PURPOSE OF STUDY: Total joint replacements (TJR) have become the cornerstone of modern orthopedic surgery. A great majority of TJR employs ultrahigh molecular weight polyethylene (UHMWPE) liners. TJR manufacturers use many different types of UHMWPE, which are modified by various combinations of crosslinking, thermal treatment, sterilization and/or addition of biocompatible stabilizers. The UHMWPE modifications are expected to improve the polymer's resistance to oxidative degradation and wear (release of microparticles from the polymer surface). This manuscript provides an objective, non-commercial comparison of current UHMWPE formulations currently employed in total knee replacements. MATERIALS AND METHODS: UHMWPE liners from 21 total knee replacements (TKR) were collected which represent the most implanted liners in the Czech Republic in the period 2020-2021. The UHMWPEs were characterized using several methods: infrared microspectroscopy (IR), non-instrumented and instrumented microindentation hardness testing (MH and MHI), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and solubility measurements. The above-listed methods yielded quite complete information about the structure and properties of each UHMWPE type, including its potential long-term oxidation resistance. RESULTS: For each UHMWPE liner, IR yielded information about immediate oxidative degradation (in the form of oxidation index, OI), level of crosslinking (trans-vinylene index, VI) and crystallinity (CI). The MH and MHI testing gave information about the impact of structure changes on mechanical properties. The remaining methods (DSC, TGA, and solubility measurements) provided additional information regarding the structure changes and resistance to long-term oxidative degradation. Statistical evaluation showed significant differences among the samples as well as interesting correlations among the UHMWPE modifications, structural changes, and mechanical performance. DISCUSSION: Surprisingly enough, UHMWPE materials from different manufacturers showed quite different properties, including the resistance against the long-term oxidative degradation, which is regarded as one of the main reasons of TJR failures. The most promising UHMWPE types were crosslinked materials with biocompatible stabilizers. CONCLUSIONS: Current UHMWPE liners from different manufactures used in total knee replacements exhibit significantly different structure and properties. From the point of view of clinical practice, the traditional UHMWPE types, which contained residual radicals from irradiation and/or gamma sterilization, showed inferior resistance to oxidative degradation and should be avoided. The best properties were observed in modern UHMWPE types, which combined crosslinking, biocompatible stabilizers, and sterilization by ethylenoxide or gas plasma. KEY WORDS: UHMWPE; knee replacements; oxidative degradation; infrared spectroscopy; microhardness.
- MeSH
- biokompatibilní materiály chemie MeSH
- diferenciální skenovací kalorimetrie MeSH
- lidé MeSH
- polyethyleny * chemie MeSH
- protézy - design MeSH
- protézy kolene * MeSH
- termogravimetrie MeSH
- testování materiálů * metody MeSH
- totální endoprotéza kolene * přístrojové vybavení metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- anglický abstrakt MeSH
- časopisecké články MeSH
- srovnávací studie MeSH
PURPOSE OF THE STUDY Infections of joint replacements represent one of the most serious problems in contemporary orthopedics. The joint infections treatment is usually multimodal and involves various combinations of drug delivery and surgical procedures. The aim of this study was to evaluate and compare the bacteriostatic and bactericidal properties of the most common antibiotic carriers used in orthopedic surgery: bone cements mixed with antibiotic and porous calcium sulfate mixed with antibiotic. MATERIAL AND METHODS Three commercial bone cements (Palacos®, Palacos® R+G, Vancogenx®) and commercial porous sulfate (Stimulan®) were prepared with a known concentration of vancomycin (a glycopeptide antibiotic). Specifically, for the purpose of our study, the testing specimens were prepared to release 0, 1, 2, 4, 8, 16, 32, 64, 128, 256, and 512 mg of vancomycin into 1 liter of solution. The specimens with increasing amount of antibiotic were placed in a separate tubes containing 5 mL of Mueller-Hinton broth inoculated with a suspension (0.1 m, McFarland 1) of the reference strain CCM 4223 Staphylococcus aureus to evaluate their bacteriostatic properties (broth dilution method). After this initial incubation and evaluation of the broth dilution method, an inoculum from each tube was transferred onto blood agar plates. After another 24-hour incubation under the same conditions, we evaluated the bactericidal properties (agar plate method). As many as 132 of independent experiments were performed (4 specimens × 11 concentrations × 3 repetitions = 132). RESULTS The bacteriostatic properties of all investigated samples were excellent, perhaps with the exception of the first bone cement (Palacos®). The sample Palacos® started to exhibit bacteriostatic properties at concentrations ≥ 8 mg/mL, while all other samples (Palacos R+G®, Vancogenx®, and Stimulan®) were bacteriostatic in the whole concentration range starting from 1 mg/mL. The bacteriocidic properties did not show such clear trends, but correlated quite well with different properties of the investigated samples during mixing - the most homogeneous samples seemed to exhibit the best and the most reproducible results. DISCUSSION The reliable and reproducible comparison of ATB carriers is a difficult task. The situation is complicated by high numbers of local antibiotic carriers on the market, numerous antibiotics used, and differences in clinical trials at different laboratories. Simple in vitro testing of bacteriostatic and bacteriocidic properties represents a simple and efficient approach to the problem. CONCLUSIONS The study confirmed that the two most common commercial systems used in the orthopedic surgery (bone cements and porous calcium sulfate) prevent bacterial growth (bacteriostatic effect), but they may not be 100% efficient in complete elimination of bacteria (bacteriocidic effect). The scattered results in the case of bacteriocidic tests seemed to be connected with the homogeneity of ATB dispersion in the systems and with the lower reproducibility of the employed agar plate method. Key words: local release of antibiotics; bone cements; calcium sulfate; antimicrobial susceptibility.
- MeSH
- agar MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- kostní cementy farmakologie terapeutické užití MeSH
- lidé MeSH
- ortopedické výkony * MeSH
- ortopedie * MeSH
- polymethylmethakrylát chemie MeSH
- reprodukovatelnost výsledků MeSH
- síran vápenatý MeSH
- vankomycin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE OF THE STUDY In clinical practice UHMWPE is the most commonly used material for manufacturing articular components of joint replacements. The purpose of this study is to find out whether repeated ethylene oxide sterilization results in oxidative degradation of UHMWPE or not and also whether the oxidative degradation of various types of ethylene oxide-sterilized UHMWPE depends on storage time or not. MATERIAL AND METHODS The set included 12 samples of UHMWPE (three samples with different modifications (virgin PE, with E vitamin and cross-linked with thermal treatment) and different number of sterilizations (0×-3×)). The set also included 8 samples of commercial components of hip or knee replacements sterilized with ethylene oxide and stored for different storage periods. The oxidative degradation was assessed by infrared microspectroscopy, based on which the oxidation index (OI), transvinylene index (VI), crystallinity index (CI) and E vitamin index (EI) were calculated. Mechanical properties of UHMWPE were obtained through microhardness measurements. Statistical processing of the results was performed. RESULTS In all the samples, very low oxidative degradation values were reported (most OI values < 0.1). All radiation crosslinked UHMWPE samples showed an increased VI index and a slightly lower crystallinity index. All unmodified samples (irrespective of whether or not and how many times or how long ago the samples were sterilized with EtO) had almost zero value of VI. Changes in crystallinity were negligible (in the rage of 0.56-0.63), which required very accurate measurements of micromechanical properties. Yet, linear correlation was established between microhardness and crystallinity. DISCUSSION All the mentioned indices changed as anticipated: OIs were very low and slightly increased with time of storage, VIs of radiation crosslinked samples grew in proportion to the total gama radiation dose, CIs decreased in samples thermally treated by remelting, and EIs were very low due to negligible concentration of stabiliser (0.1%) in the samples of medical grade UHMWPE. CONCLUSIONS All samples showed zero or minimum oxidative degradation. This confirmed that neither ethylene oxide sterilization, nor multiple EtO sterilization or longer storage of polymer after ethylene oxide sterilization result in major oxidative degradation. Key words: UHMWPE, ethylene oxide, sterilization, oxidation, infrared spectroscopy, microhardness.
- MeSH
- artroplastiky kloubů * MeSH
- ethylenoxid * MeSH
- lidé MeSH
- polyethyleny MeSH
- sterilizace metody MeSH
- vitaminy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We characterized a set of eleven clinically relevant formulations of UHMWPE for total joint replacements. Although their molecular and supermolecular structure were quite similar as evidenced by IR, DSC and SAXS measurements, there were slight differences in their crystallinity (DSC crystallinity ranging from 52 to 61%), which were connected with processing conditions, such as the total radiation dose, thermal treatment and/or addition of biocompatible stabilizers. Mechanical properties were assessed at all length scales, using macroscale compression testing, non-instrumented and instrumented microindentation hardness testing (at loading forces ~500 mN), and nanoindentation hardness testing measured at both higher and lower loading (~4 mN and ~0.6 mN, respectively). In agreement with theoretical predictions, we found linear correlations between UHMWPE crystallinity and its stiffness-related properties (elastic moduli, yield stress, and hardness) at all length scales (macro-, micro- and nanoscale). Detailed statistical evaluation of our dataset showed that the accuracy and precision of the applied methods decreased in the following order: non-instrumented microindentation ≥ instrumented microindentation ≥ macromechanical properties ≥ nanoindentation measured at higher loading forces ≫ nanoindentation measured at lower loading forces. The results confirm that microindentation and nanoindentation at sufficiently high loading forces are reliable methods, suitable for UHMWPE characterization.
In this paper several advances were implemented for glycoprofiling of prostate specific antigen (PSA), what can be applied for better prostate cancer (PCa) diagnostics in the future: 1) application of Au nanoshells with a magnetic core (MP@silica@Au); 2) use of surface plasmons of Au nanoshells with a magnetic core for spontaneous immobilization of zwitterionic molecules via diazonium salt grafting; 3) a double anti-fouling strategy with integration of zwitterionic molecules on Au surface and on MP@silica@Au particles was implemented to resist non-specific protein binding; 4) application of anti-PSA antibody modified Au nanoshells with a magnetic core for enrichment of PSA from a complex matrix of a human serum; 5) direct incubation of anti-PSA modified MP@silica@Au with affinity bound PSA to the lectin modified electrode surface. The electrochemical impedance spectroscopy (EIS) signal was enhanced 43 times integrating Au nanoshells with a magnetic core compared to the biosensor without them. This proof-of-concept study shows that the biosensor could detect PSA down to 1.2 fM and at the same time to glycoprofile such low PSA concentration using a lectin patterned biosensor device. The biosensor offers a recovery index of 108%, when serum sample was spiked with a physiological concentration of PSA (3.5 ng mL-1).
- MeSH
- biosenzitivní techniky * MeSH
- imobilizační protilátky chemie imunologie MeSH
- impedanční spektroskopie metody MeSH
- lidé MeSH
- nádory prostaty diagnóza patologie MeSH
- nanoslupky chemie MeSH
- prostata patologie MeSH
- prostatický specifický antigen chemie izolace a purifikace MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH