Interaction of Carbon Dots with Nucleic Acids Is Driven by Their Surface Charge
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41417616
PubMed Central
PMC12801309
DOI
10.1021/acs.jcim.5c02242
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- konformace nukleové kyseliny MeSH
- kvantové tečky * chemie MeSH
- nukleové kyseliny * chemie MeSH
- povrchové vlastnosti MeSH
- simulace molekulární dynamiky MeSH
- statická elektřina MeSH
- uhlík * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- nukleové kyseliny * MeSH
- uhlík * MeSH
Carbon dots (CDs) are nanoscale carbon materials with tunable optical properties, low toxicity, and modular functionalization, making them a promising material for biomedical applications. For safe and efficient applications in theranostics, it is essential to assess how CDs interact with biomolecules. Here, we focus on the effect of CDs on the structure and function of nucleic acids (NAs), relevant to NA structural stability, chromatin organization, and gene regulation. We performed more than 150 μs of atomistic molecular dynamics simulations, encompassing a diverse set of NA structures, from canonical DNA and RNA helices through noncanonical motifs such as tetraloops and G-quadruplexes, up to nucleosomes. We simulated their interactions with graphitic CDs with two sizes and distinct surface chemistries: neutral hydrophobic (CD0), negatively charged (CD-), and positively charged (CD+). We identified multiple nonspecific interaction modes including stacking to bases, CH-π contacts, and electrostatic interactions with the NA backbone. All CD types formed contacts with NAs, but only CD+ remained tightly bound and is therefore relevant for NA-related applications. The CD nonspecific binding did not compromise the global NA architecture, and we did not observe any intercalation or base-pair disruption. In the nucleosome, CD+ adsorb to DNA and occasionally bridge adjacent DNA gyres, that may alter local chromatin dynamics. In summary, the surface charge and particle size emerged as the key determinants of NA-CD interactions, providing atomistic guidance for the rational design of CDs optimized for theranostic applications.
Zobrazit více v PubMed
Đorđević L., Arcudi F., Cacioppo M., Prato M.. A Multifunctional Chemical Toolbox to Engineer Carbon Dots for Biomedical and Energy Applications. Nat. Nanotechnol. 2022;17(2):112–130. doi: 10.1038/s41565-021-01051-7. PubMed DOI
Hussain M. M., Khan W. U., Ahmed F., Wei Y., Xiong H.. Recent Developments of Red/NIR Carbon Dots in Biosensing, Bioimaging, and Tumor Theranostics. Chem. Eng. J. 2023;465(April):143010. doi: 10.1016/j.cej.2023.143010. DOI
Chen B. B., Liu M. L., Huang C. Z.. Recent Advances of Carbon Dots in Imaging-Guided Theranostics. TrAC Trends Anal. Chem. 2021;134:116116. doi: 10.1016/j.trac.2020.116116. DOI
Macairan J. R., Jaunky D. B., Piekny A., Naccache R.. Intracellular Ratiometric Temperature Sensing Using Fluorescent Carbon Dots. Nanoscale Adv. 2019;1(1):105–113. doi: 10.1039/C8NA00255J. PubMed DOI PMC
Liu Y., Xu Y., Wen Q.. Carbon Dots for Staining Bacterial Dead Cells and Distinguishing Dead/Alive Bacteria. Anal. Biochem. 2024;687:115432. doi: 10.1016/j.ab.2023.115432. PubMed DOI
Qureshi Z. A., Dabash H., Ponnamma D., Abbas M. K. G.. Carbon Dots as Versatile Nanomaterials in Sensing and Imaging: Efficiency and Beyond. Heliyon. 2024;10(11):e31634. doi: 10.1016/j.heliyon.2024.e31634. PubMed DOI PMC
Lin F., Jia C., Wu F.-G.. Carbon Dots for Intracellular Sensing. Small Struct. 2022;3:na. doi: 10.1002/sstr.202200033. DOI
Barrientos K., Arango J. P., Moncada M. S., Placido J., Patino J., Macias S. L., Maldonado C., Torijano S., Bustamante S., Londono M. E., Jaramillo M.. Carbon Dot-Based Biosensors for the Detection of Communicable and Non -Communicable Diseases. Talanta. 2023;251:123791. doi: 10.1016/j.talanta.2022.123791. PubMed DOI
Santiago A. M., Santos C. I. M., Lourenço L. M. O., Mariz I. F. A., Tomé J. P. C., Maçôas E.. Graphene Quantum Dots and Phthalocyanines Turn-OFF-ON Photoluminescence Nanosensor for Ds-DNA. Nanomaterials. 2022;12(11):1892. doi: 10.3390/nano12111892. PubMed DOI PMC
Lei H., Alu A., Yang J., He X., He C., Ren W., Chen Z., Hong W., Chen L., He X.. Cationic Crosslinked Carbon Dots-Adjuvanted Intranasal Vaccine Induces Protective Immunity against Omicron-Included SARS-CoV-2 Variants. Nat. Commun. 2023;14(1):na. doi: 10.1038/s41467-023-38066-8. PubMed DOI PMC
Unnikrishnan B., Wu R. S., Wei S. C., Huang C. C., Chang H. T.. Fluorescent Carbon Dots for Selective Labeling of Subcellular Organelles. ACS Omega. 2020;5(20):11248–11261. doi: 10.1021/acsomega.9b04301. PubMed DOI PMC
Lesani P., Mohamad Hadi A. H., Khetarpaul M., Lu Z., New E. J., Zreiqat H.. The Facile Synthesis of Efficient Red-Emissive Two-Photon Carbon Dots for Real-Time Cellular Imaging and High-Resolution Deep-Tissue Imaging. Adv. Photonics Res. 2024;5(1):1–10. doi: 10.1002/adpr.202300245. DOI
Clermont-Paquette A., Larocque K., Piekny A., Naccache R.. Shining a Light on Cells: Amine-Passivated Fluorescent Carbon Dots as Bioimaging Nanoprobes. Mater. Adv. 2024;5(9):3662–3674. doi: 10.1039/D3MA00702B. DOI
Zhang Q. Q., Yang T., Li R. S., Zou H. Y., Li Y. F., Guo J., Liu X. D., Huang C. Z.. A Functional Preservation Strategy for the Production of Highly Photoluminescent Emerald Carbon Dots for Lysosome Targeting and Lysosomal PH Imaging. Nanoscale. 2018;10(30):14705–14711. doi: 10.1039/C8NR03212B. PubMed DOI
Latha B. D., Soumya K., More N., Mounika C., Guduru A. T., Singh G., Kapusetti G.. Fluorescent Carbon Quantum Dots for Effective Tumor Diagnosis: A Comprehensive Review. Biomed. Eng. Adv. 2023;5:100072. doi: 10.1016/j.bea.2023.100072. DOI
Zhu P., Zhao X., Zhu Q., Han X., Tang Y., Liao S., Guo Z., Wang Z., Bi W., Xu Q.. et al. Exploring Multi-Element Co-Doped Carbon Dots as Dual-Mode Probes for Fluorescence/CT Imaging. Chem. Eng. J. 2023;470(April):144042. doi: 10.1016/j.cej.2023.144042. DOI
Yue J., Miao P., Li L., Yan R., Dong W.-F., Mei Q.. Injectable Carbon Dots-Based Hydrogel for Combined Photothermal Therapy and Photodynamic Therapy of Cancer. ACS Appl. Mater. Interfaces. 2022;14(44):49582–49591. doi: 10.1021/acsami.2c15428. PubMed DOI
Mohammadinejad R., Dadashzadeh A., Moghassemi S., Ashrafizadeh M., Dehshahri A., Pardakhty A., Sassan H., Sohrevardi S. M., Mandegary A.. Shedding Light on Gene Therapy: Carbon Dots for the Minimally Invasive Image-Guided Delivery of Plasmids and Noncoding RNAs - A Review. J. Adv. Res. 2019;18:81–93. doi: 10.1016/j.jare.2019.01.004. PubMed DOI PMC
Biswal M. R., Bhatia S.. Carbon Dot Nanoparticles: Exploring the Potential Use for Gene Delivery in Ophthalmic Diseases. Nanomaterials. 2021;11(4):935. doi: 10.3390/nano11040935. PubMed DOI PMC
Hettiarachchi S. D., Graham R. M., Mintz K. J., Zhou Y., Vanni S., Peng Z., Leblanc R. M.. Triple Conjugated Carbon Dots as a Nano-Drug Delivery Model for Glioblastoma Brain Tumors. Nanoscale. 2019;11(13):6192–6205. doi: 10.1039/C8NR08970A. PubMed DOI PMC
Kaurav H., Verma D., Bansal A., Kapoor D. N., Sheth S.. Progress in Drug Delivery and Diagnostic Applications of Carbon Dots: A Systematic Review. Front. Chem. 2023;11(July):1–22. doi: 10.3389/fchem.2023.1227843. PubMed DOI PMC
Monteiro A. R., Ramos C. I. V., Fateixa S., Neves M. G. P. M. S., Trindade T.. Arrays of Graphene-Quantum Dots-Supported DNA Oligonucleotides as Self-Indicating Porphyrin Carriers. New J. Chem. 2023;47(39):18130–18142. doi: 10.1039/D3NJ03280A. DOI
Stolik S., Delgado J., Pérez A., Anasagasti L.. Measurement of the Penetration Depths of Red and near Infrared Light in Human “Ex Vivo” Tissues. J. Photochem. Photobiol. B Biol. 2000;57(2–3):90–93. doi: 10.1016/S1011-1344(00)00082-8. PubMed DOI
Chen J., Li F., Gu J., Zhang X., Bartoli M., Domena J. B., Zhou Y., Zhang W., Paulino V.. et al. Cancer Cells Inhibition by Cationic Carbon Dots Targeting the Cellular Nucleus. J. Colloid Interface Sci. 2023;637:193–206. doi: 10.1016/j.jcis.2023.01.086. PubMed DOI PMC
Havrdova M., Hola K., Skopalik J., Tomankova K., Petr M., Cepe K., Polakova K., Tucek J., Bourlinos A. B., Zboril R.. Toxicity of Carbon Dots – Effect of Surface Functionalization on the Cell Viability, Reactive Oxygen Species Generation and Cell Cycle. Carbon N.Y. 2016;99:238–248. doi: 10.1016/j.carbon.2015.12.027. DOI
Mao Q., Meng Y., Feng Y., Li H., Ma T.. Organelle Imaging with Carbon Dots: Strategies, Challenges, and Perspectives. Inorg. Chem. Front. 2024;11(3):713–734. doi: 10.1039/D3QI02145A. DOI
Datta K. K. R., Kozák O., Ranc V., Havrdová M., Bourlinos a B., Šafářová K., Holá K., Tománková K., Zoppellaro G., Otyepka M.. et al. Quaternized Carbon Dot-Modified Graphene Oxide for Selective Cell Labelling – Controlled Nucleus and Cytoplasm Imaging. Chem. Commun. 2014;50(74):10782. doi: 10.1039/C4CC02637C. PubMed DOI
D’Angelis do E. S. Barbosa C., Corrêa J. R., Medeiros G. A., Barreto G., Magalhães K. G., de Oliveira A. L., Spencer J., Rodrigues M. O., Neto B. A. D.. Carbon Dots (C-dots) from Cow Manure with Impressive Subcellular Selectivity Tuned by Simple Chemical Modification. Chem. – A Eur. J. 2015;21(13):5055–5060. doi: 10.1002/chem.201406330. PubMed DOI
Han G., Zhao J., Zhang R., Tian X., Liu Z., Wang A., Liu R., Liu B., Han M., Gao X.. et al. Membrane-Penetrating Carbon Quantum Dots for Imaging Nucleic Acid Structures in Live Organisms. Angew. Chemie Int. Ed. 2019;58(21):7087–7091. doi: 10.1002/anie.201903005. PubMed DOI
Hua X. W., Bao Y. W., Wu F. G.. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS Appl. Mater. Interfaces. 2018;10(13):10664–10677. doi: 10.1021/acsami.7b19549. PubMed DOI
Wang Y., Zhou D., Huang H., Wang Y., Hu Z., Li X.. A Yellow-Emissive Carbon Nanodot-Based Ratiometric Fluorescent Nanosensor for Visualization of Exogenous and Endogenous Hydroxyl Radicals in the Mitochondria of Live Cells. J. Mater. Chem. B. 2019;7(23):3737–3744. doi: 10.1039/C9TB00289H. DOI
Wu M. S., Zhou Z. R., Wang X. Y., Chen B. B., Hafez M. E., Shi J. F., Li D. W., Qian R. C.. Dynamic Visualization of Endoplasmic Reticulum Stress in Living Cells via a Two-Stage Cascade Recognition Process. Anal. Chem. 2022;94(6):2882–2890. doi: 10.1021/acs.analchem.1c04764. PubMed DOI
Jing Y., Liu G., Zhang C., Yu B., Sun J., Lin D., Qu J.. Lipophilic Red-Emitting Carbon Dots for Detecting and Tracking Lipid Droplets in Live Cells. ACS Appl. Bio Mater. 2022;5(3):1187–1193. doi: 10.1021/acsabm.1c01230. PubMed DOI
Peng Z., Han X., Li S., Al-Youbi A. O., Bashammakh A. S., El-Shahawi M. S., Leblanc R. M.. Carbon Dots: Biomacromolecule Interaction, Bioimaging and Nanomedicine. Coord. Chem. Rev. 2017;343:256–277. doi: 10.1016/j.ccr.2017.06.001. DOI
Li S., Wang L., Chusuei C. C., Suarez V. M., Blackwelder P. L., Micic M., Orbulescu J., Leblanc R. M.. Nontoxic Carbon Dots Potently Inhibit Human Insulin Fibrillation. Chem. Mater. 2015;27(5):1764–1771. doi: 10.1021/cm504572b. DOI
Boruah J. S., Sankaranarayanan K., Chowdhury D.. Insight into Carbon Quantum Dot-Vesicles Interactions: Role of Functional Groups. RSC Adv. 2022;12(7):4382–4394. doi: 10.1039/D1RA08809B. PubMed DOI PMC
Pierrat P., Wang R., Kereselidze D., Lux M., Didier P., Kichler A., Pons F., Lebeau L.. Efficient in Vitro and in Vivo Pulmonary Delivery of Nucleic Acid by Carbon Dot-Based Nanocarriers. Biomaterials. 2015;51:290–302. doi: 10.1016/j.biomaterials.2015.02.017. PubMed DOI
Feng L., Zhao A., Ren J., Qu X.. Lighting up Left-Handed Z-DNA: Photoluminescent Carbon Dots Induce DNA B to Z Transition and Perform DNA Logic Operations. Nucleic Acids Res. 2013;41(16):7987–7996. doi: 10.1093/nar/gkt575. PubMed DOI PMC
Paloncýová M., Pykal M., Kührová P., Banáš P., Šponer J., Otyepka M.. Computer Aided Development of Nucleic Acid Applications in Nanotechnologies. Small. 2022;18:2204408. doi: 10.1002/smll.202204408. PubMed DOI
Mocci F., de Villiers Engelbrecht L., Olla C., Cappai A., Casula M. F., Melis C., Stagi L., Laaksonen A., Carbonaro C. M.. Carbon Nanodots from an In Silico Perspective. Chem. Rev. 2022;122(16):13709–13799. doi: 10.1021/acs.chemrev.1c00864. PubMed DOI PMC
Jeong S., Pinals R. L., Dharmadhikari B., Song H., Kalluri A., Debnath D., Wu Q., Ham M.-H., Patra P., Landry M. P.. Graphene Quantum Dot Oxidation Governs Noncovalent Biopolymer Adsorption. Sci. Rep. 2020;10(1):7074. doi: 10.1038/s41598-020-63769-z. PubMed DOI PMC
Wu L., Zhang P., Zhou H., Li J., Shen X., Li T., Kong Z., Hu W., Zhang Y.. Molecular Dynamics Simulation of the Interaction between Graphene Oxide Quantum Dots and DNA Fragment. Materials (Basel). 2022;15(23):8506. doi: 10.3390/ma15238506. PubMed DOI PMC
Kong Z., Hu W., Jiao F., Zhang P., Shen J., Cui B., Wang H., Liang L.. Theoretical Evaluation of DNA Genotoxicity of Graphene Quantum Dots: A Combination of Density Functional Theory and Molecular Dynamics Simulations. J. Phys. Chem. B. 2020;124(42):9335–9342. doi: 10.1021/acs.jpcb.0c05882. PubMed DOI
Galindo-Murillo R., Cheatham T. E.. Ethidium Bromide Interactions with DNA: An Exploration of a Classic DNA-Ligand Complex with Unbiased Molecular Dynamics Simulations. Nucleic Acids Res. 2021;49(7):3735–3747. doi: 10.1093/nar/gkab143. PubMed DOI PMC
Tsai C. C., Jain S. C., Sobell H. M. X. Ray Crystallographic Visualization of Drug Nucleic Acid Intercalative Binding: Structure of an Ethidium Dinucleoside Monophosphate Crystalline Complex, Ethidium: 5 Iodouridylyl(3′5′)Adenosine. Proc. Natl. Acad. Sci. U. S. A. 1975;72(2):628–632. doi: 10.1073/pnas.72.2.628. PubMed DOI PMC
Li X. L., Hu Y. J., Wang H., Yu B. Q., Yue H. L.. Molecular Spectroscopy Evidence of Berberine Binding to DNA: Comparative Binding and Thermodynamic Profile of Intercalation. Biomacromolecules. 2012;13(3):873–880. doi: 10.1021/bm2017959. PubMed DOI
Lei H., Wang X., Wu C.. Early Stage Intercalation of Doxorubicin to DNA Fragments Observed in Molecular Dynamics Binding Simulations. J. Mol. Graph. Model. 2012;38:279–289. doi: 10.1016/j.jmgm.2012.05.006. PubMed DOI
Tacar O., Sriamornsak P., Dass C. R.. Doxorubicin: An Update on Anticancer Molecular Action, Toxicity and Novel Drug Delivery Systems. J. Pharm. Pharmacol. 2013;65(2):157–170. doi: 10.1111/j.2042-7158.2012.01567.x. PubMed DOI
Dock-Bregeon A. C., Chevrier B., Podjarny A., Johnson J., de Bear J. S., Gough G. R., Gilham P. T., Moras D.. Crystallographic Structure of an RNA Helix: [U(UA)6A]2. J. Mol. Biol. 1989;209(3):459–474. doi: 10.1016/0022-2836(89)90010-7. PubMed DOI
Klosterman P. S., Shah S. A., Steitz T. A.. Crystal Structures of Two Plasmid Copy Control Related RNA Duplexes: An 18 Base Pair Duplex at 1.20 Å Resolution and a 19 Base Pair Duplex at 1.55 Resolution. Biochemistry. 1999;38(45):14784–14792. doi: 10.1021/bi9912793. PubMed DOI
Case D. A., Cheatham T. E., Darden T., Gohlke H., Luo R., Merz K. M., Onufriev A., Simmerling C., Wang B., Woods R. J.. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005;26(16):1668–1688. doi: 10.1002/jcc.20290. PubMed DOI PMC
Drew H. R., Wing R. M., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E.. Structure of a B-DNA Dodecamer: Conformation and Dynamics. Proc. Natl. Acad. Sci. U. S. A. 1981;78(4):2179–2183. doi: 10.1073/pnas.78.4.2179. PubMed DOI PMC
Correll C. C., Beneken J., Plantinga M. J., Lubbers M., Chan Y. L.. The Common and the Distinctive Features of the Bulged-G Motif Based on a 1.04 Å Resolution RNA Structure. Nucleic Acids Res. 2003;31(23):6806–6818. doi: 10.1093/nar/gkg908. PubMed DOI PMC
Stump S., Mou T. C., Sprang S. R., Natale N. R., Beall H. D.. Crystal Structure of the Major Quadruplex Formed in the Promoter Region of the Human C-MYC Oncogene. PLoS One. 2018;13(10):e0205584. doi: 10.1371/journal.pone.0205584. PubMed DOI PMC
Tachiwana H., Kagawa W., Osakabe A., Kawaguchi K., Shiga T., Hayashi-Takanaka Y., Kimura H., Kurumizaka H.. Structural Basis of Instability of the Nucleosome Containing a Testis-Specific Histone Variant, Human H3T. Proc. Natl. Acad. Sci. U. S. A. 2010;107(23):10454–10459. doi: 10.1073/pnas.1003064107. PubMed DOI PMC
Anandakrishnan R., Aguilar B., Onufriev A. V.. H++ 3.0: Automating PK Prediction and the Preparation of Biomolecular Structures for Atomistic Molecular Modeling and Simulations. Nucleic Acids Res. 2012;40(W1):537–541. doi: 10.1093/nar/gks375. PubMed DOI PMC
Paloncýová M., Langer M., Otyepka M.. Structural Dynamics of Carbon Dots in Water and N, N -Dimethylformamide Probed by All-Atom Molecular Dynamics Simulations. J. Chem. Theory Comput. 2018;14(4):2076–2083. doi: 10.1021/acs.jctc.7b01149. PubMed DOI PMC
Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Shirts M. R., Klein C., Swails J. M., Yin J., Gilson M. K., Mobley D. L., Case D. A., Zhong E. D.. Lessons Learned from Comparing Molecular Dynamics Engines on the SAMPL5 Dataset. J. Comput. Aided. Mol. Des. 2017;31(1):147–161. doi: 10.1007/s10822-016-9977-1. PubMed DOI PMC
Izadi S., Anandakrishnan R., Onufriev A. V.. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014;5(21):3863–3871. doi: 10.1021/jz501780a. PubMed DOI PMC
Joung I. S., Cheatham III T. E.. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B. 2008;112(30):9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E., Laughton C. A., Orozco M.. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92(11):3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Cornell W. D., Cieplak P., Bayly C. I., Gould I. R., Merz K. M., Ferguson D. M., Spellmeyer D. C., Fox T., Caldwell J. W., Kollman P. A.. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995;117(19):5179–5197. doi: 10.1021/ja00124a002. DOI
Zgarbová M., Otyepka M., Šponer J., Mládek A., Banáš P., Cheatham T. E., Jurečka P.. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011;7(9):2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC
Steinbrecher T., Latzer J., Case D. A.. Revised AMBER Parameters for Bioorganic Phosphates. J. Chem. Theory Comput. 2012;8(11):4405–4412. doi: 10.1021/ct300613v. PubMed DOI PMC
Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019;15(5):3288–3305. doi: 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Kührová P., Mlýnský V., Zgarbová M., Krepl M., Bussi G., Best R. B., Otyepka M., Šponer J., Banáš P.. Correction to: Improving the Performance of the Amber Rna Force Field by Tuning the Hydrogen-Bonding Interactions(Journal of the American Chemical Society (2019)15:5 (3288–3305) DOI: 10.1021/Acs.Jctc.8b00955) J. Chem. Theory Comput. 2020;16(1):818–819. doi: 10.1021/acs.jctc.9b01189. PubMed DOI PMC
Zgarbová M., Šponer J., Jurečka P.. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021;17(10):6292–6301. doi: 10.1021/acs.jctc.1c00697. PubMed DOI
Krepl M., Zgarbová M., Stadlbauer P., Otyepka M., Banáš P., Koča J., Cheatham T. E., Jurečka P., Šponer J.. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012;8(7):2506–2520. doi: 10.1021/ct300275s. PubMed DOI PMC
Zgarbová M., Luque F. J., Šponer J., Cheatham T. E., Otyepka M., Jurečka P.. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013;9(5):2339–2354. doi: 10.1021/ct400154j. PubMed DOI PMC
Zgarbová M., Šponer J., Otyepka M., Cheatham T. E., Galindo-Murillo R., Jurečka P.. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015;11(12):5723–5736. doi: 10.1021/acs.jctc.5b00716. PubMed DOI
Pérez A., Marchán I., Svozil D., Sponer J., Cheatham T. E., Laughton C. A., Orozco M.. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007;92(11):3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Maier J. A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K. E., Simmerling C.. Ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from Ff99SB. J. Chem. Theory Comput. 2015;11(8):3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Šponer J., Bussi G., Krepl M., Banáš P., Bottaro S., Cunha R. A., Gil-Ley A., Pinamonti G., Poblete S., Jurečka P.. et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018;118(8):4177–4338. doi: 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Ivani I., Dans P. D., Noy A., Pérez A., Faustino I., Hospital A., Walther J., Andrio P., Goñi R., Balaceanu A.. et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods. 2016;13(1):55–58. doi: 10.1038/nmeth.3658. PubMed DOI PMC
Liebl K., Zacharias M.. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021;17(11):7096–7105. doi: 10.1021/acs.jctc.1c00682. PubMed DOI
Love O., Galindo-Murillo R., Zgarbová M., Šponer J., Jurečka P., Cheatham T. E.. Assessing the Current State of Amber Force Field Modifications for DNA–2023 Edition. J. Chem. Theory Comput. 2023;19(13):4299–4307. doi: 10.1021/acs.jctc.3c00233. PubMed DOI PMC
Fröhlking T., Mlýnský V., Janeček M., Kührová P., Krepl M., Banáš P., Šponer J., Bussi G.. Automatic Learning of Hydrogen-Bond Fixes in the AMBER RNA Force Field. J. Chem. Theory Comput. 2022;18(7):4490–4502. doi: 10.1021/acs.jctc.2c00200. PubMed DOI PMC
Mlýnský V., Kührová P., Pykal M., Krepl M., Stadlbauer P., Otyepka M., Banáš P., Šponer J.. Can We Ever Develop an Ideal RNA Force Field? Lessons Learned from Simulations of the UUCG RNA Tetraloop and Other Systems. J. Chem. Theory Comput. 2025;21(8):4183–4202. doi: 10.1021/acs.jctc.4c01357. PubMed DOI PMC
Berendsen H., Postma J., Vangunsteren W., Dinola A., Haak J.. Molecular-Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984;81(8):3684–3690. doi: 10.1063/1.448118. DOI
Case D. A., Aktulga H. M., Belfon K., Cerutti D. S., Cisneros G. A., Cruzeiro V. W. D., Forouzesh N., Giese T. J., Götz A. W., Gohlke H.. et al. AmberTools. J. Chem. Inf. Model. 2023;63(20):6183–6191. doi: 10.1021/acs.jcim.3c01153. PubMed DOI PMC
Eisenhaber F., Lijnzaad P., Argos P., Sander C., Scharf M.. The Double Cubic Lattice Method: Efficient Approaches to Numerical Integration of Surface Area and Volume and to Dot Surface Contouring of Molecular Assemblies. J. Comput. Chem. 1995;16(3):273–284. doi: 10.1002/jcc.540160303. DOI
Van Der Spoel D., Lindahl E., Hess B., Groenhof G., Mark A. E., Berendsen H. J. C.. GROMACS: Fast, Flexible, and Free. J. Comput. Chem. 2005;26(16):1701–1718. doi: 10.1002/jcc.20291. PubMed DOI
The PyMOL Molecular Graphics System, Version 2.0; Schrödinger LLC.
Skånberg R., Hotz I., Ynnerman A., Linares M.. VIAMD: A Software for Visual Interactive Analysis of Molecular Dynamics. J. Chem. Inf. Model. 2023;63(23):7382–7391. doi: 10.1021/acs.jcim.3c01033. PubMed DOI PMC
Cheng H., Zhao Y., Wang Y., Hou Y., Zhang R., Zong M., Sun L., Liu Y., Qi J., Wu X.. et al. The Potential of Novel Synthesized Carbon Dots Derived Resveratrol Using One-Pot Green Method in Accelerating in Vivo Wound Healing. Int. J. Nanomedicine. 2023;18:6813–6828. doi: 10.2147/IJN.S434071. PubMed DOI PMC
Shen J., Varshney D., Simeone A., Zhang X., Adhikari S., Tannahill D., Balasubramanian S.. Promoter G-Quadruplex Folding Precedes Transcription and Is Controlled by Chromatin. Genome Biol. 2021;22(1):143. doi: 10.1186/s13059-021-02346-7. PubMed DOI PMC
Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J.. Crystal Structure of the Nucleosome Core Particle at 2.8 Å Resolution. Nature. 1997;389(6648):251–260. doi: 10.1038/38444. PubMed DOI
Marathe A., Bansal M.. An Ensemble of B-DNA Dinucleotide Geometries Lead to Characteristic Nucleosomal DNA Structure and Provide Plasticity Required for Gene Expression. BMC Struct. Biol. 2011;11:1–21. doi: 10.1186/1472-6807-11-1. PubMed DOI PMC