Biochemistry of Diplonemids

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41627763

Diplonemids are heterotrophic marine flagellates that have attracted attention and interest due to their eccentric mitochondrial genome and gene expression. This has led to the development and optimization of experimental procedures aimed at better understanding of the unusual mitochondrial processes that occur in this group. Here we present a collection of protocols established in the diplonemid type species Paradiplonema papillatum, which range from DNA preparation for direct long-read sequencing of both mitochondrial and nuclear DNA, to isolation of mitochondria and separation of mitochondrial ribosomes, to assays for assessing metabolic functions through measurement of respiration, mitochondrial membrane potential, and peroxide-scavenging activities, as well as tracking metabolic routes via stable-isotope labeling of metabolic intermediates.

Zobrazit více v PubMed

Michels PAM, Villafraz O, Pineda E et al (2021) Carbohydrate metabolism in trypanosomatids: new insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 224:108102. https://doi.org/10.1016/j.exppara.2021.108102 PubMed DOI

Amodeo S, Bregy I, Ochsenreiter T (2022) Mitochondrial genome maintenance—the kinetoplast story. FEMS Microbiol Rev 47:fuac047. https://doi.org/10.1093/femsre/fuac047 DOI PMC

Aphasizheva I, Alfonzo J, Carnes J et al (2020) Lexis and grammar of mitochondrial RNA processing in trypanosomes. Trends Parasitol 36:337–355. https://doi.org/10.1016/j.pt.2020.01.006 PubMed DOI PMC

Valach M, Moreira S, Faktorová D et al (2016) Post-transcriptional mending of gene sequences: looking under the hood of mitochondrial gene expression in diplonemids. RNA Biol 13:1204–1211. https://doi.org/10.1080/15476286.2016.1240143 PubMed DOI PMC

Faktorová D, Valach M, Kaur B et al (2018) RNA metabolism in mitochondria. In: Cruz-Reyes J, Gray MW (eds). Springer International Publishing, pp 145–176 DOI

Vlcek C, Marande W, Teijeiro S et al (2011) Systematically fragmented genes in a multipartite mitochondrial genome. Nucleic Acids Res 39:979–988. https://doi.org/10.1093/nar/gkq883 PubMed DOI

Moreira S, Valach M, Aoulad-Aissa M et al (2016) Novel modes of RNA editing in mitochondria. Nucleic Acids Res 44:4907–4919. https://doi.org/10.1093/nar/gkw188 PubMed DOI PMC

Valach M, Moreira S, Hoffmann S et al (2017) Keeping it complicated: mitochondrial genome plasticity across diplonemids. Sci Rep 7:14166. https://doi.org/10.1038/s41598-017-14286-z PubMed DOI PMC

Kaur B, Záhonová K, Valach M et al (2020) Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 48:2694–2708. https://doi.org/10.1093/nar/gkz1215 PubMed DOI PMC

Lukeš J, Wheeler R, Jirsová D et al (2018) Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 112:10177. https://doi.org/10.1002/iub.1894 DOI

Valach M, Moreira S, Petitjean C et al (2023) Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21:99. https://doi.org/10.1186/s12915-023-01563-9 PubMed DOI PMC

Quick J (2018) Ultra-long read sequencing protocol for RAD004 v3. protocols.io. https://doi.org/10.17504/protocols.io.mrxc57n

Jain M, Koren S, Miga KH et al (2018) Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat Biotechnol 36:338–345. https://doi.org/10.1038/nbt.4060 PubMed DOI PMC

Denis E, Sanchez S, Mairey B et al (2018) Extracting high molecular weight genomic DNA from Saccharomyces cerevisiae. Protoc Exch https://doi.org/10.1038/protex.2018.076

Valach M, Léveillé-Kunst A, Gray MW, Burger G (2018) Respiratory chain complex I of unparalleled divergence in diplonemids. J Biol Chem 293:16043–16056. https://doi.org/10.1074/jbc.RA118.005326 PubMed DOI PMC

Valach M, Benz C, Aguilar LC et al (2023) Miniature RNAs are embedded in an exceptionally protein-rich mitoribosome via an elaborate assembly pathway. Nucleic Acids Res 51:6443–6460. https://doi.org/10.1093/nar/gkad422 PubMed DOI PMC

Niemann M, Schneider A (2020) Trypanosomatids, methods and protocols. Methods Mol Biol 2116:611–626. https://doi.org/10.1007/978-1-0716-0294-2_36 PubMed DOI

Chmelová Ľ, Záhonová K, Albanaz ATS et al (2024) Distribution and functional analysis of isocitrate dehydrogenases across kinetoplastids. Genome Biol Evol 16:evae042. https://doi.org/10.1093/gbe/evae042 PubMed DOI PMC

Doleželová E, Kunzová M, Dejung M et al (2020) Cell-based and multi-omics profiling reveals dynamic metabolic repurposing of mitochondria to drive developmental progression of Trypanosoma brucei. PLoS Biol 18:e3000741. https://doi.org/10.1371/journal.pbio.3000741 PubMed DOI PMC

Škodová-Sveráková I, Záhonová K, Bučková B et al (2020) Catalase and ascorbate peroxidase in Euglenozoan Protists. Pathogens 9:317. https://doi.org/10.3390/pathogens9040317 PubMed DOI PMC

Škodová-Sveráková I, Záhonová K, Juricová V et al (2021) Highly flexible metabolism of the marine euglenozoan protist Diplonema papillatum. BMC Biol 19:251. https://doi.org/10.1186/s12915-021-01186-y PubMed DOI PMC

Stetsenko A, Guskov A (2017) An overview of the top ten detergents used for membrane protein crystallization. Crystals 7:197. https://doi.org/10.3390/cryst7070197 DOI

Espinosa F, Darszon A (1995) Mouse sperm membrane potential: changes induced by Ca PubMed DOI

Morales J, Hashimoto M, Williams TA et al (2016) Differential remodelling of peroxisome function underpins the environmental and metabolic adaptability of diplonemids and kinetoplastids. Proc R Soc B Biol Sci 283:20160520. https://doi.org/10.1098/rspb.2016.0520 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...