A total of, 78 Clostridium septicum (CLSE) isolates were screened for genes encoding: α-toxin, flagellin, and resistance to vancomycin (VANg). The isolates were also tested for their ability to form biofilm and their antibiotic susceptibility. All isolates were positive for α-toxin and flagellin genes. However, only 19 isolates (24.3%) showed prevalence for VANg. We observed the strongest capacity to form a biofilm (100%) in isolates from patients with oncologic or septic and febrile diagnoses. This percentage was also very high in patients with colitis and gastrointestinal hemorrhage (72.7%). No less than 43 isolates showed antibiotic resistance, and 21 were multidrug-resistant (MDR). Interestingly, our studies showed a correlation between antibiotic resistance and biofilm formation. A statistically significant difference was observed between biofilm-forming MDR isolates and those with low/no biofilm-forming ability. However, the most impressive observation was the correlation with mortality rate. While the overall mortality rate for CLSE infections was 16.7% (13/78), the mortality rate for patients infected with MDR isolates forming biofilm moderately or strongly reached 38.1% (8/21). This number increased even further when only infections with the biofilm-forming VANg-positive isolates were considered (61.5%; 8/13). Therefore, the ability of a VANg-positive CLSE isolate to form a biofilm has been suggested as a biomarker of poor prognosis.
The study aimed to identify colonized patients as a possible source of eventual VRE (vancomycin-resistant enterococci) infection from stool samples positive for glutamate dehydrogenase antigen, as well as for Clostridioides difficile toxins A and B. The study was carried out from 7/2020 to 9/2021. Stool samples were grown in a brain heart infusion medium with a gram-positive non-spore-forming bacteria supplement under aerobic conditions. The samples for VRE identification were grown on CHROMID® VRE agar, and the MICs for vancomycin and teicoplanin were also estimated. The presence of the vanA/vanB genes was tested using the PCR method. The total number of 113 stool samples positive for Clostridioides difficile toxins was analyzed. Of these samples, 44 isolates with VRE characters were identified. The most prevalent isolates in our set of isolates were Enterococcus faecium (27 isolates, 62%), Enterococcus faecalis (9 isolates, 21%), Enterococcus solitarius (4 isolates, 9%), Enterococcus durans (2 isolates, 4%), 1 isolate Enterococcus sulfurous (2%), and Enterococcus raffinosus (2%). In total, 26 isolates were detected in the study in the presence of vanA genes (24 isolates E. faecium, 2 isolates E. faecalis) and 18 isolates detected in the presence of vanB genes (7 isolates E. faecalis, 4 isolates E. solitarius, 3 isolates E. faecium, 2 isolates E. durans, 1 isolate E. sulfurous, and E. raffinosus). The results of this study showed the local dominance character of the vanA gene of hospital VRE isolates that were carriers of genes associated with high resistance to vancomycin, teicoplanin, and occasionally linezolid.
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika MeSH
- Clostridioides difficile * genetika MeSH
- Enterococcus faecium * genetika MeSH
- enterokoky rezistentní vůči vankomycinu * genetika MeSH
- grampozitivní bakteriální infekce * mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- teikoplanin farmakologie MeSH
- vankomycin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH
The symbiotic relationship between intestinal microbiota and the host is a major mechanism of prevention against the development of chronic and metabolic diseases. The intestinal microbiota provides several physiological functions of the organism from the creation of a natural functional barrier with a subsequent immunostimulatory activity up to affecting the energy metabolism of the host. Disruption of physiological intestinal microbiota is reported as one of the major etiological factors of initiation and progression of colorectal carcinoma (CRC). Chronic low-grade inflammation is associated with the development of CRC, through the production of inflammatory cytokines and reactive oxygen species. CRC occurs in association with high-protein and high-fat diets in combination with low-fiber intake. The problem of intestinal dysbiosis and oncological diseases is a multidisciplinary problem and it is necessary to focus on several fields of medicine such as public health, clinical pharmacology, and internal medicine. The aim of this review is describing the role of gut dysbiosis in pathogenesis of colorectal carcinoma.
- MeSH
- cytokiny imunologie MeSH
- dieta MeSH
- dysbióza * MeSH
- gastrointestinální trakt mikrobiologie patofyziologie MeSH
- kolorektální nádory mikrobiologie patologie MeSH
- lidé MeSH
- reaktivní formy kyslíku metabolismus MeSH
- střevní mikroflóra * MeSH
- symbióza MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Vydání: první 133 stran : ilustrace (převážně barevné) ; 30 cm
Vysokoškolská praktická cvičení, která se zaměřují na mikrobiologii.
- Konspekt
- Mikrobiologie
- Učební osnovy. Vyučovací předměty. Učebnice
- NLK Obory
- mikrobiologie, lékařská mikrobiologie
- NLK Publikační typ
- učebnice vysokých škol
- praktická cvičení