tacar O., Sriamornsak P., Dass C. R.. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013;65(2):157–170. doi: 10.1111/j.2042-7158.2012.01567.x. PubMed DOI

Dock-Bregeon A. C., Chevrier B., Podjarny A., Johnson J., de Bear J. S., Gough G. R., Gilham P. T., Moras D.. Crystallographic Structure of an RNA Helix: [U­(UA)­6A]­2. J. Mol. Biol. 1989;209(3):459–474. doi: 10.1016/0022-2836(89)90010-7. PubMed DOI

Klosterman P. S., Shah S. A., Steitz T. A.. Crystal Structures of Two Plasmid Copy Control Related RNA Duplexes: An 18 Base Pair Duplex at 1.20 Å Resolution and a 19 Base Pair Duplex at 1.55 Resolution. Biochemistry. 1999;38(45):14784–14792. doi: 10.1021/bi9912793. PubMed DOI

Case D. A., Cheatham T. E., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J.. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005;26(16):1668–1688. doi: 10.1002/jcc.20290. PubMed DOI PMC

Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E.. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Natl. Acad. Sci. U. S. A. 1981;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC

Correll C. C., Beneken J., Plantinga M. J., Lubbers M., Chan Y. L.. The Common and the Distinctive Features of the Bulged-G Motif Based on a 1.04 Å Resolution RNA Structure. Nucleic Acids Res. 2003;31(23):6806–6818. doi: 10.1093/nar/gkg908. PubMed DOI PMC

Stump S., Mou T. C., Sprang S. R., Natale N. R., Beall H. D.. Crystal Structure of the Major Quadruplex Formed in the Promoter Region of the Human C-MYC Oncogene. PLoS One. 2018;13(10):e0205584. doi: 10.1371/journal.pone.0205584. PubMed DOI PMC

Tachiwana H., Kagawa W., Osakabe A., Kawaguchi K., Shiga T., Hayashi-Takanaka Y., Kimura H., Kurumizaka H.. Structural Basis of Instability of the Nucleosome Containing a Testis-Specific Histone Variant, Human H3T. Proc. Natl. Acad. Sci. U. S. A. 2010;107(23):10454–10459. doi: 10.1073/pnas.1003064107. PubMed DOI PMC

Anandakrishnan R., Aguilar B., Onufriev A. V.. H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations. Nucleic Acids Res. 2012;40(W1):537–541. doi: 10.1093/nar/gks375. PubMed DOI PMC

Paloncýová M., Langer M., Otyepka M.. Structural Dynamics of Carbon Dots in Water and N, N -Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018;14(4):2076–2083. doi: 10.1021/acs.jctc.7b01149. PubMed DOI PMC

Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Shirts M. R., Klein C., Swails J. M., Yin J., Gilson M. K., Mobley D. L., Case D. A., Zhong E. D.. Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset. J. Comput. Aided. Mol. Des. 2017;31(1):147–161. doi: 10.1007/s10822-016-9977-1. PubMed DOI PMC

Izadi S., Anandakrishnan R., Onufriev A. V.. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014;5(21):3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC

Joung I. S., Cheatham III T. E.. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B. 2008;112(30):9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E., Laughton C. A., Orozco M.. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92(11):3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995;117(19):5179–5197. doi: 10.1021/ja00124a002. DOI

Zgarbová M., Otyepka M., Šponer J., Mládek A., Banáš P., Cheatham T. E., Jurečka P.. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011;7(9):2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC

Steinbrecher T., Latzer J., Case D. A.. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012;8(11):4405–4412. doi: 10.1021/ct300613v. PubMed DOI PMC

Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019;15(5):3288–3305. doi: 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Correction to: Improving the Performance of the Amber Rna Force Field by Tuning the Hydrogen-Bonding Interactions­(Journal of the American Chemical Society (2019)­15:5 (3288–3305) DOI: 10.1021/Acs.Jctc.8b00955) J. Chem. Theory Comput. 2020;16(1):818–819. doi: 10.1021/acs.jctc.9b01189. PubMed DOI PMC

Zgarbová M., Šponer J., Jurečka P.. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021;17(10):6292–6301. doi: 10.1021/acs.jctc.1c00697. PubMed DOI

Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T. E., Jurečka P., Šponer J.. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8(7):2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC

Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., Jurečka P.. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013;9(5):2339–2354. doi: 10.1021/ct400154j. PubMed DOI PMC

Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo-Murillo R., Jurečka P.. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11(12):5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI

Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E., Laughton C. A., Orozco M.. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92(11):3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C.. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015;11(8):3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R. A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P.. et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018;118(8):4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Ivani I., Dans P. D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A.. et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods. 2016;13(1):55–58. doi: 10.1038/nmeth.3658. PubMed DOI PMC

Liebl K., Zacharias M.. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021;17(11):7096–7105. doi: 10.1021/acs.jctc.1c00682. PubMed DOI

Love O., Galindo-Murillo R., Zgarbová M., Šponer J., Jurečka P., Cheatham T. E.. Assessing the Current State of Amber Force Field Modifications for DNA–2023 Edition. J. Chem. Theory Comput. 2023;19(13):4299–4307. doi: 10.1021/acs.jctc.3c00233. PubMed DOI PMC

Fröhlking T., Mlýnský V., Janeček M., Kührová P., Krepl M., Banáš P., Šponer J., Bussi G.. Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. J. Chem. Theory Comput. 2022;18(7):4490–4502. doi: 10.1021/acs.jctc.2c00200. PubMed DOI PMC

Mlýnský V., Kührová P., Pykal M., Krepl M., Stadlbauer P., Otyepka M., Banáš P., Šponer J.. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems. J. Chem. Theory Comput. 2025;21(8):4183–4202. doi: 10.1021/acs.jctc.4c01357. PubMed DOI PMC

Berendsen H., Postma J., Vangunsteren W., Dinola A., Haak J.. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81(8):3684–3690. doi: 10.1063/1.448118. DOI

Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Götz A. W., Gohlke H.. et al. AmberTools. J. Chem. Inf. Model. 2023;63(20):6183–6191. doi: 10.1021/acs.jcim.3c01153. PubMed DOI PMC

Eisenhaber F., Lijnzaad P., Argos P., Sander C., Scharf M.. The Double Cubic Lattice Method: Efficient Approaches to Numerical Integration of Surface Area and Volume and to Dot Surface Contouring of Molecular Assemblies. J. Comput. Chem. 1995;16(3):273–284. doi: 10.1002/jcc.540160303. DOI

Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C.. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291. PubMed DOI

The PyMOL Molecular Graphics System, Version 2.0; Schrödinger LLC.

Skånberg R., Hotz I., Ynnerman A., Linares M.. VIAMD: A Software for Visual Interactive Analysis of Molecular Dynamics. J. Chem. Inf. Model. 2023;63(23):7382–7391. doi: 10.1021/acs.jcim.3c01033. PubMed DOI PMC

Cheng H., Zhao Y., Wang Y., Hou Y., Zhang R., Zong M., Sun L., Liu Y., Qi J., Wu X.. et al. The Potential of Novel Synthesized Carbon Dots Derived Resveratrol Using One-Pot Green Method in Accelerating in Vivo Wound Healing. Int. J. Nanomedicine. 2023;18:6813–6828. doi: 10.2147/IJN.S434071. PubMed DOI PMC

Shen J., Varshney D., Simeone A., Zhang X., Adhikari S., Tannahill D., Balasubramanian S.. Promoter G-Quadruplex Folding Precedes Transcription and Is Controlled by Chromatin. Genome Biol. 2021;22(1):143. doi: 10.1186/s13059-021-02346-7. PubMed DOI PMC

Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J.. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature. 1997;389(6648):251–260. doi: 10.1038/38444. PubMed DOI

Marathe A., Bansal M.. An Ensemble of B-DNA Dinucleotide Geometries Lead to Characteristic Nucleosomal DNA Structure and Provide Plasticity Required for Gene Expression. BMC Struct. Biol. 2011;11:1–21. doi: 10.1186/1472-6807-11-1. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...