Plant and microbial community composition in connection with soil chemistry determines soil nutrient cycling. The study aimed at demonstrating links between plant and microbial communities and soil chemistry occurring among and within four sites: two pine forests with contrasting soil pH and two grasslands of dissimilar soil chemistry and vegetation. Soil was characterized by C and N content, particle size, and profiles of low-molecular-weight compounds determined by high-performance liquid chromatography (HPLC) of soil extracts. Bacterial and actinobacterial community composition was assessed by terminal restriction fragment length polymorphism (T-RFLP) and cloning followed by sequencing. Abundances of bacteria, fungi, and actinobacteria were determined by quantitative PCR. In addition, a pool of secondary metabolites was estimated by erm resistance genes coding for rRNA methyltransferases. The sites were characterized by a stable proportion of C/N within each site, while on a larger scale, the grasslands had a significantly lower C/N ratio than the forests. A Spearman's test showed that soil pH was correlated with bacterial community composition not only among sites but also within each site. Bacterial, actinobacterial, and fungal abundances were related to carbon sources while T-RFLP-assessed microbial community composition was correlated with the chemical environment represented by HPLC profiles. Actinobacteria community composition was the only studied microbial characteristic correlated to all measured factors. It was concluded that the microbial communities of our sites were influenced primarily not only by soil abiotic characteristics but also by dominant litter quality, particularly, by percentage of recalcitrant compounds.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- bakteriální nálož MeSH
- biodiverzita MeSH
- DNA bakterií chemie genetika MeSH
- dusík analýza MeSH
- fylogeneze MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- koncentrace vodíkových iontů MeSH
- methyltransferasy genetika MeSH
- molekulární sekvence - údaje MeSH
- organické látky analýza MeSH
- počet mikrobiálních kolonií MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- rostliny mikrobiologie MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- uhlík analýza MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tuber aestivum is becoming an important commodity of great economical value in some European countries. At the same time, it is a highly protected organism in other countries, where it needs careful treatment. A reliable method of detection in roots and soil is thus needed for assessment of geographic distribution, ecological studies and inoculation efficiency testing in man-made experiments. A PCR-based method of detection of T. aestivum using specific primers was therefore developed. A pair of PCR primers Tu1sekvF/Tu2sekvR selective for T. aestivum and some genotypes of Tuber mesentericum was designed on the basis of the known internal transcribed spacer T. aestivum sequences. TaiI restriction cleavage was then used to distinguish the two species. The selectivity of the designed primer pair was evaluated using DNA extracted from specimens of a further 13 Tuber spp. Subsequently, the selectivity and robustness to false-positive results with nontarget DNA of the designed primers was compared with two other primer pairs (UncI/UncII and BTAE-F/BTAEMB-R). The occurrence of T. aestivum in soil and ectomycorrhizae collected in its native habitat has been successfully detected using the designed primers and nested PCR. The method is reliable and thus suitable for detection of T. aestivum in the field.
- MeSH
- Ascomycota klasifikace genetika izolace a purifikace MeSH
- DNA primery genetika MeSH
- molekulární sekvence - údaje MeSH
- mykorhiza klasifikace genetika izolace a purifikace MeSH
- polymerázová řetězová reakce přístrojové vybavení metody MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- MeSH
- akademie a ústavy dějiny MeSH
- alergologie a imunologie MeSH
- autotrofní procesy MeSH
- biotechnologie MeSH
- dějiny 20. století MeSH
- ekologie MeSH
- mikrobiologie dějiny MeSH
- molekulární biologie MeSH
- výzkum MeSH
- Check Tag
- dějiny 20. století MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- portréty MeSH
Claviceps purpurea, C. grohii, C. zizaniae, C. cyperi, and C. nigricans are closely related ergot fungi and form a monophyletic clade inside the genus Claviceps. Analysis of alkaloid content in C. nigricans sclerotia using UPLC detected ergocristine (1), ergosine (2), alpha-ergocryptine (3), and ergocristam (4). Alkaloids 1, 3, and 4 were found in the sclerotia of C. grohii. The content of 4 in the mixture of alkaloids from C. nigricans and C. grohii (over 8% and over 20%, respectively) was unusually high. Submerged shaken cultures of C. nigricans produced no alkaloids, whereas C. grohii culture formed small amounts (15 mg L (-1)) of extracellular clavines and 1. In the previously used HPLC method the ergocristam degradation product could have been obscured by the ergosine peak. Therefore sclerotia of a C. purpurea habitat-specific population G2 with the dominant production of 1 and 2 have been reanalyzed, but no 4 was detected. The phylogeny of the C. purpurea-related species group is discussed with regard to alkaloid-specific nonribosomal peptide synthetase duplication leading to the production of two main ergopeptines instead of a single product.