Insecticides represent the most crucial element in the integrated management approach to malaria and other vector-borne diseases. The evolution of insect resistance to long-used substances and the toxicity of organophosphates (OPs) and carbamates are the main factors contributing to the development of new, environmentally safe pesticides. In our work, fourteen compounds of 7-methoxytacrine-tacrine heterodimers were tested for their insecticidal effect. Compounds were evaluated in vitro on insect acetylcholinesterase from Anopheles gambiae (AgAChE) and Musca domestica (MdAChE). The evaluation was executed in parallel with testing on human erythrocyte acetylcholinesterase (HssAChE) and human butyrylcholinesterase (HssBChE) using a modified Ellman's method. Compound efficacy was determined as IC50 values for the respective enzymes and selectivity indexes were expressed to compare the interspecies selectivity. Docking studies were performed to predict the binding modes of selected compounds. K1328 and K1329 provided high HssAChE/AgAChE selectivity outperforming standard pesticides (carbofuran and bendiocarb), and thus can be considered as suitable lead structure for novel anticholinesterase insecticides.
- MeSH
- acetylcholinesterasa metabolismus MeSH
- Anopheles * metabolismus MeSH
- butyrylcholinesterasa MeSH
- cholinesterasové inhibitory toxicita MeSH
- insekticidy * MeSH
- karbamáty MeSH
- karbofuran * MeSH
- komáří přenašeči MeSH
- lidé MeSH
- organofosfáty MeSH
- takrin MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The major function of compounds with an oxime moiety attached to a quarternary nitrogen pyridinium ring is to reactivate acetylcholinesterase inhibited by organophosphorus agent (OP). However, other oxime mechanisms (e.g. modulation of cholinergic or glutamatergic receptor) may be involved in the recovery. The main disadvantage of positively charged reactivators is their low ability to penetrate into the brain although crossing the blood brain barrier could be supported via increasing the dose of administered oxime. Thus, this study presents maximal tolerated doses (MTD) for marketed oximes (TMB-4, MMB-4, LüH-6, HI-6, 2-PAM) and the most promising K-oximes (K027, K048, K203) which can be used in OP therapy in the future. No signs of sarin intoxication were observed in mice treated with 100% MTD of HI-6 in contrast to those treated with atropine and only 5% LD50 of HI-6. 100% MTD of HI-6 resulted in levels of 500 μM and 12 μM in plasma and brain, respectively. This concentration is by a far margin safe with respect to direct effects on neuronal cell viability and, on the other hand, does not have any effects on central NMDA receptors or central nACh receptors. However, a weak antimuscarinic activity in case of LüH-6 and a weak peripheral antinicotinic action in case of TMB-4 and 2-PAM could be observed at their respective 100% MTD dose. These high doses, represented by MTD, are, however, irrelevant to clinical practice since they led to mild to moderate toxic side effects. Therefore, we conclude that clinically used doses of marketed oxime reactivators have no significant direct pharmacological effect on the tested receptors.
- MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- křečci praví MeSH
- kur domácí MeSH
- lidé MeSH
- maximální tolerovaná dávka * MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- organofosforové sloučeniny toxicita MeSH
- oximy aplikace a dávkování toxicita MeSH
- pralidoximové sloučeniny aplikace a dávkování toxicita MeSH
- pyridinové sloučeniny aplikace a dávkování toxicita MeSH
- reaktivátory cholinesterasy aplikace a dávkování toxicita MeSH
- viabilita buněk účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acetylcholinesterase inhibitors (AChEIs) are used in the treatment of myasthenia gravis (MG). We investigated the effects of AChEIs on peripheral nicotinic receptors (nAChR), which play a crucial role in the treatment of MG symptoms. The positive modulation of those receptors by AChE inhibitors could have an added value to the anti-AChE activity and might be useful in the therapy of MG. Furthermore, to estimate the potential drawbacks of the compounds, cytotoxicity has been assessed on various cell lines. The whole-cell mode of the patch-clamp method was employed. The experiments were performed on medulloblastoma/rhabdomyosarcoma cell line TE671 expressing human embryonic muscle-like receptor with subunits alpha2betagammadelta. The effect of the compounds on cell viability was measured by standard MTT assay (Sigma Aldrich) on ACHN (renal cell adenocarcinoma), HeLa (immortal cell line derived from a cervical carcinoma), HEPG2 (hepatocellular carcinoma) and BJ (skin fibroblasts) cell lines. No positive modulation by the tested AChE inhibitors was observed. Moreover, the compounds exhibited antagonistic activity on the peripheral nAChR. Standard drugs used in MG treatment were shown to be less potent inhibitors of muscle-type nAChR than the newly synthesized compounds. The new compounds showed very little effect on cell viability, and toxicities were comparable to standards. Newly synthesized AChEIs inhibited peripheral nAChR. Furthermore, the inhibition was higher than that of standards used for the treatment of MG. They could be used for the study of nAChR function, thanks to their high antagonizing potency and fast recovery of receptor activity after their removal. However, since no positive modulation was observed, the new compounds do not seem to be promising candidates for MG treatment, even though their cytotoxic effect was relatively low.
- MeSH
- acetylcholin farmakologie MeSH
- acetylcholinesterasa * MeSH
- buněčné linie MeSH
- cholinesterasové inhibitory chemická syntéza farmakologie MeSH
- lidé MeSH
- membránové potenciály účinky léků MeSH
- metoda terčíkového zámku MeSH
- myasthenia gravis patofyziologie MeSH
- nikotinové receptory účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Acetylcholinesterase (AChE) reactivators (oximes) are generally used as antidotes in case of nerve agent poisoning. Because of their affinity to AChE, they may also act as weak inhibitors of AChE. Their inhibition potency against AChE was determined by an in vitro method based on the interaction between AChE and oxime reactivator in the concentration range 10-1 to 10 -8 M. We used eel AChE for these assays. We found that AChE inhibition strongly depends on the oxime structure. The aim of the present study is to describe the structure-activity relationship (SAR) between oxime structure and inhibition of AChE. AChE reactivators tested include both monoquaternary and bisquaternary structures with the oxime group in different positions on the pyridine ring and with changes in the connecting linker in the case of the bisquaternary compounds. We found AChE inhibition to be highest in bisquaternary oximes that have a longer linker length and have the oxime group in the ortho position. Increased AChE inhibition in monoquaternary oximes was highest when the meta position was occupied by the oxime nucleophile. In addition, different substituents in the connecting chain (in case of bisquaternary oximes) modulated their inhibition potency.