- Publikační typ
- abstrakt z konference MeSH
Chromatin DNA damage response (DDR) is orchestrated by the E3 ubiquitin ligase ring finger protein 168 (RNF168), resulting in ubiquitin-dependent recruitment of DDR factors and tumor suppressors breast cancer 1 (BRCA1) and p53 binding protein 1 (53BP1). This ubiquitin signaling regulates pathway choice for repair of DNA double-strand breaks (DSB), toxic lesions whose frequency increases during tumorigenesis. Recruitment of 53BP1 curbs DNA end resection, thereby limiting homologous recombination (HR) and directing DSB repair toward error-prone non-homologous end joining (NHEJ). Under cancer-associated ubiquitin starvation conditions reflecting endogenous or treatment-evoked proteotoxic stress, the ubiquitin-dependent accrual of 53BP1 and BRCA1 at the DNA damage sites is attenuated or lost. Challenging this current paradigm, here we identified diverse human cancer cell lines that display 53BP1 recruitment to DSB sites even under proteasome inhibitor-induced proteotoxic stress, that is, under substantial depletion of free ubiquitin. We show that central to this unexpected phenotype is overabundance of RNF168 that enables more efficient exploitation of the residual-free ubiquitin. Cells with elevated RNF168 are more resistant to combined treatment by ionizing radiation and proteasome inhibition, suggesting that such aberrant RNF168-mediated signaling might reflect adaptation to chronic proteotoxic and genotoxic stresses experienced by tumor cells. Moreover, the overabundant RNF168 and the ensuing unorthodox recruitment patterns of 53BP1, RIF1 and REV7 (monitored on laser micro-irradiation-induced DNA damage) shift the DSB repair balance from HR toward NHEJ, a scenario accompanied by enhanced chromosomal instability/micronuclei formation and sensitivity under replication stress-inducing treatments with camptothecin or poly(ADP-ribose) polymerase (PARP) inhibitor. Overall, our data suggest that the deregulated RNF168/53BP1 pathway could promote tumorigenesis by selecting for a more robust, better stress-adapted cancer cell phenotype, through altered DNA repair, fueling genomic instability and tumor heterogeneity. Apart from providing insights into cancer (patho)biology, the elevated RNF168, documented here also by immunohistochemistry on human clinical tumor specimens, may impact responses to standard-of-care and some emerging targeted cancer therapies.
- MeSH
- 53BP1 chemie genetika metabolismus MeSH
- aminokyselinové motivy MeSH
- fenotyp MeSH
- homeostáza účinky léků genetika MeSH
- karcinogeneze účinky léků genetika MeSH
- lidé MeSH
- mutace MeSH
- mutageny toxicita MeSH
- nádorové buněčné linie MeSH
- nestabilita genomu * účinky léků MeSH
- oprava DNA spojením konců účinky léků genetika MeSH
- oprava DNA účinky léků genetika MeSH
- poškození DNA MeSH
- regulace genové exprese u nádorů * MeSH
- signální transdukce účinky léků genetika MeSH
- transport proteinů účinky léků genetika MeSH
- ubikvitin metabolismus MeSH
- ubikvitinligasy genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Defining mechanisms that generate intratumour heterogeneity and branched evolution may inspire novel therapeutic approaches to limit tumour diversity and adaptation. SETD2 (Su(var), Enhancer of zeste, Trithorax-domain containing 2) trimethylates histone-3 lysine-36 (H3K36me3) at sites of active transcription and is mutated in diverse tumour types, including clear cell renal carcinomas (ccRCCs). Distinct SETD2 mutations have been identified in spatially separated regions in ccRCC, indicative of intratumour heterogeneity. In this study, we have addressed the consequences of SETD2 loss-of-function through an integrated bioinformatics and functional genomics approach. We find that bi-allelic SETD2 aberrations are not associated with microsatellite instability in ccRCC. SETD2 depletion in ccRCC cells revealed aberrant and reduced nucleosome compaction and chromatin association of the key replication proteins minichromosome maintenance complex component (MCM7) and DNA polymerase δ hindering replication fork progression, and failure to load lens epithelium-derived growth factor and the Rad51 homologous recombination repair factor at DNA breaks. Consistent with these data, we observe chromosomal breakpoint locations are biased away from H3K36me3 sites in SETD2 wild-type ccRCCs relative to tumours with bi-allelic SETD2 aberrations and that H3K36me3-negative ccRCCs display elevated DNA damage in vivo. These data suggest a role for SETD2 in maintaining genome integrity through nucleosome stabilization, suppression of replication stress and the coordination of DNA repair.
- MeSH
- genetická heterogenita MeSH
- histonlysin-N-methyltransferasa genetika metabolismus MeSH
- histony metabolismus MeSH
- karcinom z renálních buněk genetika metabolismus MeSH
- lidé MeSH
- mikrosatelitní nestabilita MeSH
- mutace * MeSH
- nádorové buněčné linie MeSH
- nádory ledvin genetika metabolismus MeSH
- nukleozomy patologie MeSH
- oprava DNA MeSH
- replikace DNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Mammalian cells have mechanisms to counteract the effects of metabolic and exogenous stresses, many of that would be mutagenic if ignored. Damage arising during DNA replication is a major source of mutagenesis. The extent of damage dictates whether cells undergo transient cell cycle arrest and damage repair, senescence or apoptosis. Existing dogma defines these alternative fates as distinct choices. Here we show that immortalised breast epithelial cells are able to survive prolonged S phase arrest and subsequently re-enter cycle after many days of being in an arrested, senescence-like state. Prolonged cell cycle inhibition in fibroblasts induced DNA damage response and cell death. However, in immortalised breast epithelia, efficient S phase arrest minimised chromosome damage and protected sufficient chromatin-bound replication licensing complexes to allow cell cycle re-entry. We propose that our observation could have implications for the design of drug therapies for breast cancer.
- MeSH
- buněčný cyklus * MeSH
- epitelové buňky cytologie MeSH
- lidé MeSH
- mléčné žlázy lidské cytologie MeSH
- nádorové buněčné linie MeSH
- nádory prsu genetika patofyziologie MeSH
- poškození DNA MeSH
- replikace DNA * MeSH
- S fáze MeSH
- stárnutí buněk * MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH